

 A brief intro to Automatic Speech Recognition (ASR)
› What is speech recognition ?
› Types of ASR

 What are the components of ASR ?
 Open Source Tools for Speech Recognition
 Overview of Hindi ASR
 Application areas

 Tightly coupled Vs loosely coupled applications
 Three things an application developer should know

 Phone set
 Creating Phonetic Lexicon
 Creating domain specific Language Model
 Using CMU Sphinx APIs

 Sphinx 2 API overview

 Anatomy of live decoder
 Demo dialog system
 Architecture of railway dialog system

2FOSS.IN 28 NOV 2008 BANGALORE

 What is speech recognition

› Is it voice recognition ? No.

› Recognizing the sequence of predefined set

of units (like phonemes) spoken by a

speaker.

3FOSS.IN 28 NOV 2008 BANGALORE

 Types of Speech Recognition Systems

› Based on Technology
 Continuous Vs Isolated Word Recognizer

› Based on application
 Limited Domain Vs Unrestricted

› Based on Decoder Mode
 Live Mode Vs Batch Mode

› Based on Number of Users
 Single Speaker Vs Multispeaker

4FOSS.IN 28 NOV 2008 BANGALORE

Analog to Digital

Acoustic Model

Language Model

Display

Speech Engine

Feedback

Voice Input

Lexicon

Feature Extraction

5FOSS.IN 28 NOV 2008 BANGALORE

Application Program

 Acoustic model

› Captures the spectral variations of every phoneme

bab dad gag

Courtesy : http://home.cc.umanitoba.ca/~robh/howto.html

6FOSS.IN 28 NOV 2008 BANGALORE

 Acoustic model
› Uses technique called as Hidden Markov Models

to capture the temporal variations in speech

data

› HMM is a statistical Machine Learning Technique

› All the models are stored in form of binary files

which are then used by decoder for comparing

with actual speech data

7FOSS.IN 28 NOV 2008 BANGALORE

 Phonetic Lexicon
› Gives phonetic representation of every word in

vocabulary

› Can assemble valid words from output
produced by acoustic model

 चेयरमैन च ्ए र ् अ म ्ऐ न ्
 आशावादी आ श ्आ व ्आ द् ई

› Mantra of ASR based applications - Smaller the
vocabulary size better is the recognition
accuracy

8FOSS.IN 28 NOV 2008 BANGALORE

 Language Model
› Captures the underlying grammatical structure of

language in statistical framework

› Bigrams –

 Capture probability of one word occurring after another
 आशावादी चेयरमैन - quite probable bigram

› Trigrams –

 Capture probability of one word occurring a bigram
 आशावादी चेयरमैन चेयरमैन – highly rare trigram

