Express Engine User Manual

v4.3.4

Express Engine Team

This manual is part of the Express Engine software.

This manual is in the public domain and is provided with absolutely no war-
ranty.

Table of Contents

1

2

Introductionl 1
Installation............ L, 2
2.1 Downloadingooiuuiiii 2
2.2 Windows Install 2
2.3 MacInstall. ... 2
24 Linux Install ... 2
Operating Modes................................ 3
3.1 Non-Interactive......... ... 3
B STV . ettt 3
3.3 Interactive.coooiiiiii e 3
Overview 4
4.1 Express Engine Functions............. ool 4
4.1.1 Check EXPRESS File (—check)............................. 4
4.1.2 Compare EXPRESS Files (—compare)...................... 5
4.1.3 Concatenate EXPRESS Schemata (—concat_schema)........ 5
4.1.4 Draw Dot Graph (—dot)............ooiiiiiiiiii . 6
4.1.5 Write Flattened EXPRESS Schema (-flat) 6
4.1.6 Lisp EXPRESS FILE (—lexp)ovviiiiiiiiiia 7
4.1.7 List Schema Contents (—list), 7
4.1.8 Pretty Printer for EXPRESS Schema (—pretty)............. 7
4.1.9 Test Compare (—test_compare)coooeuiuininn.. 8
4.1.10 Validate STEP File (—validate)............................ 8
4.1.11 Cross Reference Instance Data (—xref) 8
Check EXPRESS Schema....................... 9
5.1 Status of Check Function............ i, 9
5.1.1 Working Checkso 9
5.1.2 Non-Working Checks ... 10
5.2 Example Output from —check......... 10
5.3 Checks that may be added in the Future....................... 11
Compare EXPRESS Schemata................ 12
Concatenate EXPRESS Schema.............. 17

7.1 Example Output from —concat_schema......................... 18

8 Generatedot graph............................ 19
8.1 Generate dot Interface Graph................. 20
8.2 Generate dot Path Graph.............o il 28

9 Flatten EXPRESS Schema.................... 34

10 Lisp EXPRESS File.......................... 39

11 List EXPRESS Schema....................... 40

12 Pretty Print EXPRESS Schema............. 41

13 Cross Reference STEP Data Population. ... 46

14 Test Compare..................cciiiiinnn.... 48
15 Validate STEP Data Population............. 49
15.1 Status of Validate Function................................... 49
15.1.1 Working Validations............ ..., 49
15.1.2 Non-Working Validations....................ooiiiii.. 49
Appendix A Command Line Arguments........ 50

Appendix B Obtaining Software 56

ii

1 Introduction

Express Engine is a software tool to help with the development and use of EXPRESS data
models and STEP data populations. This document assumes the reader is familiar with
EXPRESS (ISO 10303-11) and with the STEP physical file format (ISO 10303-21). The
EXPRESS parser used in this tool conforms to the second edition of Part 11 (ISO 10303-
11:2004). The physical file parser conforms to ISO 10303-21:2002. A file containing Part
11 definitions will be referred to as an EXPRESS File. A file containing Part 21 instances
will be referred to as a STEP File or a data population. An EXPRESS file contains one or
more schema declarations; schema is defined in Part 11.

2 Installation

2.1 Downloading
Using your favorite web browser, go to

http://exp-engine.SourceForge.net/

and select the download option for your particular platform. The archive that you download
will contain the executable for the platform that you chose and the User Manual for the
Application.

2.2 Windows Install
Copy the executable into a directory that is on the %PATH% enviornment variable.

2.3 Mac Install

To install it for a specific user, just put it into a directory on that user’s PATH (echo
$PATH). A common choice is ~/bin/.

To install it so that everyone using the machine can get to it, put it into the
/usr/local/bin/ directory since most users have that directory on thier path.

2.4 Linux Install
To install it for a specific user, just put it into a directory on that user’s PATH (echo
$PATH). A common choice is ~/bin/.

To install it so that everyone using the machine can get to it, put it into the
/user/local/bin/ directory since most users have that directory on their path.

3 Operating Modes

This version will only operate on the command line. Eventually, we will re-establish the
graphical interface and add a server interface.

3.1 Non-Interactive

This mode is invoked from the command line, runs, provides output, and/or writes files,
and exits.

3.2 Server

Not available.

This mode starts up, listens on the specified network port and/or the Unix domain port
(file). It can be configured to preload a set of EXPRESS Files.

3.3 Interactive

Not available.

This mode starts with a window where the user can load EXPRESS Schema files and STEP
Physical files.

4 Overview

Express Engine is sort of a Swiss Army knife for EXPRESS!' and STEPZ. It can perform
multiple functions. Following is the current list.

4.1 Express Engine Functions

Function Description
—check Check EXPRESS Schema.
—compare Compare two EXPRESS Schemata.

—concat_schema
Create a file with the specified schema and all of the interfaced schemata such
that no -stepmod is needed when using this file.

—dot Generate a Dot Graph file that can be processed by some other software to
generate the diagram.
—flat Read an EXPRESS Schema in and write the Schema out with the ENTITY

declarations flattened and the EXTENSIBLE SELECTs and EXTENSIBLE
ENUMERATIONS flattened.

—lexp Write a lispified version of the EXPRESS Schema to a file.
—list List the contents of an EXPRESS Schema.

—pretty Read an EXPRESS schema file and organize it into a specific form according
to defined layout rules.

—validate Read a STEP data population and its associated EXPRESS schema and write a
report about how well the data population conforms to the EXPRESS schema.

—xref Reads a STEP data population and its associated EXPRESS schema and write
a report about which instances reference which other instances.

4.1.1 Check EXPRESS File (—check)
Initial implementation. Not complete
eengine --check -schema <schema.exp>

Only one value is supported for -schema.

<schema.exp>
The EXPRESS Schema file.

This function reads an EXPRESS File, sorts it alphabetically, then writes out a report
about any declarations that are either not used, not defined, or used inconsistently with the
definition.

1 1SO 10303-11
2 ISO 10303-21

Chapter 4: Overview 5

4.1.2 Compare EXPRESS Files (—compare)

Call with one stepmod

eengine --compare
-mode <mode>
-stepmod <stepmod/path>
-stepmod_vcs <vcs_mode>
-reference_schema <reference.exp>
-trial_schema <trial.exp>
--xml-output

Call with two stepmod

eengine --compare
-mode <mode>
-reference_schema <reference.exp>
-reference_stepmod <stepmod/path>
-reference_stepmod_vcs <vcs_mode>
-trial_schema <trial.exp>
-trial_stepmod <stepmod/path>
-trial_stepmod_vcs <vcs_mode>
--xml-output

This function compares two EXPRESS schemata. It is most useful for comparing two
schemata that are different versions of the same schema. In this case, the output produced
by the —xml-output option can be used in the new ISO 10303 standards document as a
change log of what changed between the two schemata.

4.1.3 Concatenate EXPRESS Schemata (—concat_schema)

eengine --concat_schema \
-schema <schema.exp> \
-stepmod <stepmod/path> \
-stepmod_vcs <vcs_mode>

This function generates a file which includes the schema specified in <schema.exp> and all
schemata called out in any of the interface clauses of the included schemata.

Multiple values for -schema are supported. If more than one value is specified for -schema
then each file is loaded and made part of the concatenated set to be written to the final file.
Any additional schemata that are interfaced by the additional -schema values will also be
added to the concatenated set.

Chapter 4: Overview 6

4.1.4 Draw Dot Graph (—dot)

eengine --dot -graph <graph>
-schema <schema.exp>
—-schema_name <name>
-stepmod <dir>
-prune <schema-list>
—-depth <depth>
-iface <iface>
-cluster <schema-list>
-rf_color <color>
-uf_color <color>
-sub_color, <color>
-super_color, <color>
—attribute_color, <color>
-select_color, <color>
-leaf <schema-list>
-path <declaration-list>

This function generates a graph based on the input specified. Options are provided to
enable the user to tailor the graph for the specific presentation needs whilst using only one
set of source schemata. The graph may be of schemata or may be of ENTITY and SELECT
types.
Only one value for -schema is supported.
example: Multiple schemata may compose a STEP AP. There is not a one-to-
one match between the schemata and the engineering or manufacturing domains
supported by the AP. That set of schemata may be used as source for multiple
graphs, each of which is focused on a different sub-domain of the AP.

example: A path of ENTITY and SELECT types may illustrate a particular
initial mapping specification reference path (i.e., omitting mapping constraints),
where the types extend over several schemata.

4.1.5 Write Flattened EXPRESS Schema (—flat)

eengine --flat
-mode <mode>
-schema <schema.exp>
-stepmod <stepmod/path>
-stepmod_vcs <vcs_mode>

schema.exp

The EXPRESS schema definition file.
This function reads an EXPRESS Schema file and then writes it out to a new file that has
the same name as the original file, but has the extension “flat” instead of “exp”.
Only one value for -schema is supported.
ENTITY objects will show their inherited attributes as comments.
EXTENSIBLE SELECT objects will show their base SELECT values as comments.

Chapter 4: Overview 7

EXTENSIBLE ENUMERATIONS objects show their base ENUMERATION values as com-

ments.

4.1.6 Lisp EXPRESS FILE (-lexp)

Initial implementation. Not complete.
eengine --lexp -schema <schema.exp>
schema.exp
The EXPRESS Schema definition file.
Only One value for -schema is supported.
This function reads an EXPRESS File and writes the Schema out to a file as a Lispified

EXPRESS schema. The idea is that this lispified form should be faster to read into Express
Engine since it is a Lisp based application.

4.1.7 List Schema Contents (—list)

eengine --list -schema <schema.exp>

schema.exp
The EXPRESS Schema definition file.

Only one value for -schema is supported.

This function reads an EXPRESS File and writes out a list of all of the declarations found
in the file. This list includes the type of the declaration and the name of the declaration.

TYPE schemal.foo;
ENTITY schemal.bar;
FUNCTION schemal.baz;

4.1.8 Pretty Printer for EXPRESS Schema (—pretty)

eengine --pretty \
-mode <mode> \
-schema <schema.exp> \
-stepmod <stepmod/path> \
-stepmod_vcs <vcs_mode>

schema.exp
The schema that is to be Pretty Printed. The output will we written to a
file that has “-pretty” appended to the name. This means that if the file
‘schema.exp’ is read in, the output will go to ’schema-pretty.exp’.

