High level optimization routines in Fortran 95 for optimization problems using a genetic algorithm
with elitism, steady-state-reproduction, dynamic operator scoring by merit, no-duplicates-in-population. Chromosome representation may be integer-array, real-array, permutation-array, character-array.
Single objective and multi-objective maximization routines are present. Possible to incorporate own crossover and mutation operators exclusively or in addition to standard operators that are included by default.
The aim is to make it possible to quickly develop a high performance GA for any given application problem.

Features

  • elitism
  • no duplicates in population
  • dynamic operator selection probabilities based on recent performance
  • steady state reproduction

Project Activity

See All Activity >

Follow GA-tools

GA-tools Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of GA-tools!

Additional Project Details

Registered

2017-03-24