 आशावादी चेयरमैन ने – possible trigram

› Language model plays very important role in speech
applications

› Good language model improves performance of
ASR by large extent

9FOSS.IN 28 NOV 2008 BANGALORE

 Speech Engine / Decoder

› Compares input speech data

with acoustic models

› Uses modified version of basic

DTW algorithm

› Uses Hidden Markov Model

(HMM) based acoustic
phonetic models for

comparison

Courtesy: http://www.tu-plovdiv.bg/Container/bi/DTWimpute/DTWalgorithm.html

DTW matching of two time series

10FOSS.IN 28 NOV 2008 BANGALORE

 Analog to Digital Convertor

› Done by sound card

 Noise Filtering

› Done by few well known available algorithms

› Mostly done by technique known as pre-emphasizing

 Feature Extraction

› Features represent compact representation of information

contained in signal

› They reduce computational load

› Most well known feature Mel-frequency cepstral coefficients

(MFCC) used in Hindi ASR

FOSS.IN 28 NOV 2008 BANGALORE 11

 Creating Acoustic Models

› HTK, CMU SphinxTrain

 Creating Phonetic Lexicon

› For English reference dictionaries are available

› For other languages in-house code

 Language Modeling

› CMUCLMTK, SimpleLM, SRI Labs, HTK

 Speech Engine / Decoder

› Hdecode (HTK), CMU Sphinx

FOSS.IN 28 NOV 2008 BANGALORE 12

 HTK can be used only for research purpose

 Sphinx is also developed as a research tool but it is

freely available for system building also

› Sphinx 2 – uses semicontinuous models

› Sphinx 3 – uses continuous models written in C

› Sphinx 4 – Java implementation of Sphinx 3

› Pocket Sphinx – A decoder for PDA, mobile devices

› http://cmusphinx.sourceforge.net/html/cmusphinx.php

 Julius is only speech engine which can use models

built with HTK trainer

FOSS.IN 28 NOV 2008 BANGALORE 13

 Features
 A multi-speaker large vocabulary continuous speech

recognition system

 Developed using CMU Sphinx Tools

 Applicable for native north Indian Hindi speakers particularly

from Delhi, Madhya Pradesh, Uttar pradesh, some part of

Rajasthan and Punjab

 Applicable for (but not necessarily restricted) to urban

speakers in particular

 Applicable for age group from 18 to 60 years

 Applicable for both male and female speakers

 Can be plugged into any application program using CMU

Sphinx APIs

 Models built on 16KHz data recorded on Desktops and

Laptops

FOSS.IN 28 NOV 2008 BANGALORE 14

 Hindi ASR was developed under Sarai FLOSS

Fellowship 2007

 Objective:

› To build generic acoustic models for multi-speaker Hindi

speech recognizer to enable open source community to

develop spoken user interfaces in Hindi language

 40 speakers in total

 50 sentences per speaker

 Recordings on phonetically balanced corpus

 Microphone and computer variations covered

FOSS.IN 28 NOV 2008 BANGALORE 15

FOSS.IN 28 NOV 2008 BANGALORE 16

http://sourceforge.net/projects/hindiasr

 Dictation

› For specific domains like office documents

 System control/navigation

› For driving menus, pushbuttons and GUI components

› Building hands free GUI interfaces

 Commercial/Industrial applications

› Limited domain intelligent dialog systems

› Telephonic inquiry systems (IVR)

 Software for blind people

 Entertainment

› Operations in computer games

› Building chatter bots

 Driving intelligent devices

› Robots, washing machines, coffee vending machines

FOSS.IN 28 NOV 2008 BANGALORE 17

FOSS.IN 28 NOV 2008 BANGALORE 18

APPLICATIONSPHINX DECODER
FILE

SPHINX DECODER APPLICATION

A

P

I

USER

USER

Loosely Coupled Architecture

Tightly Coupled Architecture

 Tightly coupled Application Architecture

› The application linked to Sphinx libraries

› Application can access sphinx APIs

› Application has better control over many things in speech

engine

 Speech signal acquisition

 Buffering

 Feature extraction

 Decoder configurations

 Decoder process and outputs

 Acoustic and Language model scores

 Changing Language model

› All advanced applications like user interfaces should be

ideally implemented in tightly coupled architecture

FOSS.IN 28 NOV 2008 BANGALORE 19

 Loosely coupled Application Architecture

› The application uses Sphinx decoder as a black box

› Application can not access sphinx APIs

› The coupling between application and Sphinx recognition

engine is by writing and reading the files

› The only information which Application gets from Sphinx is

decoded string and final scores for that in some

predefined format

› This kind of architectures slows down performance of

whole application since Sphinx runs as a separate process

and your application actually waits for decoder output

› Advantage :

 Simple and quicker to implement

 No knowledge of sphinx APIs is needed

FOSS.IN 28 NOV 2008 BANGALORE 20

 Phone set

 Creating Phonetic Lexicon (dictionary)