Only one value for -schema is supported.

stepmod /path
The root directory for stepmod for the case of shortform processing.

mode arm_shortform, mim_shortform, arm_longform and mim_longform.

Chapter 4: Overview 8

This function reads the EXPRESS File specified by <schema.exp>, sorts the contents into
a specific order, and writes out a new EXPRESS file in the format specified in the SC/
Supplementary Directives.

4.1.9 Test Compare (—test_compare)

In Development

eengine --test_compare \
-trial_stepmod </path/to/trl-stepmod> \
-reference_stepmod </path/to/ref-stepmod> \
-cr_name <name_of_cr> \
—-cr_pub_dir <dir/to/published/cr>

< /path/to/trl-stepmod>
The path to the trial STEPMod.

</path/to/ref-stepmod>
The path to the Reference STEPMod.

<name_of_cr>
This is either an integer or a string.

<dir/to/published/cr>
The path to the Published Change Request.

This function does a regression test on the —compare function using the contents of STEP-
Mod and a specified Change Request.

4.1.10 Validate STEP File (—validate)
Not fully functional.

eengine --validate -schema <schema.exp> -population <population.stp>

schema.exp
The EXPRESS Schema definition file.

Only one value for -schema is supported.

population.stp
The STEP population file.

This function reads an EXPRESS File, reads a STEP File, runs all of the WHERE clauses
and RULE’s, then writes out a report about what failed.
4.1.11 Cross Reference Instance Data (—xref)

eengine --xref -schema <schema.exp> —-population <data.step>

schema.exp
The EXPRESS Schema definition file.

Only one value for -schema is supported.
data.step The STEP data population file.

This function reads an EXPRESS File, reads a STEP File that conforms to the EXPRESS
file, then writes out a description of each instance in the file, which other instances reference
it, and which other instances it references.

5 Check EXPRESS Schema

eengine --check -schema <schema>

WARNING!! the Check Schema function is not complete. While it can be useful to run
Check Schema, passing Check Schema does not mean that your schema is clean. It may
have a problem that Check Schema does not yet catch.

NOTE: Running Check Schema on a shortform schema can be very time con-
suming as it looks through multiple schemata to identify TYPE and ENTITY
references.

This function checks the content of the EXPRESS Schema to make sure that it adheres
to the specifications laid out in the SC4 Supplementary Directives (SC4SD) and the ISO
10503-11 EXPRESS Language manual (ISO 10303-11:2004). It cannot check any of the
textual layout specifications, but it can check naming conventions and other content related
specifications. As it works, it will write messages out to the console telling what it is doing
and what it is finding.

When it completes the check, it writes the name of the input file, the date and time the
input file was written, the comments from the header of the file containing the schema, the
version string that immediately follows the schema name if present, and all the messages
about what it found to a file.

If the schema that was checked was loaded from a file named my_schema.exp then the
results will be written to a file named my_schema-check. txt.

5.1 Status of Check Function

This section contains a list of what checks are working and which ones are known not
to work. This is a preliminary list. More effort will be expended later to make a more
exhaustive list.

5.1.1 Working Checks
e that WHERE clauses are named "WR0’ where '0’ is some number.
e that UNIQUE clauses are named "UR0O’ where ’0’ is some number.
e that INVERSE attributes name a valid ENTITY
e that INVERSE attributes invert an attribute of an ENTITY that exists

e the inverted attribute exists on the specified ENTITY and is an explicit attribute and
not DERIVE or INVERSE.

e that fully qualified attribute reference strings contain a valid SCHEMA name, ENTITY
name, and ATTRIBUTE name.

e that no attributes have the same name as any of the accessible FUNCTION declara-
tions.

e that the SUBTYPE OF elements name accessible ENTITY declarations
e that the SUPERTYPE OF elements reference valid ENTITY declarations

Chapter 5: Check EXPRESS Schema 10

e that no two interface specifications interface the same object or objects

Note: The reports of improper things found should all start with an identifier
for the document and the section within that document relevant to the issue.

5.1.2 Non-Working Checks
e Check for EXPRESS syntax pecularities.

Check for cases where ENTITY declarations have the supertype and subtype
clauses switched.

e Check for references to undefined TYPE, ENTITY, FUNCTION, or PROCEDURE
declarations.

e Check for unreferenced TYPE, FUNCTION, and PROCEDURE declarations.
e Check for attribute references that are not qualified but should be.

e Check for attribute references that are qualified but don’t need to be.

5.2 Example Output from —check

This output is from running eengine —check on the AP210 MIM_LF schema.

Report for EXPRESS Schema Check

Schema: AP210_MIM_LF

File: /home/craig/Desktop/exp-step/ap210_mim_1f.exp
Timestamp: 2016-3-31 1:23:32 GMT

Schema ap210_mim_1f

(*

(*
(*

(*
(*
(*
(*

(*

$Id: mim_1f.exp,v 1.61 2014/03/24 17:04:25 thomasrthurman Exp $

IS0 TC184/SC4/WG3 8232 - ISO/TS 10303-410 AP210 electronic assembly
interconnect and packaging design - EXPRESS MIM Long form

Supersedes IS0 TC184/SC4/WG3 N2601

*)
= ===z ssssssssoooossoSoSSSSSSSSSSSSSSSSS===s *)
Long form schema generated by The EXPRESS Data Manager
compiler version 9.8.3B 20121030 *)
Fri Feb 07 11:23:49 2014 *)
The schema is converted from IS010303 P11 2003 to 1994 *)
*)

This file was generated by the EXPRESS Pretty Printer exppp,

part of STEPcode (formerly NIST’s SCL). exppp version:

git commit id: g0a46b86, build timestamp 26 Feb 2014 19:15 *)
patched for bug 4665, 4992, 5004 *)

Checking SCHEMA ap210_mim_1f

Checking TYPE maths_value

Chapter 5: Check EXPRESS Schema 11

SC4SD 6.3.2: WHERE rule label ’CONSTANCY’ doesn’t match pattern ’WRO’
End Checking TYPE maths_value;

Checking TYPE nonnegative_integer
SC48D 6.3.2: WHERE rule label ’NONNEGATIVITY’ doesn’t match
pattern ’WRO’
End Checking TYPE nonnegative_integer;

Checking TYPE one_or_two
SC4SD 6.3.2: WHERE rule label ’IN_RANGE’ doesn’t match pattern ’WRO’
End Checking TYPE one_or_two;

Checking TYPE positive_integer
SC4SD 6.3.2: WHERE rule label ’POSITIVITY’ doesn’t match pattern ’WRO’
End Checking TYPE positive_integer;

Checking TYPE zero_or_one
SC4SD 6.3.2: WHERE rule label ’IN_RANGE’ doesn’t match pattern ’WRO’
End Checking TYPE zero_or_one;

Checking ENTITY assembly_component_usage_substitute
SC4SD 6.2.2.6: The attribute ’substitute’ of ENTITY
’assembly_component_usage_substitute’ has the same
name as a FUNCTION
End Checking ENTITY assembly_component_usage_substitute;

Checking ENTITY characterized_item_within_representation

SC4SD 6.3.2: UNIQUE rule label ’WR1’ doesn’t match the pattern ’URO’
End Checking ENTITY characterized_item_within_representation;
End Checking SCHEMA ap210_mim_1f;

NOTE: Lines have been manually folded and the schema name has been short-
ened for readability of the example.

Note that the output includes the file write date and header comments from the input file.

5.3 Checks that may be added in the Future

Same as non-working checks above.
e Check for a number adjacent to a logical operator

"1 OR" is a common typographical error when
"...=1) OR" is intended.

e Check for "SELF."

12

6 Compare EXPRESS Schemata

Calling compare with one stepmod instance
eengine --compare \

-stepmod <stepmod/path> \
-stepmod_vcs <vcs_access> \

-mode <mode> \

-reference_schema <reference.exp> \
-trial_schema <trial.exp> \
--xml_output

Calling compare with two stepmod instances
eengine --compare \

-reference_stepmod <stepmod/path> \
-reference_stepmod_vcs <vcs_access> \
-reference_schema <reference.exp> \
-mode <mode> \

-trial_stepmod <stepmod/path> \
-trial_stepmod_vcs <vcs_access> \
-trial_schema <trial.exp> \
--xml_output

reference.exp

The file containing the reference schema. Includes complete path to file.

trial.exp The schema definition file that we want to compare to the reference. Includes
complete path to file.

mode One of arm_longform, mim_longform, arm_shortform, mim_shortform,
arm_concatenated, or mim_concatenated.

stepmod,/path

This is the location of a stepmod directory.

schema_name

ves_access

If present, this is the name of the schema that is to be compared. This is most
useful when one of the schema files is a arm_concatenated or mim_concatenated
schema, file. This is the name of the schema that will be used for the compare.
Shortform and Longform files don’t pose a problem since they only contain
a single schema anyway. This option is available as a backup in case only
concatenated files are available as one of the comparison data input sets, because
the primary method is to directly use stepmod content.

This is the type of access that should be used when getting VCS info. The
possible values are exaplained in the following table:

online Call the VCS executable to access the relevant server.
offline Use info in the header of the file in question.

off Don’t access any VCS info.

Chapter 6: Compare EXPRESS Schemata 13

—xml-output
If present, this indicates that the XML file should be written.

This function compares a trial schema to a reference. As it works, it writes a log to standard
output (the console). First it checks to make sure that the two files to be compared are
present. If one of them is not present it will output a message saying which one is missing.

If either of the file is missing it will exit without doing anything.

When it finishes, it writes the file "output.txt" that contains all of the findings. If —xml-
output is included it will write an XML file that can be used as the change record from
the reference schema to the trial schema. If <mode> is arm_longform the “output.txt” is
“output-arm.txt”. If <mode> is mim_longform then “output.txt” is “output-mim.txt”. If
—xml-output is included then it writes “output-arm.xml” or “output-mim.xml” depending
on the value of <mode>.> If <mode> is arm_shortform or mim_shortform, there are three
options for the interfacing schemas:

e -stepmod, used where one stepmod is used for both versions,

e (-reference_stepmod,-trial_stepmod), used where each schema has its own instance of
stepmod,

e concatenated files, used for shortform compare but two instances of stepmod are not used.

