
libelf
by Example

Joseph Koshy

2

Contents

1 Introduction 7
1.1 What to Expect From This Tutorial 7

2 Getting Started 11

3 Peering Inside an ELF Object 15
3.1 ELF Object Kinds . 15
3.2 ELF File Layout . 15
3.3 Extended Numbering . 18
3.4 The Elf32, Elf64 and GElf APIs 19
3.5 File and Memory Representations 19
3.6 Example: Reading an ELF Executable Header 20

4 Examining the Program Header Table 25
4.1 The ELF Program Header Table 25
4.2 Example: Reading a Program Header Table 27

5 Looking at Sections 33
5.1 The Section Header Table . 33
5.2 ELF Section Handling With libelf 35
5.3 ELF String Tables . 37
5.4 Example: Listing Section Names 38

6 Creating New ELF Objects 43
6.1 Example: Creating an ELF Object 43
6.2 Controlling ELF Layout . 48
6.3 Fill Characters . 49
6.4 Memory Ownership . 49
6.5 Data Structure Lifetimes . 49
6.6 Modifying Existing ELF Objects 49

7 Processing ar Archives 51
7.1 The Structure of ar Archives . 51
7.2 Special Archive Members . 52
7.3 Archive Flavors . 52
7.4 Archive Symbol Tables . 52
7.5 Random Archive Access Using elf rand 53
7.6 Example: Stepping Through an ar Archive 53

3

4 CONTENTS

8 Conclusion 57
8.1 Further Reading . 57
8.2 Getting Further Help . 58

Preface

This tutorial introduces the libelf library being developed at the ElfToolChain
Project on SourceForge.Net. It uses simple example programs to show how to
create ELF processing tools using the libelf library. Along the way the tutorial
covers the ELF file format to the extent needed to understand the example
programs being discussed.

This tutorial would be of interest to software developers who wish to write
software that processes ELF files.

The tutorial’s example programs are written using the C programming lan-
guage. They should compile out of the box on FreeBSD,TM NetBSD R© and
other BSD-family operating systems. They should also compile on Debian
GNU/Linux R© with the libbsd-dev package installed.

Legal Notice
Copyright c© 2006–2020 Joseph Koshy. All rights reserved.

Redistribution and use in source (LATEX format) and “compiled” forms (EPUB,
HTML, PDF, Postscript, RTF, etc), with or without modification, are permit-
ted provided that the following conditions are met:

• Redistributions of source code (LATEX format) must retain the above copy-
right notice, this list of conditions and the following disclaimer.

• Redistributions in compiled form (transformed to other documentation
formats, converted to EPUB, HTML, PDF, Postscript, RTF, etc) must
reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided
with the distribution.

• The names of the author and contributors may not be used to endorse or
promote products derived from this documentation without specific prior
written permission.

THIS DOCUMENTATION IS PROVIDED BY THE AUTHOR AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

5

https://elftoolchain.sourceforge.io/
https://elftoolchain.sourceforge.io/
https://sourceforge.net/

6 CONTENTS

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this document, and the author and contributors were aware of the trademark
claim, the designations have been followed by the “TM” or the “ R©” symbol.

Document Identifier
You are reading the following version of this tutorial:

elftoolchain HEAD svn:3854

Acknowledgements
The following people (names in alphabetical order) offered constructive criticism
of this tutorial: Cherry George Mathew, Douglas Fraser, Hyogeol Lee, Kai
Wang, Prashanth Chandra, Ricardo Nabinger Sanchez, Sam Arun Raj, Wei-
Jen Chen and Y. Giridhar Appaji Nag. Thank you, all.

Chapter 1

Introduction

ELF stands for Extensible Linking Format. It is a file format used by compilers,
linkers, loaders and other tools that manipulate object code.

The ELF specification was released to the public in 1990 by a group of
vendors as an “open standard”. ELF has been widely adopted by industry and by
the open-source community on account of its availability and modern features.
The ELF standard supports big and little-endian machine architectures with 32-
bit and 64-bit word widths. It supports cross-compilation, the use of dynamic
shared libraries, and the special compilation needs of the C++ language.

Among the open-source operating systems, the RedHatTM RHL 2.0 Beta
release (late summer 1995) and the Slackware v3.0 (November 1995) release
were among the first Linux R©-based operating systems to use ELF. The first
ELF based release for NetBSD R© was for the DEC AlphaTM architecture, in
release 1.3 (January 1998). FreeBSDTM switched to using ELF as its object
format in FreeBSD 3.0 (October 1998).

The libelf library implements a large set of APIs, known as the ELF(3)
& GELF(3) APIs. These APIs allow you to write software that can run on
one kind of machine architecture, while manipulating ELF objects meant for
another.

There are multiple implementations of the ELF(3)/GELF(3) API set in the
open-source world. This tutorial is based on the libelf library being developed
as part of the ElfToolChain Project on SourceForge.Net.

The ELF(3)/GELF(3) API set contains over 80 callable functions, and can
be daunting to learn. This tutorial offers a gentle introduction to this API set.

1.1 What to Expect From This Tutorial
This tutorial looks at a series of simple but complete programs, with each pro-
gram illustrating a different aspect of the ELF format and the libelf library’s
APIs. Along the way, it introduces the concepts and data structures needed to
understand these example programs.

Chapter 2 covers getting started with the libelf library. This chapter looks
at how to compile and link an application that uses the library, how to establish
a working ELF version number, how to obtain a handle to a ELF object, and
how to handle errors reported by the libelf library.

7

https://refspecs.linuxbase.org/elf/elf.pdf
https://elftoolchain.sourceforge.io/
https://sourceforge.net/

8 CHAPTER 1. INTRODUCTION

Chapter 3 looks at how ELF executables, relocatable objects and shared
objects are laid out. This chapter describes how the ELF data structure known
as the Executable Header specifies the layout of the rest of the file. The chapter
introduces the notions of the “file representation” and “memory representation”
of ELF data types, and explains how the libelf library enables programs to
work on ELF objects whose word size and endianness differ from their “native”
size and endianness. The example program in this chapter displays the contents
of the ELF Executable Header for an ELF object.

Chapter 4 studies ELF segments, and how these segments are described by
entries in the ELF Program Header Table. The example program in this chapter
reads and displays the program header table entries in an ELF executable.

Chapter 5 looks at how data is stored in ELF sections. It looks at how ELF
sections are described by the ELF Section Header Table, and how ELF string
tables (a special kind of ELF section) are structured. The example program in
this chapter traverses an ELF object, printing out the names of its sections.

Chapter 6 demonstrates how to create new ELF objects using the libelf
library. This chapter covers the correct ordering of calls to libelf’s functions
when creating ELF objects, the default layout used by the library, and the
facilities offered by libelf for creating ELF objects with custom layouts. The
example program in this chapter creates a new ELF object from scratch.

The tutorial then moves on to ar archives. Chapter 7 looks at the structure
of ar archives and covers libelf’s facilities for reading these archives. The
example program in this chapter lists the names of the files present in an ar
archive.

Finally, chapter 8 concludes the tutorial with suggestions for further reading.
Figure 1.1 on the facing page offers a graphical overview of the concepts

covered by this tutorial.

1.1. WHAT TO EXPECT FROM THIS TUTORIAL 9

Programming
with libelf

The ELF(3)
& GELF(3)

APIs

library
data types

memory &
file repre-
sentations

ordering
of calls

memory
man-

agement

extended
numbering

Basic
concepts

ELF
version,
class,

byte order

object
layout

Executable
header

Section
Headers

Program
Headers

ELF Seg-
ments

type,
flags &

alignment
program
headers

ELF Sections
section
header

contents

layout
constraints

iterating
over

sections

reading
& writing

data

ELF string
tables

ar archives

archive
structure

symbol
& string
tables

access
APIs

sequential
access random

access

header
infor-

mation

Figure 1.1: An overview of the concepts covered in this tutorial.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

It is time to get a taste of programming with libelf.
Our first example program (Program 1, listing 2.1) opens the file named on

its command line, and displays the file’s type as recognized by the ELF library.
This example covers the basics of using libelf: how to compile a program that
uses libelf, how to initialize the library, how to handle any errors reported by
the library, and how to release resources cleanly when done.

