| Name | Modified | Size | Downloads / Week |
|---|---|---|---|
| Simulator | 2014-07-10 | ||
| scripts | 2014-07-10 | ||
| sample_deletions.sites.vcf | 2016-01-06 | 16.6 kB | |
| GINDEL_src.zip | 2016-01-06 | 27.7 kB | |
| GINDEL_v0.8_linux64 | 2014-07-10 | 2.4 MB | |
| readme.txt | 2014-04-22 | 1.9 kB | |
| libsvm-3.16.zip | 2014-04-18 | 633.3 kB | |
| Totals: 7 Items | 3.1 MB | 0 |
1.Feature collection:
1.1 Option description
Usage: ./GINDEL [options]
Required options:
-D/I call genotype of deletions/insertions
-r FILE reference file(indexed)
-i FILE input bam file(index and sorted) list
-p FILE deletion/insertion positions(sorted and non-overlap) in vcf format.
-o FILE output file name
-l INT read length
Optimal options
-s INT slack value for split position with default 15
-b .bas file is provided
-m DOUBLE mean insert size
-v DOUBLE standard variation of insert size
-g FILE genotype file in vcf format for training data
-h help
1.2 Example:
For deletion:
(1)Collect Features with given constant insert size:
./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100 -m 400 -v 50
(2)Collect Features with given insert size contained in .bas file:
./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100 -b
(3)Collect Features without insert size:
./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100
Get Trained data:
./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100 -g ./genotype.vcf
For insertion:
./GINDEL -I -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_ins_sites.vcf -o test_sim.txt -l 100
2. Training and prediction
2.1. Training
python easy.py training_data
2.2 Predicting
..\windows\svm-predict data.scale Trained.model predictResult
Contact: chong.chu@engr.uconn.edu