

JAVAC

JavaAST
To

Groovy-NodeTree

GroovyNodeTree
Query-Engine

Static Analyzer
Query Language

(StarQL)

Gpath
Query

Xpath
Query

Java
Classes

Groovy
Scripts

XML

Groovy-Nodes

MindMap-XML

AST-Representation

Query Result API

<register>

<register>

IDE WEBIDEIDE File DB CI ...

<register>

<notify><register>

F
E
T
C
H

A
N
A
L
Y
Z
E

P
R
E
S
E
N
T

Integration API

Marked
MindMap

<trigger>

Rich
Client

Java
Sources

The GroovyStAr Source Code Analysis Process

You can simply start the GroovyStAr process via command line interface:

java -jar GroovyStar.jar -g [scriptLocation] -j [sourceLocation]

where scriptLocation is the location of the GroovyStAr-Scripts
and sourceLocation is the root path to your java sources that should be analyzed by the StAr-
Scripts.

So, what happens:

1) The GroovyStAr-Scripts and Java source-files are added to an internal registry.

2) A simple result listener that prints the messages to the standard output is registered.

3) Now the Java compiler javac is called for all registered Java source files.

4) During the javac process an AST is built. The AST nodes are groovy.util.Node objects, so the
AST can be queried by GPath expressions or a special SQL-like query language (StArQL).
Optionally a mindmap of the created AST can be exported (option -m [mindmapFile]) .

5) Now the registered GroovyStAr-Scripts are called. Every script describes queries against the
AST and has an unbound variable named ast. So before each script is called the root node of
the created AST is bound to this variable.

6) The GroovyStAr-Script executes the AST queries. One can use an SQL-like query syntax or
GPath expressions or whatever is necessary to analyse the code.

7) Each GroovyStAr-Script result is bound to special result variables. The result is passed to all
registered result listeners. In our case, it is just the standard output. But it can be everything like
an IDE, a web interface or a continuous integration (CI) process.

How Does It Work?

import de.aw.star.prototype.analyze.AstGPathQuery

/******************** Constants Setup ************************/

MAX_ARGUMENTS_ALLOWED = 4

/********************* Script Header *************************/

name = "F1: Too many arguments"

shortDescription = "Methods should not have more than
$MAX_ARGUMENTS_ALLOWED arguments."

longDescription = "..."
source = "Robert C. Martin, Clean Code"

/********************* StAr-Query ****************************/

methodsWithTooManyArguments =

 AstGPathQuery.select("METHOD").from(ast).where { METHOD ->

 METHOD.VARIABLE.size() > MAX_ARGUMENTS_ALLOWED

 }.list()

/******************* Result Binding **************************/

result = methodsWithTooManyArguments

count = result.size()

/****************Result Message Binding **********************/

resultMessage = "$name. There are no methods with more
than $MAX_ARGUMENTS_ALLOWED arguments."

if(count > 0) {

 resultMessage =
"$name failed by $count methods. $shortDescription"

}

Example GroovyStAr-Script Generated
Java AST