Listing 2.1: Program 1
/*

* Getting started with libelf .
*
* $Id: prog1.txt 2133 2011 -11 -10 08:28:22 Z jkoshy $
*/

include <err.h>
include <fcntl.h>

include <libelf.h> 1

include <stdio.h>
include <stdlib.h>
include <unistd.h>

int
main(int argc , char **argv)
{

int fd;

Elf *e; 2

char *k;

Elf_Kind ek; 3

if (argc != 2)
errx(EXIT_FAILURE , "usage:␣%s␣file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE) 4

errx(EXIT_FAILURE , "ELF␣library␣initialization␣"
"failed:␣%s", elf_errmsg (-1));

11

12 CHAPTER 2. GETTING STARTED

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)
err(EXIT_FAILURE , "open␣\%s\"␣failed", argv [1]);

if ((e = elf_begin(fd , ELF_C_READ 5 , NULL)) == NULL)
errx(EXIT_FAILURE , "elf_begin ()␣failed:␣%s.",

elf_errmsg (-1)); 6

ek = elf_kind(e); 7

switch (ek) {
case ELF_K_AR:

k = "ar(1)␣archive";
break;

case ELF_K_ELF:
k = "elf␣object";
break;

case ELF_K_NONE:
k = "data";
break;

default:
k = "unrecognized";

}

(void) printf("%s:␣%s\n", argv[1], k);

(void) elf_end(e); 8

(void) close(fd);

exit(EXIT_SUCCESS);
}

1 The functions and dataypes that make up the ELF(3) API are declared in
the header libelf.h. This file must be included by every source file that
uses the libelf library.

2 The library uses an opaque C type named Elf as a handle to an ELF object.

4 Before the functions in the library can be invoked, every application that
uses libelf must indicate the version of the ELF specification that it
expects to use. This is done by calling the elf version function.
Calling elf version is mandatory—most of libelf’s APIs will return an
error if invoked before the expected ELF version is set.
Multiple ELF specification versions could come into play when an appli-
cation reads or writes an ELF object. In figure 2.1 on the facing page the
application program using libelf expects to work with files conforming
to version v1 of the ELF specification. The ELF object file however con-
forms to ELF specification version v2. The libelf library understands

13

Application
v1

libelf
v1, v2

v1 ELF Object
v2

v2

Figure 2.1: Handling ELF versioning.

the semantics of both specification versions v1 and v2, and so would (in
theory) be able to mediate between the application and the ELF object.
In practice, the ELF specification’s version has not changed since its in-
ception; the current version (denoted by the symbol EV CURRENT) is 1.

5 The elf begin function takes an open file descriptor and converts it an Elf
handle.
The second parameter to elf begin can be one of ‘ELF C READ’ for open-
ing an ELF object for reading, ‘ELF C WRITE’ for creating a new ELF
object, or ‘ELF C RDWR’ for opening an ELF object for updates. The file
opening mode for the file descriptor fd should be compatible with this
parameter: the file descriptor should be opened for reading for use with
ELF C READ, for writing for use with ELF C WRITE, and for updating for
use with ELF C RDWR.
The third parameter to elf begin is only used when reading ar archives.
Chapter 7 on page 51 covers ar archive processing.

6 When the ELF library encounters an error, it will record an error number in
an internal location and return a sentinel value (e.g., the NULL value from
functions that return pointers). The saved error number indicates the
specific class of error that was encountered. This number can be retrieved
using the elf errno function.
Numeric error numbers are however not user-friendly. The elf errmsg
function returns a human-readable string describing the error number
passed to it. As a programming convenience, an error number of -1 denotes
the most recent error number that had been recorded by the library.

3 7 The ELF library can operate on ar archives and ELF objects. The
function elf kind returns the kind of object associated with an Elf han-
dle. The return value of the elf kind function is one of the values defined
by the Elf Kind enumeration in libelf.h. Currently, the library only
recognizes ELF files and ar archives.

8 The elf end function releases the resources held by an Elf handle.

It is now time to compile and run our first example program.
Save the listing in listing 2.1 on page 11 to a file named prog1.c, and then

compile and run it as shown in listing 2.2.

Listing 2.2: Compiling and running prog1

% cc -o prog1 prog1.c -lelf 1

14 CHAPTER 2. GETTING STARTED

% ./ prog1 prog1 2

prog1: elf object

% ./ prog1 /usr/lib/libc.a 3

/usr/lib/libc.a: ar (1) archive

1 The -lelf option to the cc comand informs it to link prog1 with the
libelf library.

2 We invoke prog1 on itself. If all went well it should recognize its own
executable file to be an ELF object.

3 prog1 should recognize an ar archive correctly.

Congratulations! You have created your first ELF-aware program using
libelf.

Chapter 3

Peering Inside an ELF
Object

This chapter takes a deeper look at the structure of ELF objects.

3.1 ELF Object Kinds
ELF supports multiple kinds of objects:

• Relocatable objects contain compiled code along with extra information
used by tools like linkers. Relocatable objects are usually created by com-
pilers when source code is compiled.

• Executables contain code in a form that an operating system can directly
use to launch a process. The process of forming executables from collec-
tions of relocatable objects is called linking.

• Dynamically loadable objects contain code in a form suitable for loading
into a running process. Shared libraries are examples of dynamically load-
able objects.

• Core files contain the memory image of a process. Core files are usually
generated when programs crash.

Each of these kinds of objects has a different internal structure.

3.2 ELF File Layout
Figure 3.1 on the following page shows the layout of a typical ELF object.

Every ELF object starts with a mandatory data structure known as the ELF
Executable Header. This header is followed by optional content—depending on
the kind of ELF object, this could be an optional ELF Program Header Table
and zero or more ELF Sections:

• The ELF Program Header Table is found in executables and dynamically
loadable objects. This data structure contains information that is used

15

16 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

Executable
Header

Program
Header
Table

Section
Data(1)

. . . Section
Data(n)

Section
Header
Table

Possible gaps due to
alignment constraints.

Figure 3.1: The layout of a typical ELF File.

0x7F

EI MAG0

‘E’

EI MAG1

‘L’

EI MAG2

‘F’

EI MAG3

EI CLASS

EI DATA

EI VERSION

EI OSABI

EI OSABIVERSION

. . .

ELF class: 32/64

Byte order: LSB/MSB
ELF version

OS ABI

Figure 3.2: The layout of the e ident array.

when the ELF object is loaded into a process. We look at the Program
Header Table more closely in chapter 4 on page 25.

• ELF Sections are present in most ELF files. Sections are contiguous regions
inside the ELF object holding data of a specific kind. ELF sections are
described by entries in an ELF Section Header Table. Chapter 5 on page 33
describes ELF Sections and the Section Header Table in further detail.

The optional elements of an ELF object are shown with a lighter background
in figure 3.1.

The ELF Executable Header

Table 3.1 on the facing page describes the layout of an ELF Executable Header
using a “C-like” notation that shows the sizes and ordering of its members. In an
actual ELF object the data in the header would be stored using the ELF object’s
“native” byte ordering; this ordering could differ from the byte ordering used
by the program reading the header. 32-bit and 64-bit ELF Executable Header
structures also have slightly different layouts due to the differing sizes of their
members.

1 Figure 3.2 shows the contents of the first 16 bytes of the ELF header (the
e ident array).

3.2. ELF FILE LAYOUT 17

32 bit Executable Header 64 bit Executable Header
typedef struct { typedef struct {

1 unsigned char e_ident[16]; unsigned char e_ident[16];
2 uint16_t e_type; uint16_t e_type;
3 uint16_t e_machine; uint16_t e_machine;

uint32_t e_version; uint32_t e_version;
uint32_t e_entry; uint32_t e_entry;

4 uint32_t e_phoff; uint64_t e_phoff;
5 uint32_t e_shoff; uint64_t e_shoff;

uint32_t e_flags; uint32_t e_flags;
uint16_t e_ehsize; uint16_t e_ehsize;
uint16_t e_phentsize; uint16_t e_phentsize;

6 uint16_t e_phnum; uint16_t e_phnum;
7 uint16_t e_shnum; uint16_t e_shnum;
8 uint16_t e_shstrndx; uint16_t e_shstrndx;

} Elf32_Ehdr; } Elf64_Ehdr;

Table 3.1: The ELF Executable Header.

The first 4 bytes of an ELF object always contain 0x7F, 0x45 (ASCII ‘E’),
0x4c (ASCII ‘L’) and 0x46 (ASCII ‘F’).
The next three bytes specify:

• The ELF class of the object—whether it is a 32 bit ELF object
(ELFCLASS32) or a 64 bit (ELFCLASS64) one.

• The endianness of the object—whether little-endian (ELFDATA2LSB)
or big-endian (ELFDATA2MSB).