 Creating Domain Specific Language

Model

 How to use Sphinx APIs

FOSS.IN 28 NOV 2008 BANGALORE 21

 Phoneme is a basic unit of sound in a particular

language

 Transliteration scheme called Itrans-3 is used to

represent basic phonemes

 a aa r I k k~ n ei s t oo l p ii n: y m v u d g g~ b h j t:

ch sh d: uu dh shh nd~ bh ai au th ph ph~ kh kh~

d~ rx chh t:h gh d:h jh dh~ o o- nj~ ng~ l: h: e- e j~

SIL

 Number of phonemes - 59

FOSS.IN 28 NOV 2008 BANGALORE 22

 A phonetic lexicon contains words and their

phonetic contents

E.g. kahaan:vat k a h aa n: v a t

lad:akaa l a d: k aa

 Phonetizer

› A program which converts a give word into

phonemes

 Issues

› The text is always in Unicode, iscii like encodings

› We need another good convertors which can

convert these formats into Itrans-3 notations

FOSS.IN 28 NOV 2008 BANGALORE 23

 Decide Application Vocabulary

› Guess all the words which user is likely to say

› Cover all possible words

 Phonetize all these words and create phonetic

lexicon.

 Some words may have more than one phonetic

representation e.g.

tiin t ii n

Tin t i n

FOSS.IN 28 NOV 2008 BANGALORE 24

 ATTENTION !

› Phonetic lexicon must contain all the words

which you are intending to recognize in your

application

› The decoder can not recognize any word

which is outside this lexicon !

FOSS.IN 28 NOV 2008 BANGALORE 25

 Create a file containing the possible verbal

commands, sentences and phrases which can be

spoken out by user for that particular application

 Try to cover all possibilities

 CMU Cambridge Language Modeling toolkit

(cmuclktk) will be used to build a language model

FOSS.IN 28 NOV 2008 BANGALORE 26

CORPUS.TXT

CMU Cam

LM Toolkit

CORPUS.ARPA

 Steps in creating language model

› Create word frequencies

› Create vocabulary file

› From corpus, word frequencies and

vocabulary file, create N-gram file

› Finally create language model file which is in

arpa format

FOSS.IN 28 NOV 2008 BANGALORE 27

 APIs devided into three classes

› Raw audio access

› Continuous listening and silence filtering

› Core decoder functionality

FOSS.IN 28 NOV 2008 BANGALORE 28

 Core decoder never accesses audio

devices itself

 Application has to take care of reading

audio data and sending it to decoder

 This gives freedom and choice to

application, to decode any audio data

randomly
FOSS.IN 28 NOV 2008 BANGALORE 29

 Audio device interface changes from

platform to platform

 Sphinx provides APIs encapsulating

device specific code. It provides a

common interface to application

developer

FOSS.IN 28 NOV 2008 BANGALORE 30

 For recording

› ad_open: Opens an audio device for recording. Returns a handle to the
opened device. (Currently 8KHz or 16KHz mono, 16-bit PCM only.)

› ad_start_rec: Starts recording on the audio device associated with the
specified handle.

› ad_read: Reads up to a specified number of samples into a given buffer.
It returns the number of samples actually read, which may be less than

the number requested. In particular it may return 0 samples if no data is

available. Most operating systems have a limited amount of internal

buffering (at most a few seconds) for audio devices. Hence, this function

must be called frequently enough to avoid buffer overflow.

FOSS.IN 28 NOV 2008 BANGALORE 31

› ad_stop_rec: Stops recording. (However, the system may still have
internally buffered data remaining to be read.)

› ad_close: Closes the audio device associated with the specified audio
handle.

 For playback

› ad_open_play: Opens an audio device for playback. Returns a handle to
the opened device. (Currently 8KHz or 16KHz mono, 16-bit PCM only.)

› ad_start_play: Starts playback on the device associated with the given
handle.

FOSS.IN 28 NOV 2008 BANGALORE 32

› ad_write: Sends a buffer of samples for playback. The function may
accept fewer than the samples provided, depending on available

internal buffers. It returns the number of samples actually accepted. The

application must provide data sufficiently rapidly to avoid breaks in

playback

› ad_stop_play: End of playback. Playback is continued until all buffered
data has been consumed.

› ad_close_play: Closes the audio device associated with the specified
handle.

› ad_mu2li for converting 8-bit mu-law samples into 16-bit linear PCM
samples.