This function is primarily intended for the case where the two EXPRESS files being com-
pared are different versions of the same schema. The reference is the older schema and the
trial is the new schema that is being developed.?

As an example, let us compare the AM ISO/TS 10303-1026 Assembly 105 structure arm.exp
file to a prior released version using two instances of stepmod, one for reference and one for
trial locations.

e pre-condition:
e The local reference stepmod directory is /usr/<user>/.../SMRLvS.

e The local reference schema file is /usr/<user>/ . . . /SMRLv6 /data/modules /
assembly_structure/arm.exp.

e The local trial stepmod directory is /usr/<user>/.../stepmod.

e The local trial schema file is /usr/<user>/ . . . /stepmod / data/modules /
assembly_structure/arm.exp.

e execute eengine command:

If <mode> is arm_longform or mim_longform then each schema file shall be a fully self contained Long Form
schema) and there will be no need of the -stepmod option as there will be no Interface clauses to resolve.
In the case that one schema is an extension of a basis schema (e.g., ISO 10303-409 is an extension of ISO
10303-442), the compare function may provide useful information when the user first aligns the schema
names in the two files by selecting one or the other schema name as the schema name in each file.

/usr/<user>/.../SMRLv6
/usr/<user>/.../SMRLv6/data/modules/assembly_structure/arm.exp
/usr/<user>/.../SMRLv6/data/modules/assembly_structure/arm.exp
/usr/<user>/.../stepmod
/usr/<user>/.../stepmod/data/modules/assembly_structure/arm.exp
/usr/<user>/.../stepmod/data/modules/assembly_structure/arm.exp

Chapter 6: Compare EXPRESS Schemata 14

(7

The reference stepmod has a root directory at -reference_stepmod.

The trial stepmod has a root directory at -trial_stepmod.

eengine -compare \
-reference_stepmod /usr/<user>/.../SMRLv6 \
-reference_schema \
/usr/<user>/.../SMRLv6/data/modules/assembly_structure/arm.exp \
-trial_stepmod /usr/<user>/.../stepmod \
-trial_schema \
/usr/<user>/.../stepmod/data/modules/assembly_structure/arm.exp \

-mode arm_shortform
k J

e post-condition: EXPRESS_arm_longform_comparison_results.txt file in the local direc-
tory.

/usr/<user>/.../SMRLv6
/usr/<user>/.../SMRLv6/data/modules/assembly_structure/arm.exp
/usr/<user>/.../stepmod
/usr/<user>/.../stepmod/data/modules/assembly_structure/arm.exp

Chapter 6: Compare EXPRESS Schemata 15

As another example, let us compare the AM ISO/TS 10303-1026 Assembly structure
arm.exp file to a prior released version eengine but use the concatenated file for the
interfaced schemata of the reference schemata and use stepmod for the interfaced schemata
of the trial schema.

e pre-condition: The local directory is . ../stepmod/data/modules/assembly_structure.
The file . . . /modules / ap209_multidisciplinary_analysis_and_design / dvlp /
concatenated_arm.exp with rcs file revision value of 1.10 is the version we will use as a
reference because that version is tagged with the latest published edition of the STEP
module and resource library, SMRLv6.'. The file arm.exp is at the version we wish to use
for the trial schema.?

e execute eengine command:

-
eengine -compare \
-reference_schema concatenated_arm.exp \
-trial_schema arm.exp \
-mode arm_shortform \
-stepmod <path to stepmod> \
-schema_name Assembly_structure_arm

-

e post-condition: output-arm.txt and output.txt files in the local directory.?

Lot may be necessary to execute a CVS command to restore the required file to the local repository.
2 Typically this would be the latest Head version.
3 We need -schema_name to disambiguate the schema in the concatenated_arm.exp schema file.

.../stepmod/data/modules/assembly_structure
.../modules/ap209_multidisciplinary_analysis_and_design/dvlp/concatenated_arm.exp
.../modules/ap209_multidisciplinary_analysis_and_design/dvlp/concatenated_arm.exp

Chapter 6: Compare EXPRESS Schemata 16

As another example, let us compare two arm.exp files that are in development (i.e., the
-stepmod option is valid for both file versions.).

e pre-condition: The local directory is . ../stepmod/data/modules/assembly_structure.
The file arm.exp revision 1.33 is the version we will use as a reference.!. The file arm.exp
is at the version we wish to use for the trial schema.?

e execute eengine command:

-
eengine -compare \
-reference_schema arm_1.33.exp \
-trial_schema arm.exp \
-mode arm_shortform \
-stepmod <path to stepmod>3
-

e post-condition: output-arm.txt and output.txt files in the local directory.

L It will be necessary to execute a CVS command to restore the required file to the local repository and then
change the file name to e.g., arm_1.33.exp.

2 Typically this would be the latest Head version.
3 The -schema_name option is unnecessary because both files have the same schema name declaration.

.../stepmod/data/modules/assembly_structure

17

7 Concatenate EXPRESS Schema

This function takes one or more shortform schemata and a stepmod directory and creates a
concatenated file. The value assigned to -mode is either arm_shortform or mim_shortform.

Call with one schema

eengine --concat_schema \
-schema <schema> \
-mode <shortform> \
-stepmod <stepmod/dir> \
-stepmod_vcs online

In the case of a single schema, it reads enough of each schema to identify any interfaced
schemata. It then repeats the process for each of the interfaced schemata until is has
identified all the schemata that need to be concatenated. It then copies each schema line
by line into the concatentated schema file.

It will also output and VCS information about each of the schemata that have been read.
To control this you can provide the

-stepmod_vcs

option with a value of either online, offline, or off. If the value is online (the default) and
you are on Windows, you will also need to specify the

-ves_exe <path/to/cvs.exe>

option to specify where the cvs.exe is located. For more information, see the -vcs_exe
option in Appendix A [Command Line Arguments|, page 50.

Call with multiple schemata,

eengine --concat_schema \
-schema <schemal,schema2,schema3> \
-mode <shortform> \
-stepmod <stepmod/dir>

In the case of a list of schemata, it loads all of the interfaced schemata called out in each
shortform schema in the list and each of the schemata that each schema in the list interfaces.

It then writes out a file containing each schema in the list and each of the schemata that
were interfaced directly or indirectly by each schema in the list.

The header of the concatenated file will have a comment that contains the schema version
string and VCS info for each of the inclcuded schemata.

Any CVS $Id ...$ records will be adjusted so that CVS will not think that it should modify
them. This will probably be done by removing the dollar signs ($) at the beginning and
end of the record and just enclose them in double quotes (").

This means that $Id: ...$ becomes "Id: ...". This way we keep the content of the CVS ID
string, but prevent CVS from changing it again.

Chapter 7: Concatenate EXPRESS Schema 18

7.1 Example Output from —concat_schema

[Example to be added]

NOTE: Lines have been manually folded and the schema name has been short-
ened for readability of the example.

Note that the output includes the file write date and header comments from the input file.

19

8 (enerate dot graph

eengine --dot

-graph <graph>

-depth <depth>

-entity <entity_name sequence>
-stepmod <stepmod/path>
-schema <schema.exp>
-schema_name <schema_name>
-prune <schema_names>
-leaf <schema_names>
-cluster <cluster>
-uf_color <color>
-rf_color <color>
-sub_color <color>
-super_color <color>
—attribute_color <color>
-select_color <color>

This function generates a graph based on the input specified. Options are provided to
enable the user to tailor the graph for the specific presentation needs whilst using only one
set of source schemata. The graph may be of schemata or may be of a single path through
one or more schemata based on identified ENTITY and SELECT types.

<graph> This indicates what type of graph will be produced.

interface

path

Generates a graph of the USE FROM and REFERENCE FROM
relationships between multiple shortform schemata.

The value of -graph is "interface".
This graph also uses the -schema -schema_name -stepmod -prune
-leaf -cluster -rf_color -uf_color options.

Generates a graph from one entity to another via a specified se-
quence of entity and select types. These elements must be referen-
cially adjacent to each other since Express Engine cannot deduce
long arbitrary paths through the schemata.

The value of -graph is "path".
This graph uses the -schema -schema_name -stepmod -entity
-sub_color -super_color -attribute_color -select_color options.

The parameter -entity is required.

<depth> An integer that identifies how deep the graph can get.

<entity_name sequence>

This is a sequence of entity_names each separated by a comma with no spaces
(i.e. namel,name2 name3).

<schema.exp>

This is the name of the file that contains the starting schema for the interface
option or the starting ENTITY TYPE for the path option.

Chapter 8: Generate dot graph 20

<schema_name>
This will be the name of the schema to be used as the starting point. This is
needed if <schema.exp> is a concatenated schema file, otherwise not.

<schema_names>
This is a set of schema names each separated by a comma with no spaces.
<cluster>

NOTE:: This is the only option that may be specified multiple
times.

This is a set of schema names where the first schema it the one that should be
shown in the diagram. Any references to or from the other schemata will go
to or from the first named schema. This basically causes the first schema to
replace the other schemata in the diagram.

<color> This is the name of the color to be used for: uf_color, rf_color, sub_color,
super_color, attribute_color, and select_color. Allowed values are black, red,
blue, green, yellow, cyan, magenta, and orange.

8.1 Generate dot Interface Graph

Generates a graph of the interface relationship between schemata. Each node represents a
SCHEMA. Each edge represents an EXPRESS interface specification. The edges represent-
ing the interfaces are drawn with a normal arrowhead when the interface has no resources.
The edge representing the interface is draw with a curve arrowhead when the interface does
have resources.

Interface mode is enabled by the "interface" value for the -graph parameter.

Interface may use the following additional data:

e -prune, -cluster, -leaf <schema-list>;

e -depth <depth>;

o -iface <iface>;

e -rf_color, -uf_color <color>;

e <schema-list>;

o <depth>;

o <iface>.

Reference the individual data descriptions for applicability.