• The ELF specification version number that the object conforms to.
ELF object versioning was discussed in chapter 2 on page 11.

With this information on hand, the libelf library can then interpret the
rest of the ELF Executable Header correctly.

2 The e type member determines the type of the ELF object. For example,
the member would contain the value ‘1’ (ET REL) in a relocatable or the
value ‘3’ (ET DYN) in a shared object.

3 The e machine member describes the machine architecture for the ELF
object. Example values are ‘3’ (EM 386) for the Intel R© i386TM architecture,
and ‘20’ (EM PPC) for the 32-bit PowerPCTM architecture.

4 5 The ELF Executable Header also describes where to find the ELF Pro-
gram Header Table and the Section Header Table, if these data structures
are present in the ELF object (Figure 3.3 on the next page).

18 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

Ehdr Phdr Shdr

e ehsize Nphdr × e phentsize Nshdr × e shentsize

e phoff

e shoff

Figure 3.3: The ELF Executable Header describes the layout of the rest of the
ELF object.

The e phoff and e shoff members contain the file offsets at which the
ELF Program Header Table and the ELF Section Header Table reside in
the ELF object. These members are zero if the file does not contain the
corresponding data structures. The sizes of these tables are determined
by the e phentsize and e shentsize members of the executable header,
in conjunction with the number of entries in these tables.

The ELF Executable Header describes its own size (in bytes) in member
e ehsize.

6 7 The e phnum and e shnum members contain the number of ELF program
header table entries and section header table entries respectively.

These fields are only 2 bytes wide, so if an ELF object has a large num-
ber of sections or program header table entries, then a scheme known as
“Extended Numbering” (section 3.3) is used to encode the actual number
of sections or program header table entries. When extended numbering is
in use these fields will contain special values instead of actual counts.

8 When an ELF object contains sections, the names of these sections are
stored in a separate string table section. ELF string tables will be covered
in more detail in section 5.3 on page 37.

The e shstrndx member stores the section index of this string table (pos-
sibly using “Extended Numbering”, see section 3.3). This allows tools
processing the ELF object to use the correct string table for looking up
section names.

The e entry and e flags members are used for executables. These members
are placed in the executable header for easy access at program load time. This
tutorial will not discuss these members any further.

3.3 Extended Numbering
The e shnum, e phnum and e shstrndx members of the ELF Executable Header
are 2 bytes long and are not wide enough to represent numbers larger than
65535. We would therefore need a different way of encoding these numbers for
ELF objects with a large number of sections or segments.

3.4. THE ELF32, ELF64 AND GELF APIS 19

When extended numbering is in use, the actual values of these members will
be stored in the normally unused zeroth section header table entry.1

• The true number of sections will stored in the sh size field of the ze-
roth section header table entry, while the e shnum member of the ELF
executable header will be set to zero.

• The actual number of program header table entries will be stored in the
sh info field of the zeroth section header table entry, while the e phnum
member of the executable header will be set to the value PN XNUM (0xFFFF).

• The true index of the section name string table will be stored in the
sh link field of the zeroth entry of the section header table, while the
e shstrndx member of the executable header will be set to the value
SHN XINDEX (0xFFFF).

You should always use the functions elf getphdrnum, elf getshdrnum and
elf getshdrstrndx to read the value of these members from an Elf descriptor.
Directly using the values of the e phnum, e shnum and e shstrndx members of
the executable header is likely to lead to incorrect program behavior.

3.4 The Elf32, Elf64 and GElf APIs
The ELF(3) API is defined in terms of ELF class-dependent types (Elf32 Ehdr,
Elf64 Shdr, etc). Consequently many operations on ELF handles in the ELF(3)
API have both 32- and 64- bit variants.

For example, in order to retrieve an ELF executable header from a 32 bit
ELF object we would use the function elf32 getehdr, which would return a
pointer to an Elf32 Ehdr structure. For a 64-bit ELF object, we would need to
use the function elf64 getehdr, which would return a pointer to an Elf64 Ehdr
structure.

This duplication is awkward when you want to write applications that need
to process either class of ELF objects..

The GELF(3) APIs provide a way to write applications that can handle
objects of both ELF classes without code duplication. These APIs are defined
in terms of “generic” C types that are large enough to hold their corresponding
32-bit and 64- bit ELF types. The GELF(3) data types have names that start
with GElf , and the functions have names that start with gelf . You can freely
mix calls to GELF(3) and ELF(3) functions in your code.

The downside to using the GELF(3) APIs is the small cost of the copying
and conversion that happens behind the scenes inside libelf. This overhead is
usually insignificant for most programs.

3.5 File and Memory Representations
ELF objects use the native word width, enddianness and data alignment rules
of the machine they are intended for. These could be different from the native

1Section header table entries are covered in more detail in section 5 on page 33.

20 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

ELF
object

The file representation
file size

%falign

The memory representation

%malign

memory size

xlatetom()xlatetof()

Figure 3.4: The relationship between the file and memory representation of an
ELF data structure.

word width, enddianness and data alignment rules for the machine that the
program reading the ELF object is running on.

ELF data structures therefore have two distinct representations:

• An in-memory representation that obeys the constraints for the machine
architecture that the program handling the ELF object is running on.

• An in-file representation that corresponds to the target architecture for
the ELF object.

Figure 3.4 depicts the relationship between the in-file and in-memory repre-
sentations of an ELF data structure. This figure shows that:

• The size of an ELF data structure in the file could be different from its
size in memory.

• The alignment restrictions placed on the data structure (denoted by %falign
and %malign in the figure) could differ.

• The byte ordering of data in the file could be different from that in memory.

When using libelf you do not need to handle these differences in your
code—libelf will handle the conversions of in-memory ELF data structures to
and from their in-file representations automatically. For example, in program 3.1
below, the libelf library will automatically do the necessary byteswapping and
alignment adjustments when reading in the ELF executable header.

If you need finer-grain control over the conversion process, the libelf li-
brary offers the class-dependent elfNN xlatetof and elfNN xlatetom func-
tions. This introductory tutorial does not discuss these functions further.

3.6 Example: Reading an ELF Executable Header
Let us now examine a program that will print out the ELF Executable Header
present in an ELF object. Our example program will use the class-independent
GELF(3) APIs.

3.6. EXAMPLE: READING AN ELF EXECUTABLE HEADER 21

Listing 3.1: Program 2
/*

* Print the ELF Executable Header from an ELF object .
*
* $Id: prog2.txt 3830 2020 -03 -01 14:15:53 Z jkoshy $
*/

include <err.h>
include <fcntl.h>

include <gelf.h> 1

include <stdio.h>
include <stdint.h>
include <stdlib.h>
include <unistd.h>
include <vis.h>

int
main(int argc , char **argv)
{

int i, fd;
Elf *e;
char *id , bytes [5];
size_t n;

GElf_Ehdr ehdr; 2

if (argc != 2)
errx(EXIT_FAILURE , "usage:␣%s␣file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)
errx(EXIT_FAILURE , "ELF␣library␣initialization␣"

"failed:␣%s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)
err(EXIT_FAILURE , "open␣\"%s\"␣failed", argv [1]);

if ((e = elf_begin(fd , ELF_C_READ , NULL)) == NULL) 3

errx(EXIT_FAILURE , "elf_begin ()␣failed:␣%s.",
elf_errmsg (-1));

if (elf_kind(e) != ELF_K_ELF)
errx(EXIT_FAILURE , "\"%s\"␣is␣not␣an␣ELF␣object.",

argv [1]);

if (gelf_getehdr(e, &ehdr) == NULL) 4

errx(EXIT_FAILURE , "getehdr ()␣failed:␣%s.",
elf_errmsg (-1));

if ((i = gelf_getclass(e)) == ELFCLASSNONE) 5

errx(EXIT_FAILURE , "getclass ()␣failed:␣%s.",
elf_errmsg (-1));

22 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

(void) printf("%s:␣%d-bit␣ELF␣object\n", argv[1],
i == ELFCLASS32 ? 32 : 64);

if ((id = elf_getident(e, NULL)) == NULL) 6

errx(EXIT_FAILURE , "getident ()␣failed:␣%s.",
elf_errmsg (-1));

(void) printf("%3s␣e_ident [0..%1d]␣%7s", "␣",
EI_ABIVERSION , "␣");

for (i = 0; i <= EI_ABIVERSION; i++) {
(void) vis(bytes , id[i], VIS_WHITE , 0);
(void) printf("␣[’%s’␣%X]", bytes , id[i]);

