FireRedASR is an industrial-grade family of open-source automatic speech recognition models designed to provide high-precision speech-to-text performance across languages including Mandarin, English, and various Chinese dialects, achieving new state-of-the-art benchmarks on public test sets. The project includes multiple model variants to meet different application needs, such as high-accuracy end-to-end interaction using an encoder-adapter-LLM framework and efficient real-time recognition using attention-based encoder-decoder architectures, giving developers flexibility in balancing performance and resource constraints. FireRedASR not only excels in traditional speech recognition tasks but also demonstrates strong capability in challenging scenarios like singing lyrics recognition, where accurate transcription is often difficult for conventional models.
Features
- Industrial-grade automatic speech recognition models
- Support for Mandarin, English, and dialects
- Multiple architecture variants for flexibility
- High accuracy on speech and singing lyrics
- Pretrained models and inference examples
- Open-source with Apache-2.0 license