<schema-list> is used by -prune, -leaf, and -cluster options. This is a comma separated list
of schema names that will be represented by nodes in the graph. DO NOT INCLUDE ANY
SPACES

For the -prune option, <schema-list> is the list of SCHEMA nodes that will be omitted from
the graph. No edges pointing to or from the prune nodes will be drawn. More than one
-prune option may be provided for a session of engine.

You may wish to prune the support_resources_schema and manage-
ment_resources_schema to reduce clutter due to edges entering and leaving
those nodes.

Chapter 8: Generate dot graph 21

For the -leaf option, the list of SCHEMA nodes that are to be considered leaf nodes in the
graph. No edges pointing out of the leaf nodes will be drawn. Leaf nodes are at the bottom
of the graph when vertical organization is selected. Leaf nodes are visually highlighted by
their usual position on the bottom level of the diagram. Some layout engines may not place
all leaf nodes on the lowest level. No more than one -leaf option shall be provided for a
session of engine.

You may wish to make the assembly_shape_mim a leaf node to hide the complex
structure below it.

For the -cluster option, the list of SCHEMA nodes that are to be subsumed into one node
in the graph. Usually the SCHEMAta are closely related in the context of the intended
presentation. The first node in the list is retained to represent the cluster. Each edge
pointing into the list is redeclared to point to the node representing the cluster. Each
edge pointing out of the list is redeclared to point from the node representing the cluster.
Self-referential edges are omitted from the graph. More than one -cluster option may be
provided for a session of engine.

You may wish to cluster nodes Value_with_unit, Value_with_unit_extension,
measure_schema, qualified_measure_schema, and representation_schema to
elide the complexity of the relationships among those nodes.

<depth> is the depth of the diagram. The root schema is depth 0 so a depth of 1 will draw
a graph with the root schema and only the schemata that it interfaces. Depth 2 will draw
a graph that contains the root schema, all of the schemata that it interfaces, and all of the
schemata the those schemata interface.

Note that when the Dot graphical auto layout tool lays out the diagram it may create a
graph with more levels than requested because auto layout is optimizing the overall layout.

<iface> is the type of interface(s) that should be drawn in the graph.

The value can be use, ref, or both.

If this option is not specified then it is the same as specifying both.

Chapter 8: Generate dot graph

‘g mease epesentin min

deried Shape lement mim

—

s, une pin

|

shape_blrae schena

el measre i
L L
Mess egenion in
qualed measue seema
ke i un, exnsion i
) >
\ ~|_|
e s shena_| | e it it i
ot 3584 exyessors chems
501353 gene exresss chema

stepe dnensin scema

i

e '
[—= = o, ey s sna

fonczion epesetzion mim ‘
_— \

sppor st in - mtl oy peseraon e

et geonetc e nin

Poces prope Fepreseraion shema

stape pryeey st nin 7

Poces poper e

o W”j.;m [>

22

documen zssgrmer i

dounet, vn mim

R

o Ve dfiion_min - doonen e versi e i

podict s im

N
&

’ asently Srche i procuct v dein etonstip_mim
e deticaton mim product v dein ekerce i
teifon assgment im emm,rem_nemm_mnmunl,m

et defindion_schema.

ety schema mmm;" el e Shena appcaon cone schena

An initial graph. USE FROM edges are blue; REFERENCE FROM edges are green.

Chapter 8: Generate dot graph 23

(dmensin tigarce nin

| it e s rin

/ / \ wue,mmﬂmm,msf —_— corsusion garety i />mmmmm:_ _ l \\mﬂwmmm

s34 ene: exessins sthema.

First tailoring of the graph for presentation focus. There is a cluster founded on the geo-
metric_model_schema.

Chapter 8: Generate dot graph

e measie epesetain mim

ulfed mezse mim

\

measire fegreseigion mm

Vale it ut i

sape lrance Shema

shape diersion shema

Ve vi ot denson min cuelfied s it
=

dinesin e i

—

>

e, rogety Jepeserzion shema

—_

fundaon eresntzon pim

mafenelcel favirs shem

/

Itd5B e seema

5013534 gene evpressins ieme

T ot st
s aspet dfnin 3 ma\

~

= nesste e #

e shape enent mim

hape_popery assigment i

N\

—

i

heumert asigomen min
donert defiion in \
W’h Gooment &0 yersin i i
\\

Pt ven i

O e e D
T o e sena

—

Second tailoring of the graph for presentation focus. A cluster was added founded on the
property_assignment_mim schema.

Chapter 8: Generate dot graph 25

document_assgnment i

derved shege_element mim

st ke sz / e gty ssger i
et re_mim

smape_aw_deﬂnnmn_scm

G

foundaton repesentafon_ mim shape_dimension_schema

- product deifon schema

sugor fesouce_min
~ y
el reference schema —efectily Sthema appicaon_colert hema

ocur
— -
. -
—
B
///
e fin schema

T

Third tailoring of the graph for presentation focus. A cluster was added founded on the
qualified_measure_schema.

Chapter 8: Generate dot graph 26

dimension_tolerance_mim

/NN

product_definition_schema derived_shape,_element_mim

_cluster

construction_geometry_mim

AW

shape_tolerance_schema

\

shape_aspect_definition_schema

shape_property_assignment_mim

qualified_measure_schema
_Cluster

geometric_model_schema [\

Cluster h \k »// shape_dimension_schema

property_assignment_mim

_cluster

Final tailoring of the graph for presentation focus. This graph had lines straightened, four
clusters (rectangles with solid edges), pruning and leaf declarations.

NOTE: If desired, the layout engine can change the edge style of the rectangles
but that was not done in this set of examples to illustrate the default behavior.

The complete command for Eengine is this bash script:

#!/bin/sh

eengine

--dot -graph interface

-schema /Users/tom/workspace_422/stepmod/data/modules/\
dimension_tolerance/mim.exp

Chapter 8: Generate dot graph

-mode mim_shortform

-stepmod /Users/tom/workspace_422/stepmod
-prune foundation_representation_mim,\
measure_schema, \
design_product_data_management_mim,\
product_identification_mim,\
foundation_representation,\
support_resource_schema, \
support_resource_schema, \
basic_attribute_schema,\
management_resources_schema, \
representation_schema

-cluster geometric_model_schema,\
geometry_schema, \
topology_schema, \
aic_topologically_bounded_surface,\
basic_curve_mim,\
basic_geometry_mim,\

elemental _geometric_shape_mim,\
elemental_topology_mim,\
geometric_model_relationship_mim,\
external_model_mim,\
scan_data_3d_shape_model_schema

-cluster property_assignment_mim,\
process_property_representation_schema,\
action_schema,\
product_property_representation_schema,\
product_property_definition_schema,\
independent_property_mim, \
material_property_definition_schema,\
material_property_representation_schema,\
process_property_schema

-cluster qualified_measure_schema,\
value_with_unit_extension_mim,\
extended_measure_representation_mim, \
value_with_unit_mim,\
qualified_measure_mim,\
measure_representation_mim,\
mathematical_functions_schema, \

15013584 _generic_expressions_schema, \
15013584 _expressions_schema

-cluster product_definition_schema,\
external_reference_schema, \
identification_assignment_mim,\
document_assignment_mim,\
external_item_identification_assignment_mim,\
support_resource_mim, \

Chapter 8: Generate dot graph 28

product_view_definition_relationship_mim,\
assembly_structure_mim,\
product_structure_schema, \
product_view_definition_reference_mim,\
product_view_definition_mim,\
application_context_schema,\
product_version_mim, \
product_identification_mim,\
file_identification_mim,\
document_schema, \
document_definition_mim,\
document_and_version_identification_mim,\
effectivity_schema,\

date_time_schema

8.2 Generate dot Path Graph

Generates a graph of the path specified by a series of ENTITY types.
Path mode is enabled by the "path" value for the -graph parameter.
The parameter -entity is required.
Path may use the following additional data:
e -sub_color <color>
e -super_color <color>
e -attribute_color <color>

-select_color <color>

The nodes of the resulting graph will be made up of the following object types:

e ENTITY TYPE;

e SELECT TYPE;

e an extension to a SELECT TYPE.
Nodes that represent ENTITY and TYPE declarations from a single schema are enclosed
by a rectangle which has the name of that schema as its label.

NOTE: A single path is useful for educational and review purposes. The path
option does not provide many options in order to retain simplicity and ease of
use.
The label for an edge is the attribute name in the case of an ENTITY->ENTITY edge.
The label is not provided in the case of a SELECT -> ENTITY edge or in the case of a
SELECT -> SELECT edge. In the case that multiple attributes of an ENTITY specify the
same target EXPRESS element, only one edge will be populated in the graph.
The label for an edge from a SUBTYPE to a SUPERTYPE is "SUPER".
The label for an edge from a SUPERTYPE to a SUBTYPE is "SUB".

The label for an edge from an extension SELECT TYPE to the EXTENSIBLE SELECT
TYPE being extended is "based_on"

An ENTITY TYPE is represented by a rectangle.

Chapter 8: Generate dot graph 29

A SELECT TYPE is represented by an oval.
A schema is represented by a rounded corner rectangle that encloses one or more nodes.

NOTE: SELECT TYPES are rendered as ovals to differentiate them from EN-
TITY TYPES because some post-processor layout tools don’t support dotted
line types.

NOTE: There may be cases where local (WHERE) RULES or (global) RULES
constrain allowed path elements. For the initial implementation those con-
straints will be ignored.

<entity_name sequence>

The <entity_name sequence> follows the -entity parameter on the command
line and provides a comma separated list of EXPRESS declarations. The <en-
tity_name sequence> is the list of EXPRESS declarations to be traversed to
generate the sub graph. Only ENTITY and SELECT types are included for
now, as enumerations are not deemed that much of interest. Although there
may be multiple sub graphs due to SELECT TYPE trees, there must be only
one starting ENTITY TYPE and one ending ENTITY TYPE.

note: Engine does not support parallel paths with this option.
DO NOT INCLUDE ANY SPACES

Each comma in the list represents a directed, structural, relationship specifica-
tion between the element before the comma and the element after the comma.
That is, there shall be a valid relationship in the relevant EXPRESS schemata
between the two elements separated by the comma. The relationship may be a
SUB/SUPER TYPE relationship, may be an attribute relationship, may be a
(SELECT reference/SELECT element) relationship, or may be a collection of
paths through a SELECT TYPE tree. The order of the elements in the graph
is derived from the sequence of commas in the list.

note: The relationship will often traverse SCHEMA interface dec-
larations.