}

(void) printf("\n");

define PRINT_FMT "␣␣␣␣%-20s␣0x%jx\n"
define PRINT_FIELD(N) do { \

(void) printf(PRINT_FMT , #N, (uintmax_t) ehdr.N); \
} while (0)

PRINT_FIELD(e_type); 7

PRINT_FIELD(e_machine);
PRINT_FIELD(e_version);
PRINT_FIELD(e_entry);
PRINT_FIELD(e_phoff);
PRINT_FIELD(e_shoff);
PRINT_FIELD(e_flags);
PRINT_FIELD(e_ehsize);
PRINT_FIELD(e_phentsize);
PRINT_FIELD(e_shentsize);

if (elf_getshdrnum(e, &n) != 0) 8

errx(EXIT_FAILURE , "getshdrnum ()␣failed:␣%s.",
elf_errmsg (-1));

(void) printf(PRINT_FMT , "(shnum)", (uintmax_t) n);

if (elf_getshdrstrndx(e, &n) != 0) 9

errx(EXIT_FAILURE , "getshdrstrndx ()␣failed:␣%s.",
elf_errmsg (-1));

(void) printf(PRINT_FMT , "(shstrndx)", (uintmax_t) n);

if (elf_getphdrnum(e, &n) != 0) 10

errx(EXIT_FAILURE , "getphdrnum ()␣failed:␣%s.",
elf_errmsg (-1));

(void) printf(PRINT_FMT , "(phnum)", (uintmax_t) n);

(void) elf_end(e);
(void) close(fd);
exit(EXIT_SUCCESS);

3.6. EXAMPLE: READING AN ELF EXECUTABLE HEADER 23

}

1 Source code that uses the GELF(3) APIs should include the gelf.h header
file.

2 The GElf Ehdr type used here has fields that are large enough to contain
values for a 64 bit ELF executable header.

3 The elf begin function allocates an Elf handle opened for reading.

4 The function gelf getehdr retrieves the executable header present in the
ELF object.
This function translates the ELF executable header in the file to its cor-
responding in-memory representation in the C type GElf Ehdr. For ex-
ample, if a 32-bit ELF object is being examined, then the values in its
executable header would be appropriately expanded and/or byte swapped
by this function.

5 The gelf getclass function retrieves the ELF class of the object being
examined.

6 The elf getident function retrieves the contents of the e ident array from
the ELF descriptor. These bytes would also be present in the e ident
member of the Executable Header structure. We print the first few bytes
of the e ident byte array.

7 After printing out the values of the bytes in the e ident array, we print the
values of some of the fields of the ELF executable header structure.

8 The function elf getphdrnum retrieves the count of program header table
entries in the ELF object.

9 The elf getshdrnum function retrieves the number of sections in the ELF
object.

10 The function elf getshdrstrndx function retrieves the index of the sec-
tion name string table in the object.

Save the program in listing 3.1 on page 21 to a file named prog2.c, and
compile and run it as shown in listing 3.2.

Listing 3.2: Compiling and Running prog2

% cc -o prog2 prog2.c -lelf 1

% ./prog2 prog2 2

prog2: 64-bit ELF object
e_ident [0..8] [’\ˆ?’ 7F] [’E’ 45] [’L’ 4C] [’F’ 46] \
[’\ˆB’ 2] [’\ˆA’ 1] [’\ˆA’ 1] [’\ˆI’ 9] [’\ˆ@’ 0]
e_type 0x2

24 CHAPTER 3. PEERING INSIDE AN ELF OBJECT

e_machine 0x3e
e_version 0x1
e_entry 0x400a10
e_phoff 0x40
e_shoff 0x16f8
e_flags 0x0
e_ehsize 0x40
e_phentsize 0x38
e_shentsize 0x40
(shnum) 0x18
(shstrndx) 0x15
(phnum) 0x5

1 The process for compiling and linking a GELF(3) application is the same
as for other libelf based programs.

2 We run our program on itself. This listing in this tutorial was generated on
an AMD64TM machine running FreeBSD.TM

You should now run prog2 on other object files that you have lying around.
Try it on a few non-native ELF object files too.

Chapter 4

Examining the Program
Header Table

Before a program on disk can be executed by a processor it needs to brought
into system memory. The technical name for this process is “loading”.

When loading an ELF program into memory, the operating system views it
as comprising of distinct parts, where each part has a particular characteristic.
For example, one part of the program could contain read-only data that needs
to be loaded at a specific virtual memory address. Another part could contain
executable code. Each such part of the ELF object is called an ELF Segment.

By way of an example, the FreeBSDTM operating system expects programs
to contain a segment containing executable code. This segment is called the
program’s “text” segment. A text segment would usually be loaded into mem-
ory with ‘read’ and ‘execute’ permissions. Multiple processes using the same
executable could potentially share the same text segment. FreeBSD programs
would usually have data segments too; these segments are placed in memory
with ‘read’ and ‘write’ permissions, and made private to each process.

Like executables, dynamically linked objects can be viewed as comprising
segments.

The segments present in an ELF object are described by a data structure
known as the ELF Program Header Table. We will study this data structure in
this chapter, and write an example program that displays the Program Header
Table present in an ELF object.

4.1 The ELF Program Header Table
An ELF Program Header Table is a contiguous array of Program Header Ta-
ble Entry structures. Every segment present in the ELF object would have a
corresponding entry in the program header table.

The location of the program header table within the ELF object is given by
the e phoff member of the ELF executable header (see figure 3.3 in section 3.2).
This member holds the offset in bytes from the start of the ELF object to the
start of its program header table.

Table 4.1 on the next page lists the members of a Program Header Table
Entry structure. Figure 4.1 on the following page illustrates how these members

25

26 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

ELF object Ehdr Phdr Segmentn

%p align

p offset p filesz

Segmentn in memory

p vaddr

p memsz
...

p align

p memsiz

p filesz

p vaddr

p offset

p type

Program Header Table Entry

Figure 4.1: ELF Segment Placement.

specify the segment’s placement both in memory and within the ELF object.

32 bit PHDR Table Entry 64 bit PHDR Table Entry
typedef struct { typedef struct {

1 Elf32_Word p_type; Elf64_Word p_type;
2 Elf32_Off p_offset; Elf64_Word p_flags;
3 Elf32_Addr p_vaddr; Elf64_Off p_offset;
4 Elf32_Addr p_paddr; Elf64_Addr p_vaddr;
5 Elf32_Word p_filesz; Elf64_Addr p_paddr;
6 Elf32_Word p_memsz; Elf64_Xword p_filesz;
7 Elf32_Word p_flags; Elf64_Xword p_memsz;
8 Elf32_Word p_align; Elf64_Xword p_align;

} Elf32_Phdr; } Elf64_Phdr;

Table 4.1: ELF Program Header Table Entries.

1 The p type member of the program specifies the type of the ELF segment.
The type of the segment is specified by one of the PT * constants in the
programming API. Examples include:

• A segment of type PT LOAD contains data that needs to be placed in
memory.
• A segment of type PT PHDR describes the ELF Program Header Table

itself.
• A segment of type PT INTERP contains a path to the runtime linker

used by dynamically linked executables.

4.2. EXAMPLE: READING A PROGRAM HEADER TABLE 27

• A segment of type PT NOTE contains auxiliary information.

2 The p offset member holds the offset from the start of the ELF object to
the start of the segment being described by this table entry.

3 The p vaddr member specifies the virtual address that this segment should
be placed at.

4 The p paddr member specifies the physical memory address this segment
should be loaded at.

5 The p filesz member specifies the size of the segment in the file. This
number can be zero if the segment does not use data from file (for example,
if the segment is a memory-only segment).

6 The p memsz member specifies the number of bytes of memory the segment
would use.

7 The p flags member specifies additional segment properties. For example,
the value PF X specifies that the segment should be made executable, the
value PF W specifies that the segment should be writable, and so on.

8 The p align member specifies the alignment requirements of the segment
in memory and in the file. This member holds a number that is a power
of two.

The file representation of a Program Header Table uses the ELF object’s
native endianness. The libelf library will handle the translation between the
in-file and in-memory representations of program header table entries for you.
Please see section 3.5 on page 19 for more information on in-memory and in-file
representations of ELF data structures.

4.2 Example: Reading a Program Header Table
The example program in this chapter will read and print out the program header
table in an ELF object. This example, like the previous one, uses the class-
agnostic GELF(3) APIs.

