Name | Modified | Size | Downloads / Week |
---|---|---|---|
Simulator | 2014-07-10 | ||
scripts | 2014-07-10 | ||
sample_deletions.sites.vcf | 2016-01-06 | 16.6 kB | |
GINDEL_src.zip | 2016-01-06 | 27.7 kB | |
GINDEL_v0.8_linux64 | 2014-07-10 | 2.4 MB | |
readme.txt | 2014-04-22 | 1.9 kB | |
libsvm-3.16.zip | 2014-04-18 | 633.3 kB | |
Totals: 7 Items | 3.1 MB | 0 |
1.Feature collection: 1.1 Option description Usage: ./GINDEL [options] Required options: -D/I call genotype of deletions/insertions -r FILE reference file(indexed) -i FILE input bam file(index and sorted) list -p FILE deletion/insertion positions(sorted and non-overlap) in vcf format. -o FILE output file name -l INT read length Optimal options -s INT slack value for split position with default 15 -b .bas file is provided -m DOUBLE mean insert size -v DOUBLE standard variation of insert size -g FILE genotype file in vcf format for training data -h help 1.2 Example: For deletion: (1)Collect Features with given constant insert size: ./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100 -m 400 -v 50 (2)Collect Features with given insert size contained in .bas file: ./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100 -b (3)Collect Features without insert size: ./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100 Get Trained data: ./GINDEL -D -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_del_sites.vcf -o test_sim.txt -l 100 -g ./genotype.vcf For insertion: ./GINDEL -I -r ./human_g1k_v37.fasta -i ./simulated_data_input.6.4.list -p ./simulation_ins_sites.vcf -o test_sim.txt -l 100 2. Training and prediction 2.1. Training python easy.py training_data 2.2 Predicting ..\windows\svm-predict data.scale Trained.model predictResult Contact: chong.chu@engr.uconn.edu