The list may consist of forward declarations and/or reverse declarations. A for-
ward declaration specifies that the current ENTITY TYPE or SELECT TYPE
references the element after the comma. A reverse declaration specifies that
the current element is referenced by the ENTITY or SELECT TYPE after the
comma.

In the case that SELECT TYPES are not provided in the list, engine will
provide a sub graph showing the possibly multiple paths through the SELECT
TYPES implied by the relationship specified by the comma.
note: It is possible that more than one SELECT TYPE may exist
between two ENTITY types that are related by a comma.

note: It is possible that more than one path may exist between two
ENTITY types that are related by a comma. This would be the
case where multiple attributes of an ENTITY referenced the same
(other) ENTITY. In that case, only one edge would be output by
engine.

Chapter 8: Generate dot graph 30

note: Engine ignores references to SELF in an ENTITY declara-
tion.

note: It is possible that a SELECT extension may exist between
two ENTITY types that are related by a comma.

note: In order to reduce the path generation algorithmic complex-
ity, currently only SELECT TYPES may be omitted from the list.

example: For a case of a SUB/SUPER TYPE relationship and an
attribute relationship, both edges will be emitted by engine.

note: It is quite often the case that a path traverses a SUB/SUPER
relationship from one subtype to the supertype, then to another
subtype.

note: Express engine calculates and displays alternate complete
paths for the graph. This is useful for users who are not familiar
with the SCHEMA structure, or who are not aware of recent addi-
tions to the schemata. It is also useful for users who do not know
which schema contains the declaration for a particular ENTITY or
SELECT TYPE.

In the following example, an incomplete list is given (i.e., SELECT TYPES are
omitted); both forward and reverse declarations are included; SUB/SUPER
relationships are included. The example illustrates the intermediate and final
results of the path option.

note: The backslash character indicates there is no line break in the
actual input data. There are spaces before the ENTITY names in
the rendered presentation of the example in this document. There
are no spaces in the actual input data list.

-entity product,\
product_definition_formation,\
product_definition,\
property_definition,\
property_definition_representation,\
representation,\
representation_item, \
measure_representation_item,\
measure_with_unit,\
length_measure_with_unit

The SELECT TYPES must be determined by engine so that the emitted graph
is valid. The SELECT TYPES are determined by querying the EXPRESS
schemata for valid paths from the ENTITY TYPE before the comma to the
ENTITY TYPE after the comma. The function executed is similar to the
EXPRESS USEDIN function except that the specific attribute is not specified
in the list of entities, and USEDIN operates on data sets.

Specifically these SELECT TYPES are added by engine:

Chapter 8: Generate dot graph 31

1_

represented_definition

(between property_definition_representation and
property_definition)

2_

characterized_definition and
characterized_product_definition

(between property_definition and product_definition)

Engine had to traverse @ SUBTYPE relations between mea-
sure_representation_item and measure_with_unit and between mea-
sure_with_unit and length_measure_with_unit.

Engine had to traverse the following schemata in order to build the path:

product_definition_schema, \
product_property_definition_schema, \
product_property_representation_schema, \
representation_schema, \
qualified_measure_schema, \
measure_schema.

The resulting path (using the syntax of ISO 10303 mapping specification) con-
structed by engine prior to emitting a dot file is:

product <-\

product_definition_formation.of_product\
product_definition_formation <-\
product_definition.formation
characterized_product_definition = product_definition\
characterized_definition = characterized_product_definition\
characterized_definition <-\
property_definition.definition\
represented_definition = property_definition\
represented_definition <-\
property_definition_representation.definition\
property_definition_representation.used_representation ->\
representation.itemsl[i] ->\

representation_item =>\
measure_representation_item <=\

measure_with_unit =>\

length_measure_with_unit

The graph in the dot format might look like:
digraph sample_path

subgraph cluster0
label = "product_definition_schema";

product [shape=box];
product_definition_formation [shape=box];
product_definition [shape=box];

Chapter 8: Generate dot graph 32

subgraph clusterl
label = "product_property_definition_schema";
shape=box;
style=rounded;

characterized_product_definition [shape=ovall;
characterized_definition [shape=oval];
property_definition [shape=box];

subgraph cluster2
label = "product_property_representation_schema";
shape=box;
style=rounded;

represented_definition [shape=ovall;
property_definition_representation [shape=box];

subgraph cluster3
label = "representation_schema";
shape=box;
style=rounded;

representation [shape=box];
representation_item [shape=box];

subgraph cluster4
label = "qualified_measure_schema";
shape=box;
style=rounded;

measure_representation_item [shape=box];

subgraph clusterb
label = "measure_schema";
shape=box;
style=rounded;

measure_with_unit [shape=box];
length_measure_with_unit [shape=box];

product_definition_formation -> product [label="of_product"];

product_definition -> product_definition_formation [label="formation"];
characterized_product_definition -> product_definition;

characterized_definition -> characterized_product_definition;

property_definition -> characterized_definition [label="definition"];
represented_definition -> property_definition;

property_definition_representation -> represented_definition [label="definition"];|}
property_definition_representation -> representation [label="used_representation"];]}
representation -> representation_item [label="items[i]"];

representation_item -> measure_representation_item [label="sub",penwidth=3];|}
measure_representation_item -> measure_with_unit [label="super",penwidth=3];[]
measure_with_unit -> length_measure_with_unit [label="sub",penwidth=3];

33

note: In the above example backslash character "\" is inserted to
avoid long lines in this document.

product__definition_schema

of_prpduct

| product__definition__formation |

formftion

| product__definition |

2

+

productipropertyLdefinitionischema

characterized__product__definition

characterized_ definition

defirjition

| property__definition |

product__property_fepresentation_schema

represented__definition

defirnjition

property__definition_representation

used,reprLsentation

representagon_schem

representation

itemsli]

representation_item |

sub

qualified_meggsure_schema

| mMmeasure_representation_item |

super

measureggschema

| measure__with_unit |

*sub

| length_measure__with_unit |

Post-processed path output. The layout tool executed a radial auto-layout to generate this
layout.

note: The document processing engine introduced the distortion present in the

text font in the figure.

34

9 Flatten EXPRESS Schema

eengine --flat -mode <mode> -schema mim_1f.exp -typeof noschema
-mode This specifies the kind of EXPRESS file being processed.
-schema This is the schema to be processed.

-typeof This specifies whether the TYPEOF comment preceding each ENTITY is writ-
ten and what is included. Allowed values are no, schema, or noschema.

Possible values for -typeof option:

schema Means that the schema name is included in the TYPEOF string like this
'SCHEMA_NAME.ENTITY_NAME’.

noschema Means that the schema name is not included in the TYPEOF string like this
'ENTITY_NAME’.

no Means that the TYPEOF comment is not included at all. Instead a comment
stating that no TYPEOF will be given.

This function writes out a flattened version of an EXPRESS Schema. The flattened EX-
PRESS schema has inherited attributes, inherited DERIVE, inherited INVERSE, inherited
UNIQUE, and inherited WHERE shown as comments. The set of explicit attributes (includ-
ing the inherited ones as comments) is written such that the order is correct for populating
an instance in a Part 21 file. This was the original purpose for creating this Ezpress Engine
function.

Also SELECT TYPEs which extend another SELECT TYPE have the original values shown
as comments.

ENUMERATION TYPEs which extend another ENUMERATION TYPE have the original
values shown as comments.

Depending on the value of the ~typeof option, there may be a comment just above each
ENTITY declaration showing the TYPEOF value for that ENTITY.

NOTE: At some future date, flatten will provide an option for including the
description of each EXPRESS construct inherited. The description will be
extracted from the xxx_descriptions.xml files on STEPmod.

Chapter 9: Flatten EXPRESS Schema

Example 1

-- eengine --flat -schema schema.exp -typeof schema

-- TYPEQOF => (’MIM.ACTION_ITEMS’,

- ’MIM

- ’MIM.
.ATTRIBUTE_LANGUAGE_ITEM’,
- ’MIM.
- ’MIM.
- ’MIM.

- ’MIM

- ’MIM

- ’MIM

- ’MIM

- ’MIM

- ’MIM

- ’MIM

- ’MIM

- ’MIM

ANGLE_DIRECTION_REFERENCE_WITH_A2P3D_SELECT’,
ATTRIBUTE_CLASSIFICATION_ITEM’,

AXIS2_PLACEMENT’,
AXIS2_PLACEMENT_3D’,
CHANGE_MANAGEMENT_OBJECT’,

.CLASSTIFICATION_ITEM’,
- ’MIM.
- ’MIM.
- ’MIM.

DOCUMENT _REFERENCE_ITEM’,
DRAUGHTING_MODEL_ITEM_SELECT’,
DRAUGHTING_SUBFIGURE_REPRESENTATION_ITEM’,

.DRAUGHTING_SYMBOL_REPRESENTATION_ITEM’,
- ’MIM.
- ’MIM.
- ’MIM.

FOUNDED_ITEM_SELECT’,
GEOMETRIC_MODEL_ITEM’,
GEOMETRIC_REPRESENTATION_ITEM’,

.GROUPABLE_ITEM’,
- ’MIM.
- ’MIM.
.KINEMATIC_LINK_REPRESENTATION_ITEMS’,
- ’MIM.
- ’MIM.
- ’MIM.

INSPECTED_ELEMENT_SELECT’,
ITEM_IDENTIFIED_REPRESENTATION_USAGE_SELECT’,

LAYERED_ITEM’,
MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_AREA_ITEMS’,
MECHANICAL_DESIGN_SHADED_PRESENTATION_AREA_ITEMS’,

MULTI_LANGUAGE_ATTRIBUTE_ITEM’,
- ’MIM.
- ’MIM.
- ’MIM.

ORIENTATION_BASIS_SELECT’,
PLACEMENT’ ,
POINT_PLACEMENT_SHAPE_REPRESENTATION_ITEM’,

.REPRESENTATION_ITEM’,
- ’MIM.
- ’MIM.
- ’MIM.