Listing 4.1: Program 3
/*

* Print the ELF Program Header Table in an ELF object .
*
* $Id: prog3.txt 3834 2020 -03 -03 21:40:31 Z jkoshy $
*/

include <err.h>
include <fcntl.h>

include <gelf.h> 1

include <stdio.h>

28 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

include <stdint.h>
include <stdlib.h>
include <unistd.h>

void

print_ptype(size_t pt) 2

{
char *s;

define C(V) case PT_##V: s = #V; break
switch (pt) {

C(NULL); C(LOAD); C(DYNAMIC);
C(INTERP); C(NOTE); C(SHLIB);
C(PHDR); C(TLS); C(SUNW_UNWIND);
C(SUNWBSS); C(SUNWSTACK); C(SUNWDTRACE);
C(SUNWCAP);

default:
s = "unknown";
break;

}
(void) printf("␣\"%s\"", s);

#undef C
}

int
main(int argc , char **argv)
{

int i, fd;
Elf *e;
char *id, bytes [5];
size_t n;

GElf_Phdr phdr; 3

if (argc != 2)
errx(EXIT_FAILURE , "usage:␣%s␣file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)
errx(EXIT_FAILURE , "ELF␣library␣initialization␣"

"failed:␣%s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)
err(EXIT_FAILURE , "open␣\"%s\"␣failed", argv [1]);

if ((e = elf_begin(fd , ELF_C_READ , NULL)) == NULL)
errx(EXIT_FAILURE , "elf_begin ()␣failed:␣%s.",

elf_errmsg (-1));

if (elf_kind(e) != ELF_K_ELF)
errx(EXIT_FAILURE , "\"%s\"␣is␣not␣an␣ELF␣object.",

argv [1]);

if (elf_getphdrnum(e, &n) != 0) 4

4.2. EXAMPLE: READING A PROGRAM HEADER TABLE 29

errx(EXIT_FAILURE , "elf_getphdrnum ()␣failed:␣%s.",
elf_errmsg (-1));

for (i = 0; i < n; i++) { 5

if (gelf_getphdr(e, i, &phdr) != &phdr) 6

errx(EXIT_FAILURE , "getphdr ()␣failed:␣%s.",
elf_errmsg (-1));

(void) printf("PHDR␣%d:\n", i);
define PRINT_FMT "␣␣␣␣%-20s␣0x%jx"
define PRINT_FIELD(N) do { \

(void) printf(PRINT_FMT , #N, (uintmax_t) phdr.N); \
} while (0)

define NL() do { (void) printf("\n"); } while (0)

PRINT_FIELD(p_type); 7

print_ptype(phdr.p_type); NL();
PRINT_FIELD(p_offset); NL();
PRINT_FIELD(p_vaddr); NL();
PRINT_FIELD(p_paddr); NL();
PRINT_FIELD(p_filesz); NL();
PRINT_FIELD(p_memsz); NL();
PRINT_FIELD(p_flags);
(void) printf("␣[");
if (phdr.p_flags & PF_X)

(void) printf("␣execute");
if (phdr.p_flags & PF_R)

(void) printf("␣read");
if (phdr.p_flags & PF_W)

(void) printf("␣write");
printf("␣]"); NL();
PRINT_FIELD(p_align); NL();

}

(void) elf_end(e);
(void) close(fd);
exit(EXIT_SUCCESS);

}

1 Source code that uses the GELF(3) functions needs to include the gelf.h
header file.

2 print ptype is a helper function that translates the value of the p type
member to human-readable form.

3 The GELF(3) functions in this example will use the GElf Phdr C type. This
type has members that are large enough for both the 32-bit (Elf32 Phdr)
and 64-bit (Elf64 Phdr) header table entries.

4 The function elf getphdrnum will retrieve the number of program header
table entries in the ELF object.

30 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

5 This for loop iterates over the valid indices for the Program Header Table.

6 The gelf getphdr function retrieves the program header table entry at a
specified index. If successful it will return the GElf Phdr pointer that was
passed to it.

7 The remaining lines of the loop’s body print out the contents of the returned
GElf Phdr entry.

Save the program in listing 4.1 on page 27 to file prog3.c and then compile
and run it as shown in listing 4.2.

Listing 4.2: Compiling and Running prog3

% cc -o prog3 prog3.c -lelf 1

% ./ prog3 prog3 2

PHDR 0:

p_type 0x6 "PHDR" 3

p_offset 0x34
p_vaddr 0x8048034
p_paddr 0x8048034
p_filesz 0xc0
p_memsz 0xc0
p_flags 0x5 [execute read]
p_align 0x4

PHDR 1:

p_type 0x3 "INTERP" 4

p_offset 0xf4
p_vaddr 0x80480f4
p_paddr 0x80480f4
p_filesz 0x15
p_memsz 0x15
p_flags 0x4 [read]
p_align 0x1

PHDR 2:

p_type 0x1 "LOAD" 5

p_offset 0x0
p_vaddr 0x8048000
p_paddr 0x8048000
p_filesz 0xe67
p_memsz 0xe67
p_flags 0x5 [execute read]
p_align 0x1000

PHDR 3:

p_type 0x1 "LOAD" 6

p_offset 0xe68
p_vaddr 0x8049e68
p_paddr 0x8049e68
p_filesz 0x11c
p_memsz 0x13c

4.2. EXAMPLE: READING A PROGRAM HEADER TABLE 31

p_flags 0x6 [read write]
p_align 0x1000

PHDR 4:
p_type 0x2 "DYNAMIC"
p_offset 0xe78
p_vaddr 0x8049e78
p_paddr 0x8049e78
p_filesz 0xb8
p_memsz 0xb8
p_flags 0x6 [read write]
p_align 0x4

PHDR 5:
p_type 0x4 "NOTE"
p_offset 0x10c
p_vaddr 0x804810c
p_paddr 0x804810c
p_filesz 0x18
p_memsz 0x18
p_flags 0x4 [read]
p_align 0x4

1 Compile and link the program with libelf, as before.

2 We run our program on itself, and have it print out its own program
header table. This listing was generated on an i386TM machine running
FreeBSD.TM

3 The very first entry of this particular program header table describes the
object’s Program Header Table itself.

4 The program prog3 contains a header entry of type PT INTERP because it is
dynamically linked. A segment of type PT INTERP contains the path name
to the “interpreter” that the kernel should use when executing the pro-
gram. This is usually the runtime loader (the file /libexec/ld-elf.so.1
on FreeBSD systems).

5 6 This object contains two loadable segments. The first segment requires
execute and read permissions, and the second read and write permissions.
Both segments require page (4096 byte) alignment.

You should try runing prog3 on other object files.

• Try running prog3 on a relocatable object created by a cc -c invocation.
Does this object have a program header table?

• Try running prog3 on a shared library. What does the Program Header
Table look like for a shared library?

• Can you find ELF objects on your system that contain program header
table entries of type PT TLS?

32 CHAPTER 4. EXAMINING THE PROGRAM HEADER TABLE

Chapter 5

Looking at Sections

Compilers and linkers view ELF objects differently than operating systems do.
These tools treat ELF files as a collection of ELF Sections.

An ELF Section is contiguous region of an ELF object holding one kind of
data. For example, an ELF relocatable object could have sections with exe-
cutable code, symbol tables, code relocation entries, and so on. Non-empty
sections do not overlap in the ELF object.

5.1 The Section Header Table
The sections of an ELF object are described by a data structure known as the
ELF Section Header Table. The Section Header Table is usually found at the
very end of the ELF object (see figure 3.1 on page 16). The e shoff member
in the ELF Executable Header for the object specifies the location of the Section
Header Table.

Every ELF Section present in an ELF object is described by an ELF Section
Header Table Entry (see table 5.1 on the next page). Figure 5.1 shows how the
fields of an ELF Section Header Entry specify the section’s placement within the
ELF object.

ELF object Ehdr Sectionn Shdr

%sh addralign

sh offset sh size

sh type

sh size
sh addralign

sh offset
...

Section Header Table Entry

Figure 5.1: Section layout.

33

34 CHAPTER 5. LOOKING AT SECTIONS

32 bit SHDR Table Entry 64 bit SHDR Table Entry
typedef struct { typedef struct {

1 Elf32_Word sh_name; Elf64_Word sh_name;
2 Elf32_Word sh_type; Elf64_Word sh_type;
3 Elf32_Xword sh_flags; Elf64_Xword sh_flags;

Elf32_Addr sh_addr; Elf64_Addr sh_addr;
Elf32_Off sh_offset; Elf64_Off sh_offset;

4 Elf32_Xword sh_size; Elf64_Xword sh_size;
5 Elf32_Word sh_link; Elf64_Word sh_link;
6 Elf32_Word sh_info; Elf64_Word sh_info;
7 Elf32_Word sh_addralign; Elf64_Word sh_addralign;
8 Elf32_Word sh_entsize; Elf64_Word sh_entsize;

} Elf32_Shdr; } Elf64_Shdr;

Table 5.1: ELF Section Header Table Entries.

