Currently, most gene prediction methods detect coding sequences (CDSs) from transcriptome assembly when lacking of closely related reference genomes. However, these methods are of limited application due to highly fragmented transcripts and extensive assembly errors, which may lead to redundant or false CDS predictions. Here we present a novel algorithm, inGAP-CDG, for effective construction of full-length and non-redundant CDSs from unassembled transcriptomes. inGAP-CDG achieves this by combining a newly developed codon-based de bruijn graph to simplify the assembly process and a machine learning based approach to filter false positives. Compared with other methods, inGAP-CDG exhibits significantly increased predicted CDS length and robustness to sequencing errors and varied read length.

Project Activity

See All Activity >

Follow ingap-cdg

ingap-cdg Web Site

Other Useful Business Software
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of ingap-cdg!

Additional Project Details

Registered

2016-04-02