FOSS.IN 28 NOV 2008 BANGALORE 33

 Live Decoder need to continuously listen

to input signal and determine which part

of signal is speech and filter out silence

durations

 Sphinx 2 can only decode utterances

that are limited to less than about 1 min

so application has to pass the data to

decoder in chunks and get it decoded

FOSS.IN 28 NOV 2008 BANGALORE 34

 cont_ad_init: Associates a new continuous listening module instance with a
specified raw A/D handle and a corresponding read function pointer. E.g.,

these may be the handle returned by ad_open and function ad_read
described above.

 cont_ad_calib: Calibrates the background silence level by reading the raw
audio for a few seconds. It should be done once immediately after

cont_ad_init, and after any environmental change.

 cont_ad_read: Reads and returns the next available block of non-silence
data in a given buffer. (Uses the read function and handle supplied to

cont_ad_init to obtain the raw A/D data.) More details are provided below.

 cont_ad_reset: Flushes any data buffered inside the module. Useful for
discarding accumulated, but unprocessed speech.

FOSS.IN 28 NOV 2008 BANGALORE 35

 cont_ad_get_params: Returns the current values of a number of parameters
that determine the functioning of the silence/speech detection module.

 cont_ad_set_params: Sets a number of parameters that determine the
functioning of the silence/speech detection module. Useful for fine-tuning its

performance.

 cont_ad_set_thresh: Useful for adjusting the silence and speech thresholds.

(It's preferable to use cont_ad_set_params for this purpose.)

 cont_ad_detach: Detaches the specified continuous listening module from its
currently associated audio device.

 cont_ad_attach: Attaches the specified continuous listening module to the

specified audio device. (Similar to cont_ad_init, but without the need to
calibrate the audio device. The existing parameter values are used instead

of being reset to default values.)

FOSS.IN 28 NOV 2008 BANGALORE 36

 cont_ad_close: Closes the continuous listening module.

 In addition to returning non-silence data, the function cont_ad_read

also updates a couple of parameters that may be of interest to the

application:

› The signal level for the most recently read data.

› A timestamp value which is useful to determine the length of silence

between two speech utterances

FOSS.IN 28 NOV 2008 BANGALORE 37

 There are several aspects of speech decoding

› Initialization of decoder configuration

› Basic speech decoding

› Managing multiple Language Models

 Initialization of decoder configuration

› fbs_init: Initializes the decoder. In case of live mode decoding the option
–ctlfn should not be used

› fbs_end: Cleans up the internals of the decoder, such as printing
summaries and closing log files, before the application exits.

FOSS.IN 28 NOV 2008 BANGALORE 38

 Actual Decoding

› uttproc_begin_utt: Begins decoding the next utterance. The application
can assign an id string to it. If not, one is automatically created and

assigned.

› uttproc_rawdata: Processes (decodes) the next chunk of raw A/D data in
the current utterance. This can be non-blocking, in which case much of

the data may be simply queued internally for later processing. Note that

only single-channel (mono) 16-bit linear PCM-encoded samples can be

processed.

› uttproc_cepdata: This is an alternative to uttproc_rawdata if the
application wishes to decode cepstrum data instead of raw A/D data.

› uttproc_end_utt: Indicates that all the speech data for the current
utterance has been provided to the decoder.

FOSS.IN 28 NOV 2008 BANGALORE 39

› uttproc_result: Finishes processing internally queued up data and returns the
final recognition result string. It can also be non-blocking, in which case it

may return after processing only some of the internally queued up data.

› uttproc_result_seg: Like uttproc_result, but returns additional information for
each word in the result, such as time segmentation (measured in 10msec

frames), acoustic and language model scores, etc. (See structure

search_hyp_t in file include/fbs.h.) One can use either this function or

uttproc_result to finish decoding, but not both.

› uttproc_partial_result: This function can be used to obtain the most up-to-
date partial result while utterance decoding is in progress. This may be useful,

for example, in providing feedback to the user.

› uttproc_partial_result_seg: Like uttproc_partial_result, but returns word
segmentation information (measured in 10msec frames) instead of the

recognition string.

FOSS.IN 28 NOV 2008 BANGALORE 40

› uttproc_abort_utt: This is an alternative to uttproc_end_utt that terminates the
current utterance. No further recognition results can be obtained for it.