1 The sh name member encodes the section’s name. Because section names
can be of variable length, they are not kept in the section header table
entry itself. Instead, all section names are placed in a common “section
name string table”, and the sh name member in the section header entry
stores the byte offset of the section’s name in that string table. The ELF
Executable Header has an e shstrndx member that contains the section
index of the section name string table itself. We will look at ELF string
tables in greater detail in section 5.3 on page 37.

2 The sh type member specifies the section’s type. Section types are defined
by the SHT * constants defined in the system’s ELF headers. For example,
a section of type SHT PROGBITS would contain executable code, and a
section of type SHT SYMTAB would hold a symbol table.

3 The flags field indicates whether the section has specific properties; for
example, whether it contains writable data, whether it has special link
ordering requirements, and so on.

4 The sh size member specifies the size of the section in bytes.

5 6 The sh link and sh info members contain additional section-specific
information. We do not look at these members further in this tutorial.

7 For sections with specific alignment requirements, the sh addralign mem-
ber holds the required alignment. Its value would be a power of two.

8 For sections that contain arrays of fixed-size elements, the sh entsize mem-
ber specifies the size of each element.

There are a couple of quirks to keep mind when handling ELF sections:

5.2. ELF SECTION HANDLING WITH LIBELF 35

ELF object

Section contents.

D1 D2 D3 D4
List of
Elf Data
descriptors.

Elf Scn An Elf Scn descriptor.

Figure 5.2: Coverage of an ELF section by Elf Scn and Elf Data descriptors.

• First, the section header table entry at index ‘0’ (SHN UNDEF) is special: it
is always of type SHT NULL. When extended numbering is not in use this
entry has its members set to zero. When extended numbering is in use,
the fields of this entry could be non-zero; please see section 3.3 on page 18
for a discussion of extended numbering.

• Next, valid section indices range from SHN UNDEF (0) up to SHN LORESERVE−
1 (0xFEFF). Section indices between 0xFF00 (SHN LORESERVE) and 0xFF-
FF (SHN HIRESERVE) have special meanings. If an ELF object has more
than 65279 (0xFEFF) sections, then it will need to use extended section
numbering.

5.2 ELF Section Handling With libelf

The libelf library offers APIs to retrieve section header table entries and the
contents of sections.1 These APIs take care of translating between the in-file
and in-memory representations of data in the ELF object; your application can
then directly work with the in-memory representation of data.

ELF sections are represented by libelf using a type named Elf Scn. This
type is meant to be opaque to application code—the only way to allocate an
Elf Scn is by calling one of libelf’s APIs..

Notable functions in the API that operate on sections include:

• The function elf getscn retrieves section information for a specified sec-
tion index.

• The function elf nextscn is used to iterate through the sections in the
ELF object..

• The function gelf getshdr retrieves the section header table entry for a
section.

• The functions elf getdata retrieves the contents of the section.

1We will cover the adding new sections to ELF objects in chapter 6 on page 43.

36 CHAPTER 5. LOOKING AT SECTIONS

An Elf Scn descriptor is associated with zero or more Elf Data descriptors.
Each Elf Data descriptor describes a region of application memory containing
data for the ELF section. Figure 5.2 on the preceding page shows how the
Elf Data descriptors for an Elf Scn descriptor could cover the content of a
section.

Listing 5.1 shows the C definition of the Elf Scn and Elf Data types.

Listing 5.1: The Elf Data and Elf Scn types

typedef struct _Elf_Scn Elf_Scn; 1

typedef struct _Elf_Data {
/*

* ‘Public ’ members that are part of the ELF (3) API.
*/

uint64_t d_align; 2

void *d_buf; 3

uint64_t d_off; 4

uint64_t d_size; 5

Elf_Type d_type; 6

unsigned int d_version; 7

/* ... other library - private fields ... */
} Elf_Data;

1 The Elf Scn type is opaque to the application.

2 The d align member specifies the alignment of the data referenced in the
Elf Data with respect to its containing section.

3 The d buf member points to a contiguous region of application memory
containing the section’s data.

4 The d off member contains the file offset from the start of the section for
the data in this buffer.

5 The d size member contains the size of the memory buffer in bytes.

6 The d type member specifies the ELF type of the data contained in the
data buffer. Legal values for this member are defined by the Elf Type
enumeration in the libelf.h header file.

7 The d version member specifies the working version for the data in this
descriptor. It must be one of the values supported by the libelf library.
Please see chapter 2 for more information on ELF version numbers.

Figure 5.3 on the facing page shows how the members of the Elf Data de-
scriptor describe a region of application memory containing section data. As
seen in the figure, the in-memory representation of this data might have a dif-
ferent size and different endianness than its in-file representation.

5.3. ELF STRING TABLES 37

Elf Data An Elf Data descriptor

Memory buffer

d size

d buf

A section in an ELF object.

%d align

Start of the section.d off

The file represen-
tation of the data
in memory.

Figure 5.3: How Elf Data descriptors work.

’\0’ ’S’ ’t’ ’r’ ’i’ ’n’ ’g’ ’1’ ’\0’ ’S’

’t’ ’r’ ’i’ ’n’ ’g’ ’2’ ’\0’ · · · · · · ’\0’

The initial NUL byte NUL terminator

NUL terminator

The final NUL byte

Figure 5.4: String Table Layout.

5.3 ELF String Tables
ELF string tables hold variable length strings. Other ELF data structures refer
to the strings stored in these tables by using byte offsets from the start of the
string table.

Figure 5.4 shows the layout of a string table.

• The initial byte of a string table is NUL (a ‘\0’). This allows a byte offset
value of zero to denote the empty string.

• Subsequent strings are separated by NUL bytes.

• The final byte in the section is a NUL, in order to NUL-terminate the last
string in the string table.

Sections containing string tables have section type SHT STRTAB.

38 CHAPTER 5. LOOKING AT SECTIONS

An ELF file can have multiple string tables. For example, the names of the
sections could be kept in a section name string table while the names of program
symbols could be kept in a symbol name string table.

The elf strptr function in the libelf library converts string table offsets
into char * pointers usable by C code.

5.4 Example: Listing Section Names
Let us now write an example program that prints the names of the sections in
an ELF object.

Listing 5.2: Program 4
/*

* Print the names of ELF sections .
*
* $Id: prog4.txt 3687 2019 -02 -22 07:55:09 Z jkoshy $
*/

include <err.h>
include <fcntl.h>
include <gelf.h>
include <stdio.h>
include <stdint.h>
include <stdlib.h>
include <unistd.h>
include <vis.h>

int
main(int argc , char **argv)
{

int fd;
Elf *e;
Elf_Scn *scn;
Elf_Data *data;
GElf_Shdr shdr;
size_t n, shstrndx , sz;
char *name , *p, pc[(4 * sizeof(char)) + 1];

if (argc != 2)
errx(EXIT_FAILURE , "usage:␣%s␣file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)
errx(EXIT_FAILURE , "ELF␣library␣initialization␣"

"failed:␣%s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0)
err(EXIT_FAILURE , "open␣\%s\"␣failed", argv [1]);

if ((e = elf_begin(fd , ELF_C_READ , NULL)) == NULL)
errx(EXIT_FAILURE , "elf_begin ()␣failed:␣%s.",

elf_errmsg (-1));

if (elf_kind(e) != ELF_K_ELF)

5.4. EXAMPLE: LISTING SECTION NAMES 39

errx(EXIT_FAILURE , "%s␣is␣not␣an␣ELF␣object.",
argv [1]);

if (elf_getshdrstrndx(e, &shstrndx) != 0) 1

errx(EXIT_FAILURE , "elf_getshdrstrndx ()␣failed:␣%s.",
elf_errmsg (-1));

scn = NULL; 2

while ((scn = elf_nextscn(e, scn)) != NULL) { 3

if (gelf_getshdr(scn , &shdr) != &shdr) 4

errx(EXIT_FAILURE , "getshdr ()␣failed:␣%s.",
elf_errmsg (-1));

if ((name = elf_strptr(e, shstrndx , shdr.sh_name))