RIGID_PLACEMENT’,
SHAPE_DIMENSION_REPRESENTATION_ITEM’,
SHAPE_REPRESENTATION_ITEM’,

.SHAPE_REPRESENTATION_WITH_PARAMETERS_ITEMS’,
- ’MIM.
- ’MIM.
.TEXT_STRING_REPRESENTATION_ITEM’)

STYLED_ITEM_TARGET’,
STYLE_CONTEXT_SELECT’,

35

Chapter 9: Flatten EXPRESS Schema 36

Example 1 continued

ENTITY axis2_placement_3d
SUBTYPE OF (placement);
-— representation_item.name : label;
-- placement.location : cartesian_point;
axis : OPTIONAL direction;
ref_direction : OPTIONAL direction;
DERIVE
-— geometric_representation_item.dim : dimension_count :=
dimension_of (SELF) ;
p : LIST [3:3] OF direction := build_axes(axis,ref_direction);
WHERE
-— representation_item.WR1 : SIZEOF(using_representations(SELF)) > 0;
-- geometric_representation_item.WR1 : SIZEOF (QUERY(using_rep <*
using_representations(SELF) | NOT
(’AP210_MIM_LF.GEOMETRIC_REPRESENTATION_CONTEXT’ IN
TYPEQF (using_rep.context_of_items)))) = 0;
WR1 : SELF\placement.location.dim = 3;
WR2 : (NOT (EXISTS(axis))) OR (axis.dim = 3);
WR3 : (NOT (EXISTS(ref_direction))) OR (ref_direction.dim = 3);
WR4 : (NOT (EXISTS(axis))) OR (NOT (EXISTS(ref_direction))) OR
(cross_product (axis,ref_direction) .magnitude > 0.0);
END_ENTITY; -- axis2_placement_3d

Chapter 9: Flatten EXPRESS Schema 37

Example 2
-- eengine --flat -schema schema.exp -typeof noschema

-- TYPEOF => (’ACTION_ITEMS’,
-- >ATTRIBUTE_CLASSIFICATION_ITEM’
-- ?AXIS2_PLACEMENT_3D’
-- ’DOCUMENT_REFERENCE_ITEM’
-- ’DRAUGHTING_SUBFIGURE_REPRESENTATION_ITEM’
-= ’FOUNDED_ITEM_SELECT’
-= ’GROUPABLE_ITEM’
-- >ITEM_IDENTIFIED_REPRESENTATION_USAGE_SELECT’
-- ’LAYERED_ITEM’
- ’MECHANICAL_DESIGN_SHADED_PRESENTATION_AREA_ITEMS’,
- ’MULTI_LANGUAGE_ATTRIBUTE_ITEM’
-- ’POINT_PLACEMENT_SHAPE_REPRESENTATION_ITEM’
-- ’SHAPE_DIMENSION_REPRESENTATION_ITEM’
-- > SHAPE_REPRESENTATION_WITH_PARAMETERS_ITEMS’
-- >STYLE_CONTEXT_SELECT’ , > TEXT_STRING_REPRESENTATION_ITEM’)
ENTITY axis2_placement_3d
SUBTYPE OF (placement) ;
-- representation_item.name : label;
-— placement.location : cartesian_point;
axis : OPTIONAL direction;
ref_direction : OPTIONAL direction;
DERIVE
-- geometric_representation_item.dim : dimension_count :=
dimension_of (SELF) ;
p : LIST [3:3] OF direction := build_axes(axis,ref_direction);
WHERE
—-- representation_item.WR1 : SIZEOF(using_representations(SELF)) > 0;
-— geometric_representation_item.WR1
SIZEOF (QUERY (using_rep <* using_representations(SELF) | NOT
(’AP210_MIM_LF.GEOMETRIC_REPRESENTATION_CONTEXT’ IN
TYPEQF (using_rep.context_of_items)))) = 0;
WR1 : SELF\placement.location.dim = 3;
WR2 : (NOT (EXISTS(axis))) OR (axis.dim = 3);
WR3 : (NOT (EXISTS(ref_direction))) OR (ref_direction.dim = 3);
END_ENTITY; -- axis2_placement_3d

38

Example 3
-- eengine --flat -schema schema.exp -typeof no

-—- —typeof option set to ’no’
ENTITY axis2_placement_3d
SUBTYPE OF (placement);
-- representation_item.name : label;
-— placement.location : cartesian_point;
axis : OPTIONAL direction;
ref_direction : OPTIONAL direction;
DERIVE
-- geometric_representation_item.dim : dimension_count :=
dimension_of (SELF) ;
p : LIST [3:3] OF direction := build_axes(axis,ref_direction);
WHERE
-- representation_item.WR1 : SIZEOF(using_representations(SELF)) > 0;
—-- geometric_representation_item.WR1
SIZEOF (QUERY (using_rep <* using_representations(SELF) | NOT
(’AP210_MIM_LF.GEOMETRIC_REPRESENTATION_CONTEXT’ IN
TYPEQOF (using_rep.context_of_items)))) = 0;
WR1 : SELF\placement.location.dim = 3;
WR2 : (NOT (EXISTS(axis))) OR (axis.dim = 3);
WR3 : (NOT (EXISTS(ref_direction))) OR (ref_direction.dim = 3);
END_ENTITY; -- axis2_placement_3d
The schema name has been abbreviated within strings to help keep the strings shorter.
Other edits have been made to make the document more readable. The actual EXPRESS in
the examples is not necessarily the EXPRESS in the standard in order to fit the EXPRESS
in the margins of the document.

39

10 Lisp EXPRESS File

This function takse an EXPRESS Schema, and writes it out to a file as a Lispified EXPRESS
file.

It is currently still in development so this section of the manual is really just a placeholder
for the real info that will be added later.

40

11 List EXPRESS Schema

This function takes an EXPRESS Schema, sorts the declarations, and writes out a list of
the declarations found in the schema. Its output would look something like this:

**x*x Written by Express Engine v4.0.0
xx*% File: /home/craig/Desktop/exp-step/doc-examples/mim_1f.exp
**%x 1 Schema: AP210_MIM_LF

TYPE AP210_MIM_LF.ABSORBED_DOSE_MEASURE
TYPE AP210_MIM_LF.ACCELERATION_MEASURE
TYPE AP210_MIM_LF.ACTION_ITEMS

ENTITY AP210_MIM_LF.ABRUPT_CHANGE_OF_SURFACE_NORMAL
ENTITY AP210_MIM_LF.ABSORBED_DOSE_MEASURE_WITH_UNIT
ENTITY AP210_MIM_LF.ABSORBED_DOSE_UNIT

FUNCTION AP210_MIM_LF.ABOVE_PLANE
FUNCTION AP210_MIM_LF.ACYCLIC
FUNCTION AP210_MIM_LF.ACYCLIC_COMPOSITE_TEXT

RULE AP210_MIM_LF.ALTERNATIVE_SOLUTION_REQUIRES_SOLUTION_DEFINITION
RULE AP210_MIM_LF.AP210_APPLICATION_PROTOCOL_DEFINITION_REQUIRED
RULE AP210_MIM_LF.AREA_COMPONENT_SHAPE_CONSTRAINT

Note that for this example the schema name has been shortened so that the output would
fit within the margins of this document.

41

12 Pretty Print EXPRESS Schema

This function reads an EXPRESS Schema, sorts it and outputs it in the format specified
by the SC4 Supplementary Directives. Unfortunately, those directives do not specify the
format for all of the EXPRESS constructs that show up in a specific schema. In those cases
we endeavour to use formats that are consistent with the specifications that are given.

Declarations are sorted into the order, TYPE, ENTITY, SUBTYPE_CONSTRAINT, FUNCTION,
RULE, PROCEDURE as specified in the SCJ Supplementary Directives. Within each type
grouping, the objects are sorted alphabetically by name.

For some EXPRESS schema this function can significantly enhance the readability of com-
plex declarations by imposing alignment rules on the output file.

source EXPRESS:
ENTITY compound_feature
SUBTYPE OF (feature_definition);
WHERE
WR1: SIZEOF(QUERY(pds <* USEDIN(SELF,
>AP242_MIM_LF.PROPERTY_DEFINITION.DEFINITION’) |
(’AP242_MIM_LF.PRODUCT_DEFINITION_SHAPE’
IN TYPEOF(pds)) AND
(SIZEOF(QUERY(csa <x USEDIN(pds,
>AP242_MIM_LF.SHAPE_ASPECT.OF_SHAPE’) |
((csa.name=’compound feature in solid’) AND
(’AP242_MIM_LF.COMPOSITE_SHAPE_ASPECT’
IN TYPEOF(csa))))) = 1))) = 1;

As formatted by pretty function:
ENTITY compound_feature
SUBTYPE OF (feature_definition);
WHERE
WR1: SIZEOF(
QUERY (pds <x
USEDIN(SELF, ’AP242_MIM_LF.PROP.DEFINITION’) |
(’AP242_MIM_LF.PDS’ IN TYPEQF(pds)) AND
(SIZEOF(
QUERY (csa <*
USEDIN(pds, ’AP242_MIM_LF.SA.QOF_SHAPE’) |
((csa.name = ’compound feature in solid’) AND
(’AP242_MIM_LF.CSA’ IN TYPEOF(csa))))) =
1)) =
1;
note: The names have been truncated in this example to avoid
margin problems in this manual.

Another example output is:

(*
$Id: mim_1f.exp,v 1.73 2015/11/13 14:12:24 kevletu Exp $

Chapter 12: Pretty Print EXPRESS Schema

IS0 TC184/SC4/WG3 N8588 - ISO/TS 10303-410
AP210 electronic assembly interconnect and packaging design -
EXPRESS MIM Long form
Supersedes IS0 TC184/SC4/WG3 N8232
Patched for:
4665
5056
4992
5057
5004
5690
*)
Cx ===
J— ==== x)

(* Long form schema generated by The EXPRESS Data Manager
compiler version 9.8.9B 20130507%)

(* Wed Sep 30 14:27:01 2015 *)
(* The schema is converted from IS010303 P11-2003 to
IS010303 P11-1994 *)
(*

*)

(* Pretty Printed by Express Engine v4.0.0
GIT ID: "568f5eb5"
Commandline:
eengine --pretty
-schema mim_1f.exp
-mode mim_longform

*)

(* File: /stepmod/data/modules/\
ap210_electronic_assembly_interconnect_and_packaging_design/\
mim_1f.exp *)

(* backslash indicates a newline character inserted to avoid
overrunning margin in

this document.