› search_get_alt: Returns N-best hypotheses for the utterance. Currently, this

does not work with finite state grammars. (See further details in include/fbs.h)

 The non-blocking option in some of the above functions is useful if decoding

is slower than real-time, and there is a chance of losing input A/D data if

processing them takes too long.

 The code fragment for actual decoding step actually looks like following –

uttproc_begin_utt (....)

while (not end of utterance) { /* indicated externally, somehow */

read any available A/D data; /* possibly 0 length */

uttproc_rawdata (A/D data read above, non-blocking);

}

uttproc_end_utt ();

uttproc_result (...., blocking);

FOSS.IN 28 NOV 2008 BANGALORE 41

 Managing multiple LMs

› lm_read: Reads in a new N-gram language model from a given file, and
associates it with a given string name. The application needs this function

only if it needs to create and load LMs dynamically at run time, rather

than at initialization via the -lmfn command line argument.

› lm_delete: Deletes the N-gram LM with the given string name from the
decoder repertory.

› uttproc_set_lm: Tells the decoder to switch the active grammar to the N-
gram LM with the given string name. Subsequent utterances are

decoded with this grammar, until the next

› uttproc_set_lm or uttproc_set_fsg operation. This function can only be
invoked between utterances, not in the midst of one.

FOSS.IN 28 NOV 2008 BANGALORE 42

› uttproc_set_context: Sets a two-word history for the next utterance to be
decoded, giving its first words additional context that can be exploited

by the LM. (Useful only with N-gram LMs.)

› uttproc_load_fsgfile: Loads the given finite-state grammar (FSG) file into
the system and returns the string name associated with the FSG. (Unlike

the N-gram LM, the string name is contained in the FSG file.) The

application needs this function only if it needs to create and load FSGs

dynamically at run time, rather than at initialization via the -fsgfn or -

fsgctlfn command line arguments.

› uttproc_load_fsg: Similar to uttproc_load_fsgfile, but the input FSG is

provided in the form of an s2_fsg_t data structure (see include/fbs.h),
instead of a file.

› uttproc_set_fsg: Tells the decoder to switch the active grammar to the
FSG with the given string name. Subsequent utterances are decoded

with this grammar, until the next uttproc_set_fsg or uttproc_set_lm
operation. This function can only be invoked between utterances, not in

the midst of one.

› uttproc_del_fsg: Deletes the FSG with the given string name from the
decoder repertory.

FOSS.IN 28 NOV 2008 BANGALORE 43

 Data logging

› The raw input data for each utterance and/or the cepstrum data

derived from it can be logged to specified directories:

› uttproc_set_rawlogdir: Specifies the directory to which utterance audio
data should be logged. An utterance is logged to file <id>.raw, where

<id> is the string ID assigned to utterance by uttproc_begin_utt.

› uttproc_set_mfclogdir: Specifies the directory to which utterance
cepstrum data should be logged. Like A/D files above, an utterance is

logged to file <id>.mfc.

› uttproc_get_uttid: Retrieves the utterance ID string for the current or most
recent utterance. Useful for locating the logged A/D data and cepstrum

files, for example.

FOSS.IN 28 NOV 2008 BANGALORE 44

/*

* Main utterance processing loop:

* for (;;) {

* wait for start of next utterance;

* decode utterance until silence of at least 1 sec observed;

* print utterance result;

* }

*/

static void utterance_loop()

{

int16 adbuf[4096];

int32 k, fr, ts, rem;

char *hyp;

cont_ad_t *cont;

char word[256];

/* Initialize continuous listening module */

if ((cont = cont_ad_init (ad, ad_read)) == NULL)

E_FATAL("cont_ad_init failed\n");

if (ad_start_rec (ad) < 0)

E_FATAL("ad_start_rec failed\n");

FOSS.IN 28 NOV 2008 BANGALORE 45

/* Calibration */

if (cont_ad_calib (cont) < 0)

E_FATAL("cont_ad_calib failed\n");

for (;;) {

/* Indicate listening for next utterance */

printf ("READY....\n"); fflush (stdout); fflush (stderr);

/* Await data for next utterance */

while ((k = cont_ad_read (cont, adbuf, 4096)) == 0)

sleep_msec(200);

if (k < 0)

E_FATAL("cont_ad_read failed\n");

/*

* Non-zero amount of data received; start recognition of new utterance.