== NULL) 5

errx(EXIT_FAILURE , "elf_strptr ()␣failed:␣%s.",
elf_errmsg (-1));

(void) printf("Section␣%-4.4jd␣%s\n", (uintmax_t)
elf_ndxscn(scn), name);

}

if ((scn = elf_getscn(e, shstrndx)) == NULL) 6

errx(EXIT_FAILURE , "getscn ()␣failed:␣%s.",
elf_errmsg (-1));

if (gelf_getshdr(scn , &shdr) != &shdr)
errx(EXIT_FAILURE , "getshdr(shstrndx)␣failed:␣%s.",

elf_errmsg (-1));

(void) printf(".shstrab:␣size=%jd\n", (uintmax_t)
shdr.sh_size);

data = NULL; n = 0;
while (n < shdr.sh_size &&

(data = elf_getdata(scn , data)) != NULL) { 7

p = (char *) data ->d_buf;
while (p < (char *) data ->d_buf + data ->d_size) {

if (vis(pc, *p, VIS_WHITE , 0))
printf("%s", pc);

n++; p++;
(void) putchar ((n % 16) ? ’␣’ : ’\n’);

}
}
(void) putchar(’\n’);

(void) elf_end(e);
(void) close(fd);
exit(EXIT_SUCCESS);

}

40 CHAPTER 5. LOOKING AT SECTIONS

1 The function elf getshdrstrndx retrieves the section index of the section
name string table. Using this function allows our program to work cor-
rectly when the object being examined uses extended numbering.

2 The function elf nextscn has the useful property that it will return the
pointer to the Elf Scn descriptor for section number 1 if a NULL pointer
is passed in to it. Section number 0 is always of type SHT NULL, and is not
for use by applications.

3 This while loop iterates through the sections in the ELF object. Function
elf nextscn will return NULL after the last section has been traversed,
giving us a convenient way to exit the loop.

4 The function gelf getshdr retrieves the section header table entry for an
Elf Scn descriptor. The sh name member of the returned section header
table entry holds the byte offset of the section’s name inside the section
name string table.

5 The elf strptr function converts the byte offset in the sh name member
to a char * pointer. The pointed-to C string can then be printed using
printf.

6 Next, the contents of the section name string table itself are printed out.
The call to elf getscn returns the Elf Scn descriptor for the section
name string table itself.

7 This code cycles through the Elf Data descriptors for the section, printing
out the characters in each Elf Data buffer for the section.

Save the program in listing 5.2 on page 38 to file prog4.c and then compile
and run it as shown in listing 5.3.

Listing 5.3: Compiling and Running prog4

% cc -o prog4 prog4.c -lelf 1

% ./ prog4 prog4 2

Section 0001 .interp
Section 0002 .note.ABI -tag
Section 0003 .hash
Section 0004 .dynsym
Section 0005 .dynstr
Section 0006 .rela.plt
Section 0007 .init
Section 0008 .plt
Section 0009 .text
Section 0010 .fini
Section 0011 .rodata
Section 0012 .data
Section 0013 .eh_frame
Section 0014 .dynamic

5.4. EXAMPLE: LISTING SECTION NAMES 41

Section 0015 .ctors
Section 0016 .dtors
Section 0017 .jcr
Section 0018 .got
Section 0019 .bss
Section 0020 .comment

Section 0021 .shstrtab 3

Section 0022 .symtab
Section 0023 .strtab

.shstrab: size =287 4

\ˆ@ . s y m t a b \ˆ@ . s t r t a b
\ˆ@ . s h s t r t a b \ˆ@ . i n t e
r p \ˆ@ . h a s h \ˆ@ . d y n s y m
...etc ...

1 Compile and link the program in the standard way.

2 The program is invoked on itself, to print the names of its own sections.

3 The section name string table is called .shstrtab by convention.

4 This is the content of the section name string table in this object.

42 CHAPTER 5. LOOKING AT SECTIONS

Chapter 6

Creating New ELF Objects

This chapter shows how to use the libelf library to create new ELF objects.

6.1 Example: Creating an ELF Object
The example program in listing 6.1 creates an ELF file with the following con-
tent:

• A section named “.foo” containing data in the form of 32-bit words that
may need byte-swapping. We had discussed libelf’s handling of data
needing byte-swapping in section 3.5 on page 19.

• A section named “.shstrtab” containing the section name string table
for our ELF object. We covered string tables in section 5.3 on page 37.

• A Program Header Table with a single Program Header Table Entry covering
the program header table itself. We studied the ELF Program Header Table
in chapter 4.

The new ELF object will be marked as a 32-bit PowerPCTM executable, and
will use big-endian data ordering.

Listing 6.1: Program 5
/*

* Create an ELF object .
*
* $Id: prog5.txt 2133 2011 -11 -10 08:28:22 Z jkoshy $
*/

include <err.h>
include <fcntl.h>

include <libelf.h> 1

include <stdio.h>
include <stdlib.h>
include <unistd.h>

uint32_t hash_words [] = { 2

43

44 CHAPTER 6. CREATING NEW ELF OBJECTS

0x01234567 ,
0x89abcdef ,
0xdeadc0de

};

char string_table [] = { 3

/* Offset 0 */ ’\0’,
/* Offset 1 */ ’.’, ’f’, ’o’, ’o’, ’\0’,
/* Offset 6 */ ’.’, ’s’, ’h’, ’s’, ’t’,

’r’, ’t’, ’a’, ’b’, ’\0’
};

int
main(int argc , char **argv)
{

int fd;
Elf *e;
Elf_Scn *scn;
Elf_Data *data;
Elf32_Ehdr *ehdr;
Elf32_Phdr *phdr;
Elf32_Shdr *shdr;

if (argc != 2)
errx(EXIT_FAILURE , "usage:␣%s␣file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)
errx(EXIT_FAILURE , "ELF␣library␣initialization␣"

"failed:␣%s", elf_errmsg (-1));

if ((fd = open(argv[1], O_WRONLY|O_CREAT , 0777)) < 0) 4

err(EXIT_FAILURE , "open␣\%s\"␣failed", argv [1]);

if ((e = elf_begin(fd , ELF_C_WRITE , NULL)) == NULL) 5

errx(EXIT_FAILURE , "elf_begin ()␣failed:␣%s.",
elf_errmsg (-1));

if ((ehdr = elf32_newehdr(e)) == NULL) 6

errx(EXIT_FAILURE , "elf32_newehdr ()␣failed:␣%s.",
elf_errmsg (-1));

ehdr ->e_ident[EI_DATA] = ELFDATA2MSB;
ehdr ->e_machine = EM_PPC; /* 32- bit PowerPC object */
ehdr ->e_type = ET_EXEC;

if ((phdr = elf32_newphdr(e, 1)) == NULL) 7

errx(EXIT_FAILURE , "elf32_newphdr ()␣failed:␣%s.",
elf_errmsg (-1));

if ((scn = elf_newscn(e)) == NULL) 8

6.1. EXAMPLE: CREATING AN ELF OBJECT 45

errx(EXIT_FAILURE , "elf_newscn ()␣failed:␣%s.",
elf_errmsg (-1));

if ((data = elf_newdata(scn)) == NULL)
errx(EXIT_FAILURE , "elf_newdata ()␣failed:␣%s.",

elf_errmsg (-1));

data ->d_align = 4;
data ->d_off = 0LL;
data ->d_buf = hash_words;
data ->d_type = ELF_T_WORD;
data ->d_size = sizeof(hash_words);
data ->d_version = EV_CURRENT;

if ((shdr = elf32_getshdr(scn)) == NULL)
errx(EXIT_FAILURE , "elf32_getshdr ()␣failed:␣%s.",

elf_errmsg (-1));

shdr ->sh_name = 1;
shdr ->sh_type = SHT_HASH;
shdr ->sh_flags = SHF_ALLOC;
shdr ->sh_entsize = 0;

if ((scn = elf_newscn(e)) == NULL) 9

errx(EXIT_FAILURE , "elf_newscn ()␣failed:␣%s.",
elf_errmsg (-1));

if ((data = elf_newdata(scn)) == NULL)
errx(EXIT_FAILURE , "elf_newdata ()␣failed:␣%s.",

elf_errmsg (-1));

data ->d_align = 1;
data ->d_buf = string_table;
data ->d_off = 0LL;
data ->d_size = sizeof(string_table);
data ->d_type = ELF_T_BYTE;
data ->d_version = EV_CURRENT;

if ((shdr = elf32_getshdr(scn)) == NULL)
errx(EXIT_FAILURE , "elf32_getshdr ()␣failed:␣%s.",

elf_errmsg (-1));

shdr ->sh_name = 6;
shdr ->sh_type = SHT_STRTAB;
shdr ->sh_flags = SHF_STRINGS | SHF_ALLOC;
shdr ->sh_entsize = 0;

elf_setshstrndx(e, elf_ndxscn(scn)); 10

if (elf_update(e, ELF_C_NULL) < 0) 11

errx(EXIT_FAILURE , "elf_update(NULL)␣failed:␣%s.",
elf_errmsg (-1));