That character does not exist in the actual schema file.

not all line breaks so introduced are documented by a backslash. *)

(* 1 Schema:

AP210_ELECTRONIC_ASSEMBLY_INTERCONNECT_AND_PACKAGING_DESIGN_MIM_LF
*)

(* Constants: 26 *)

(* Entities: 2,205 %)

(* Functions: 270 *)

(* Procedures: 0 *)

(* Rules: 61 *)

Chapter 12: Pretty Print EXPRESS Schema 43

(* Subtype_Constraints: 0 *)
(x Types: 381 *)
SCHEMA \

ap210_electronic_assembly_interconnect_and_packaging_design_mim_1f;

CONSTANT
dummy_gri : geometric_representation_item 1=
representation_item(’’) || geometric_representation_item();
dummy_tri : topological_representation_item :=
representation_item(’’) || topological_representation_item();
schema_prefix : STRING := ’AP210_MIM_LF.’;
the_booleans : elementary_space 1=

make_elementary_space (es_booleans) ;
END_CONSTANT;

TYPE absorbed_dose_measure = REAL;
END_TYPE; -- absorbed_dose_measure

TYPE acceleration_measure = REAL;
END_TYPE; -- acceleration_measure

TYPE action_items = SELECT
(action,
action_directive,
action_method,
action_property,
action_relationship,
action_request_solution,
alternate_product_relationship,
applied_action_assignment,
applied_classification_assignment,
applied_external_identification_assignment,
applied_person_and_organization_assignment,
approval_status,

versioned_action_request);
END_TYPE; -- action_items

TYPE actuated_direction = ENUMERATION OF
(bidirectional,
positive_only,
negative_only,
not_actuated) ;
END_TYPE; -- actuated_direction

Chapter 12: Pretty Print EXPRESS Schema 44

ENTITY abrupt_change_of_surface_normal
SUBTYPE OF (geometry_with_local_irregularity);
SELF\shape_data_quality_criterion.assessment_specification :
shape_data_quality_assessment_by_logical_test;

small_vector_tolerance : length_measure;
test_point_distance_tolerance : length_measure;
WHERE

WR1: validate_measured_data_type (SELF,
>AP210_MIM_LF.BOOLEAN_VALUE’);

WR2: validate_inspected_elements_type (SELF,
[’AP210_MIM_LF.SURFACE’]);

WR3: validate_locations_of_extreme_value_type (SELF,
[’AP210_MIM_LF.POINT_ON_SURFACE’,
>AP210_MIM_LF.POINT_ON_SURFACE’]) ;

WR4: validate_accuracy_types(SELF, []1);

END_ENTITY; -- abrupt_change_of_surface_normal

FUNCTION above_plane(pl : cartesian_point;
p2 : cartesian_point;
p3 : cartesian_point;
p4 : cartesian_point) : REAL;

LOCAL
dir2 : direction := dummy_gri || direction([1.0,0.0,0.0]);
dir3 : direction := dummy_gri || direction([1.0,0.0,0.0]1);
dir4 : direction := dummy_gri || direction([1.0,0.0,0.0]);
val : REAL;
mag : REAL;
END_LOCAL;
IF (pl.dim <> 3)
THEN
RETURN(?) ;
END_IF;
REPEAT i := 1 TO 3;
dir2.direction_ratios[i] := p2.coordinates[i] - pl.coordinates[i];
dir3.direction_ratios[i] := p3.coordinates[i] - pl.coordinates[i];
dird.direction_ratios[i] := p4.coordinates[i] - pl.coordinates[i];
mag := diréd.direction_ratios[i] * dird.direction_ratios[i];
END_REPEAT;
mag := SQRT(mag);
val := mag * dot_product(dir4, cross_product(dir2, dir3).orientation);
RETURN(val);
END_FUNCTION; -- above_plane

RULE alternative_solution_requires_solution_definition FOR
(product_definition_formation) ;
LOCAL

45

solution_versions : SET OF product_definition_formation := [];
END_LOCAL;
solution_versions := QUERY(pdf <x
product_definition_formation
SIZEOF(

QUERY (prpc <x
USEDIN(pdf.of_product,
>AP210_MIM_LF.PRODUCT_RELATED_PRODUCT_CATEGORY.PRODUCTS’) |
prpc.name = ’alternative solution’)) = 1);
WHERE
WR1: SIZEOF(

QUERY (pdf <*

solution_versions

SIZEOF(

QUERY (pd <*

USEDIN (pdf,’AP210_MIM_LF.PRODUCT_DEFINITION.FORMATION’) |

pd.frame_of_reference.name = ’alternative definition’)) <>
1) = 0;
END_RULE; -- alternative_solution_requires_solution_definition
END_SCHEMA;

Note that the schema name was abbreviated to keep the strings shorter. Other textual
modifications exist to fit in print margin.

46

13 Cross Reference STEP Data Population

This function takes a STEP Data Population and the EXPRESS Schema that it claims to
conform to and outputs a list of what the values of the instance are by attribute and what
other instances reference this instance.

Each instance is written as the pound symbol (#) followed by the number that is the id
for the instance, followed by an equal sign (=) followed by the type of the instance. For an
internal instance there is just a single ENTITY name. For an external instance the set of
ENTITY names is written with plus signs (+) between adjacent names all enclosed within
parentheses.

#42=ENTITY1
#42=(ENTITY2+ENTITY3+ENTITY4)

References to other instances are shown as a pound sign (#) followed by the number that
is the instance id, followed by the type of the instance enclosed in angle brackets. Complex
instances with have multiple ENTITY names separated by plus signs (+).

#50<ENTITY1>
#51<ENTITY2+ENTITY3+ENTITY4>

Now for a full example of the output of a STEP data population cross reference:

/* —x— Mode: Part21 -*x- x/

/* Written by Express Engine v4.0.0 */

/* Schema:
/home/craig/Desktop/exp-step/doc-examples/mim_1f.exp */

/* Population:
/home/craig/Desktop/exp-step/doc-examples/pic_3d_ap210.stp */

/* Schemata:
AP210_ELECTRONIC_ASSEMBLY_INTERCONNECT_AND_PACKAGING_DESIGN_MIM_LF x/

#73=(NAMED_UNIT+PLANE_ANGLE_UNIT+SI_UNIT)
-— Named_Unit
dimensions: *
-- Plane_Angle_Unit
-— Si_Unit
prefix: §
name: EU::RADIAN
refs: #90<GEOMETRIC_REPRESENTATION_CONTEXT+

47

GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT+
GLOBAL_UNIT_ASSIGNED_CONTEXT+REPRESENTATION_CONTEXT>

#91=UNCERTAINTY_MEASURE_WITH_UNIT
MEASURE_WITH_UNIT.value_component: length_measure(l.e-5)
MEASURE_WITH_UNIT.unit_component: #77<LENGTH_UNIT+NAMED_UNIT+SI_UNIT>
UNCERTAINTY_MEASURE_WITH_UNIT.name: ’distance_accuracy_value’
UNCERTAINTY_MEASURE_WITH_UNIT.description: ’NONE’
refs: #90<GEOMETRIC_REPRESENTATION_CONTEXT+
GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT+
GLOBAL_UNIT_ASSIGNED_CONTEXT+REPRESENTATION_CONTEXT>
#2000=COLOUR_RGB
COLOUR_SPECIFICATION.name: ’BOARD’
COLOUR_RGB.red: 1.0
COLOUR_RGB.green: 0.0
COLOUR_RGB.blue: 0.0
refs: #2003<FILL_AREA_STYLE_COLOUR>,#2002<CURVE_STYLE>
#2053=CIRCLE
REPRESENTATION_ITEM.name: °’’
CONIC.position: #2052<AXIS2_PLACEMENT_3D>
CIRCLE.radius: 0.4
refs: #2083<EDGE_CURVE>,#2080<EDGE_CURVE>

Some slight reformatting was done to keep the text within the margins of the document.

48

14 Test Compare

This function uses a STEPMod instance and a published Change Request to test the Com-
pare Schema function by checking the XML output of Compare Schema.

[Removed output about loading schematal

;5 ARM MIM Module

;; Failed Failed assembly_physical_requirement_allocation

;; Failed Passed derived_shape_element

;; Failed Passed feature_and_connection_zone

;; Failed Passed geometric_tolerance

;; Failed Passed kinematic_motion_representation

;; Failed Passed kinematic_state

;; Failed Passed kinematic_structure

;; Failed Failed non_feature_shape_element

;; Failed Passed part_external_reference

;; Failed Passed part_feature_function

;; Failed Passed part_shape

;; Failed Passed part_template

;; Passed Passed part_template_3d_shape

;; Failed Passed part_view_definition

;; Failed Passed product_and_manufacturing annotation_presentation
;; Failed Failed product_and_manufacturing_information_with_nominal_3d_models|}
;; Failed Passed product_occurrence

;; Passed Passed product_placement

;; Failed Failed property_as_definition

The ARM column tells whether the arm_shortform schema Passed or Failed its test.
The MIM column tells wheter the mim_shortform schema Passed or Failed its test.

This function works by reading the published_index.xml file and identifying all of the in-
cluded modules for the CR.

It then compares the arm.exp and mim.exp files with thier reference counter parts and then
compares the resulting XML with the XML changes in the CR module.

49

15 Validate STEP Data Population

This function takes a STEP data population and the schema that it claims to conform to
and runs all ENTITY and TYPE WHERE clauses, and RULE declarations. In addition, it
checks instance values to make sure they conform to the attribute declarations within the
ENTITY declarations.

15.1 Status of Validate Function

Unfortunately, Validate has fallen into disrepair. It will run, but is not guaranteed to work
properly or completely. Eventually, we will spend the time necessary to make this function
work properly.