* NULL argument to uttproc_begin_utt => automatic generation of utterance-id.

*/

if (uttproc_begin_utt (NULL) < 0)

E_FATAL("uttproc_begin_utt() failed\n");

uttproc_rawdata (adbuf, k, 0);

printf ("Listening...\n"); fflush (stdout);

FOSS.IN 28 NOV 2008 BANGALORE 46

/* Note timestamp for this first block of data */

ts = cont->read_ts;

/* Decode utterance until end (marked by a "long" silence, >1sec) */

for (;;) {

/* Read non-silence audio data, if any, from continuous listening module */

if ((k = cont_ad_read (cont, adbuf, 4096)) < 0)

E_FATAL("cont_ad_read failed\n");

if (k == 0) {

/*

* No speech data available; check current timestamp with most recent

* speech to see if more than 1 sec elapsed. If so, end of utterance.

*/

if ((cont->read_ts - ts) > DEFAULT_SAMPLES_PER_SEC)

break;

} else {

/* New speech data received; note current timestamp */

ts = cont->read_ts;

}

FOSS.IN 28 NOV 2008 BANGALORE 47

/*

* Decode whatever data was read above. NOTE: Non-blocking mode!!

* rem = #frames remaining to be decoded upon return from the function.

*/

rem = uttproc_rawdata (adbuf, k, 0);

/* If no work to be done, sleep a bit */

if ((rem == 0) && (k == 0))

sleep_msec (20);

}

/*

* Utterance ended; flush any accumulated, unprocessed A/D data and stop

* listening until current utterance completely decoded

*/

ad_stop_rec (ad);

while (ad_read (ad, adbuf, 4096) >= 0);

cont_ad_reset (cont);

printf ("Stopped listening, please wait...\n"); fflush (stdout);

FOSS.IN 28 NOV 2008 BANGALORE 48

#if 0

/* Power histogram dump (FYI) */

cont_ad_powhist_dump (stdout, cont);

#endif

/* Finish decoding, obtain and print result */

uttproc_end_utt ();

if (uttproc_result (&fr, &hyp, 1) < 0)

E_FATAL("uttproc_result failed\n");

printf ("%d: %s\n", fr, hyp); fflush (stdout);

/* Exit if the first word spoken was GOODBYE */

sscanf (hyp, "%s", word);

if (strcmp (word, "goodbye") == 0)

break;

/* Resume A/D recording for next utterance */

if (ad_start_rec (ad) < 0)

E_FATAL("ad_start_rec failed\n");

}

cont_ad_close (cont);

}

FOSS.IN 28 NOV 2008 BANGALORE 49

 Ask train list from source to destination
› मुंबई से बंगऱोर जानेवाऱी सारी टे्रने बताओ
› चेन्नई से ददल्ऱी जानेवाऱी टे्रन्स ्की ऱीस्ट दो
› हैद्राबाद से मुंबई की ओर जाने के लऱये शाम को कौनसी टे्रन्स ्

अव्हेऱेबऱ है

 Ask timings of a particular train
› हुस्सैन सागर एक्सपे्रस का टाईम बताओ

 Built on Loosely Coupled Architecture

 Uses Blocking Mode

FOSS.IN 28 NOV 2008 BANGALORE 50

FOSS.IN 28 NOV 2008 BANGALORE 51

APPLICATION

SPHINX DECODER

FILE

USER

FESTIVAL BASED TTS

TRAIN

DATABASE
DATABASE

OF NLG

TEMPLATES
LM

LEXICON

AM

CLUSTER

ED UNIT

DATABASE

 Venkatesh Keri

 Sriram Chaudhury

 Vinay Pamarthi

 Thanks to Sarai !

FOSS.IN 28 NOV 2008 BANGALORE 52