Until then, this section will attempt to document what things are and are not working so
that you can determine how useful the output is to you.

15.1.1 Working Validations

This section will contain a list of the validations that are known to work. This is a prelim-
inary list. More effort will be expend later to make a more exhaustive list.

e Values in Instance match the TYPE of their respective attributes.

e Attributes that have been redeclared as DERIVE are filled with the value "’ in the
instance.

15.1.2 Non-Working Validations

This section will contain a list of the validations that are known to not work.

e The population is not checked to make sure that it meets the expectations of the RULE
declarations within the schema.
e INVERSE attributes are not checked.

e DERIVE attributes are not checked other than to make sure that any attribute that
has been redeclared to be a DERIVE shows up in the instance with the value ™.

50

Appendix A Command Line Arguments

This chapter will explain each of the arguments that can be passed to the various Express
Tool Functions.

Option Functions Description
used in
—xml-output compare If present this option indicates that the XML file should be
written.
-cluster dot, Specifies schemata that should be considered a single node in

interface an Interface —dot diagram. The value is a comma separated
list of schemata where the first schema is the one that will
show up in the diagram to represent the cluster and is drawn
with a box around it, the rest are not drawn, but are consid-
ered part of the cluster. What this means is that any edges
that point to or from any members of the cluster will point to
or from the first schema. Any edges that point to and from
members of the cluster to other members of the cluster are
not drawn at all.

-cr_name stepmod_testName of the Change Request.
-cr_pub_dir stepmod_testDirectory for the published Change Request

-depth dot, Specifies the number of levels that should be included in the —
interface dot graph. This number represents the number of levels other
than the root which is level 0.

-graph dot Identifies the type of graph to be generated by the —dot func-
tion. Possible values:

interface Draws a graph of the USE FROM/REFERENCE
FROM relationships starting with a specified
schema.

path Draws a graph of the ENTITY and SELECT
TYPE relationshps starting with a specified EN-
TITY and ending with a specified ENTITY.

Appendix A: Command Line Arguments

-iface

-rf_color

-uf_color

-sub_color

-super_color

-attribute2-
_color

-select_color

-leaf

dot,
interface

dot,
interface

dot,

interface

dot, path

dot, path

dot, path

dot, path

dot,
interface

Identifies which interfaces should be included in the graph.
Not specifying this option is the same as specifying it with
the value both.

both Include both USE FROM and REFERENCE
FROM interfaces.

use Include only the USE FROM interfaces.

ref Include only the REFERENCE FROM interfaces.

Specifies the name of the color to use for drawing the edge
between a schema and the schema that it REFERENCE’s.
Possible values are: red, blue, green, yellow, cyan, magenta,
orange. Default is green.

Specifies the name of the color to use for drawing the edge
between a schema and the schema that it USE’s. Possible
values are: red, blue, green, yellow, cyan, magenta, orange.
Defalut is blue.

Specifies the name of the color to use for drawing the edge be-
tween an ENTITY TYPE and a SUBTYPE of that ENTITY
TYPE. Possible values are: black, red, blue, green, yellow,
cyan, magenta, orange. Default is black.

Specifies the name of the color to use for drawing the edge
between an ENTITY TYPE and a SUPERTYPE of that EN-
TITY TYPE. Possible values are: black, red, blue, green,
yellow, cyan, magenta, orange. Default is blue.

Specifies the name of the color to use for drawing the edge
between an ENTITY TYPE and an ENTITY TYPE or SE-
LECT TYPE that is specified as the target of the attribute.
Possible values are: black, red, blue, green, yellow, cyan, ma-
genta, orange. Default is red.

Specifies the name of the color to use for drawing the edge
between a SELECT TYPE and an ENTITY TYPE or SE-
LECT TYPE that is specified as the target of the SELECT
TYPE. Possible values are: black, red, blue, green, yellow,
cyan, magenta, orange. Default is red.

Specifies schemata that should be treated like leaf nodes in the
diagram. The value is a comma separated list of schemata.
This means that no edges are draw from these nodes. Edges
drawn to these nodes will be drawn normally.

o1

Appendix A: Command Line Arguments 52

-line pretty

Specify the maximum length for a line. This basically set the
right margin for the pretty printing function.

Appendix A: Command Line Arguments

-mode

dot,
compare,
concat,
pretty

Possible values are arm_longform, mim_longform,
arm_shortform, mim_shortform, arm_concatenated, and
mim_concatenated. This indicates what kind of file is being
processed.

arm_longform

mim_longform
The schema file read contains a longform schema.
This means that the -stepmod option is not
needed since a longform schema contains no USE
FROM or REFERENCE FROM clauses.

arm_shortform

mim_shortform
The schema file read may contain a shortform
schema or may be a concatenated file contain-
ing all necessary schemata. In the case that the
schema file only contains a shortform schema,
the -stepmod option is needed since a shortform
schema normally contains USE FROM and/or
REFERENCE FROM clauses. In the case that
the schema file is a concatenated file that includes
the shortform schema and all necessary interface
schemas the value of the -stepmod option does
not apply to this schema file and is ignored for
this file.

note: It is certainly the case that
in a compare operation, one of the
schema files may be a concatenated
file while the other file is a short-
form file because internally eengine
maintains a separate high level con-
tainer for each schema (and inter-
faced schemata) being compared.

note: For concat, it only makes
sense for mode to be arm_shortform,
mim_shortform.

arm_concatenated

mim_concatenated
The schema file read contains a shortform schema
plus all the referenced schemata. This means that
the -stepmod options is not needed since while the
schema is a shortform schema, the file contains
all of the need extra schemata to satisfy all of the
USE FROM and REFERENCE FROM clauses.
The value of -stepmod option will be ignored.

93

Appendix A: Command Line Arguments

-population

-prune

-reference-
_schema

-reference-
_stepmod

-reference-

_stepmod_vcs

-schema

-schema-
_name

-stepmod

-stepmod-

_VCS

-trial-
_schema

-trial-
_stepmod

validate,
xref

dot,
interface

compare

compare

compare

all

flat,
pretty

compare,
concat,
pretty,
dot, flat,
shtolo...
compare,
concat,
pretty,
dot, flat
compare

compare

54

This is the STEP data population file.

Specifies a list of schemata that should be left out of the
diagram. The value is a comma separated list of schemata. No
edges drawn to any of the specified schemata will be drawn.
No edges drawn from any of the specified schemata will be
drawn, either. This effectively “prunes” out any subtrees of
the graph that are rooted with these schemata.

This is the reference EXPRESS schema file for the compare
operation.

This is the stepmod directory that should be used to resolve
interface clauses in the -reference_schema.

This sets the mode for accessing the VCS within the step-
mod directory used for -reference_schema. Its value is one of
online, offline, or off.

This is the EXPRESS schema file. It can take mul-
tiple schema files if they are separated by a comma
and have no spaces around the comma: -schema
schemal.exp,schema2.exp,schema3.exp Note that not all
functions will use multiple schema, files. Those that don’t will
write a warning about finding multiple -schema values and
use only the first value.

This is the name of the schema to be compared when working
with arm_concatenated or mim_concatenated files.

This is a pathname that specifies where the stepmod project
has been checked out. This is used to load EXPRESS schema
files called out in the interface clauses of the schema.

This sets the mode for accessing the VCS within the stepmod
directory. Its value is one of online, offline, or off.

This is the EXPRESS schema file that is being compared
to the reference schema specified with the —reference_schema
option.

This is the stepmod directory that should be used to resolve
interface clauses in the -trial_schema.

-trial-
_stepmod_vcs

-typeof

-vcs_exe

compare

flat

all

95

This sets the mode for accessing the VCS within the stepmod
directory used for -trial_schema. Its value is one of online,
offline, or off.

This specifies whether a TYPEOF comment should precede
ENTITY declarations in the output from the —flat function.
Possible values are no, schema, or noschema.

no Means that no TYPEOF info will be written. In-
stead, a comment that says that the —typeof op-
tion was specified with a value of 'no’.

schema Means that the TYPEOF info will include the
schema name in the strings that are written.

noschema Means the TYPEOF info will not include the
schema name in the strings that are written.

This specifies the full pathname to the cvs.exe file on Win-
dows.

56

Appendix B Obtaining Software

Express Engine is hosted at SourceForge:
https://sourceforge.net/projects/exp-engine/

The source may be retrieved either by downloading it from the Files available on SourceForge
or by checking it out from GIT by executing:

git clone git://git.code.sf.net/p/exp-engine/engine

Express Engine is written in Common Lisp. In order to compile it you will need either
SBCL (http://sbcl.org/) or Clozure CL (http://ccl.clozure.com/) for the command
line version or LispWorks for the graphical version.

Pre-compiled command line binaries for 32-bit and 64-bit linux, 64-bit mac os x 10.11.x
64-bit and 32-bit windows (Win7) will be made available.

	Introduction
	Installation
	Downloading
	Windows Install
	Mac Install
	Linux Install

	Operating Modes
	Non-Interactive
	Server
	Interactive

	Overview
	Express Engine Functions
	Check EXPRESS File (--check)
	Compare EXPRESS Files (--compare)
	Concatenate EXPRESS Schemata (--concat_schema)
	Draw Dot Graph (--dot)
	Write Flattened EXPRESS Schema (--flat)
	Lisp EXPRESS FILE (--lexp)
	List Schema Contents (--list)
	Pretty Printer for EXPRESS Schema (--pretty)
	Test Compare (--test_compare)
	Validate STEP File (--validate)
	Cross Reference Instance Data (--xref)

	Check EXPRESS Schema
	Status of Check Function
	Working Checks
	Non-Working Checks

	Example Output from --check
	Checks that may be added in the Future

	Compare EXPRESS Schemata
	Concatenate EXPRESS Schema
	Example Output from --concat_schema

	Generate dot graph
	Generate dot Interface Graph
	Generate dot Path Graph

	Flatten EXPRESS Schema
	Lisp EXPRESS File
	List EXPRESS Schema
	Pretty Print EXPRESS Schema
	Cross Reference STEP Data Population
	Test Compare
	Validate STEP Data Population
	Status of Validate Function
	Working Validations
	Non-Working Validations

	Command Line Arguments
	Obtaining Software