46 CHAPTER 6. CREATING NEW ELF OBJECTS

phdr ->p_type = PT_PHDR;
phdr ->p_offset = ehdr ->e_phoff;
phdr ->p_filesz = elf32_fsize(ELF_T_PHDR , 1, EV_CURRENT);

(void) elf_flagphdr(e, ELF_C_SET , ELF_F_DIRTY);

if (elf_update(e, ELF_C_WRITE) < 0) 12

errx(EXIT_FAILURE , "elf_update ()␣failed:␣%s.",
elf_errmsg (-1));

(void) elf_end(e);
(void) close(fd);

exit(EXIT_SUCCESS);
}

1 The header file libelf.h brings in function prototypes for libelf’s func-
tions.

2 The hash words array holds 32-bit words. The values in the array would
need to be written using big-endian byte ordering when the section is
written to file.

3 The string table array holds a pre-fabricated string table containing the
names of our two sections, “.foo” and “.shstrtab”.

4 The first step in creating a new ELF object is to obtain a file descriptor
opened for writing.

5 The call to function elf begin allocates an Elf handle. The parameter
ELF C WRITE informs libelf of our intent to create a brand new ELF
object.

6 The function elf32 newehdr allocates an ELF Executable Header. An Exe-
cutable Header is always needed for an ELF object.
The next few lines populate the executable header:

1. The EI DATA byte in the e ident member is set to the desired endi-
anness (big-endian in our case).

2. The machine type is set to the constant EM PPC, for the PowerPCTM

architecture.
3. The object is marked as an ELF executable.

The new ELF object will be a 32-bit object, since its Executable Header
had been allocated using the 32-bit elf32 newehdr function.

7 The call to elf newphdr allocates an ELF Program Header Table containing
a single entry. This entry is meant to cover the Program Header Table
itself.

6.1. EXAMPLE: CREATING AN ELF OBJECT 47

At this point in our program we do not know the file offset at which the
ELF Program Header Table will be placed inside our new ELF object. This
offset would only be known after the object is laid out. We need to defer
filling in our program header table entry until libelf has computed an
object layout for us (please see step 11 below).

8 The call to elf newscn allocates an Elf Scn descriptor for the ELF section
that will hold the values in the hash words array.
To actually associate data with our new section we allocate an Elf Data
descriptor and set its fields to map the hash words array.
A call to elf32 getshdr then returns the Section Header Table Entry for
the new section.

1. The type of the new section is set to SHT HASH. The libelf library
knows how to byte-swap sections of this type.

2. The section is marked as containing content in the file by setting its
sh flags field to the constant SHF ALLOC.

9 The next call to elf newscn allocates another section descriptor; this de-
scriptor will be used for the section name string table. The code then
allocates an Elf Data descriptor for this section, and sets its members to
map the pre-fabricated string table in the array string table.
The call to elf32 getshdr retrieves the Section Header Table Entry for
this section. The members of this section header table entry are set as
follows:

1. The type of the section is set to SHT STRTAB, the section type for
string tables.

2. The section flags are set to indicate that the section contains data in
the file, and that it contains NUL-terminated strings.

10 The function elf ndxscn retrieves the section index for the string table
section. The call to function elf setshstrndx then sets the section name
string table index field in the ELF Executable Header.

11 The call of the function elf update with the parameter ELF C NULL re-
quests the libelf library to compute a layout for an ELF object without
writing the object out..
After the call to elf update returns, the code examines the ELF object’s
Executable Header to determine where libelf had placed the object’s
Program Header Table. It then updates the Program Header Table Entry
created in step 7 to cover the program header table’s file location.
The call to function elf flagdata marks the Program Header Table as
having been modified.

12 Finally, the function elf update is called with parameter ELF C WRITE in
order to write the ELF object out to file.

48 CHAPTER 6. CREATING NEW ELF OBJECTS

If this example program is run on a little-endian host the libelf library
will byte-swap the sections that need byte-swapping when the ELF object
is written out to file.

Save the program in listing 6.1 on page 43 to file prog5.c and then compile
and run it as shown in listing 6.2.

Listing 6.2: Compiling and Running prog5

% cc -o prog5 prog5.c -lelf 1

% ./ prog5 foo

% file foo 2

foo: ELF 32-bit MSB executable , PowerPC or cisco 4500, \
version 1 (SYSV), statically linked , stripped

% readelf -a foo 3

ELF Header:
Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2’s complement , big endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: PowerPC
Version: 0x1
Entry point address: 0x0
Start of program headers: 52 (bytes into file)
Start of section headers: 112 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 1
Size of section headers: 40 (bytes)
Number of section headers: 3
Section header string table index: 2

...etc...

1 Compile, link and run the program as in our previous examples.

2 3 We can use the file and readelf programs to examine the object that
we have created.

6.2 Controlling ELF Layout
By default, the libelf library will lay out your ELF objects for you. The
default layout is shown in figure 3.1 on page 16.

You can request fine-grained control over the ELF object’s layout by setting
the ELF F LAYOUT flag on its Elf descriptor. This flag is set using the function
elf flagelf.

After setting the ELF F LAYOUT flag on an Elf descriptor, you can control
the layout of the ELF object using the following parameters:

6.3. FILL CHARACTERS 49

• You can set the values of the e phoff and e shoff members of the Exe-
cutable Header. These values determine where the ELF Program Header
Table and Section Header Table would be placed in the ELF object.

• For each section you can set the sh addralign, sh offset, and sh size
members of the section’s header table entry. These members control the
placement of the section within the ELF object.

These members must be set prior to calling the elf update function.

6.3 Fill Characters
The libelf library will fill the gaps between the parts of the ELF object with a
fill character. These gaps may arise due to the alignment constraints on adjacent
sections.

You can set the fill character to use by calling the function elf fill before
calling elf update. The default fill character is a zero byte.

6.4 Memory Ownership
Some of the APIs implemented by libelf return pointers to memory arenas;
other APIs accept pointers to memory arenas as input. Knowing when you
should (or should not) call free() on a pointer is essential to avoid corrupting
memory.

The libelf library follows a simple rule: it will not free data that it did not
allocate. Conversely, it will free memory that it had allocated.

You should not free pointers returned by libelf, such as the Elf Scn *
pointers returned by calls to elf getscn and the Elf Data * pointers returned
by calls to elf newdata. Conversely, if you had allocated a memory arena
mapped by an Elf Data structure, then you should release the arena once you
are done with it.

6.5 Data Structure Lifetimes
Many of libelf’s APIs return pointers to its internal data structures. In objects
opened for writing these pointers have a limited lifetime—they are only valid
up till the time the ELF object is written out to file by a call to function
elf update.

This is because when libelf writes out an ELF object, it releases and
reallocates some of its internal bookkeeping structures.

After calling function elf update with parameter ELF C WRITE you should
treat any prior pointers returned by libelf, such as pointers to Elf Scn and
Elf Data structures, as invalid. If you wish to continue working with your ELF
object, you should retrieve these pointers afresh from libelf.

6.6 Modifying Existing ELF Objects
You can use the libelf library to modify existing ELF objects.

50 CHAPTER 6. CREATING NEW ELF OBJECTS

The process to update an ELF object is similar to that for creating ELF
objects, with the following differences:

• You would open the underlying file for both reading and writing, i.e., with
mode O RDWR.

• You would need an Elf descriptor that is valid for updates. You can
allocate a suitable descriptor by calling function elf begin using the pa-
rameter ELF C RDWR.

• You can use functions such as elf newscn, elf32 newphdr and elf64 newphdr
to add new data structures to your object. You can also retrieve exist-
ing ELF data structures in the file using APIs such as those discussed in
the previous chapters of this tutorial. You can add new data to existing
sections using the function elf newdata.

• After you modify the fields of a data structure retrieved from the ELF ob-
ject, you should call the appropriate elf flag functions to inform libelf
about your change.

A caution: when you update an ELF object, you should take care to ensure
that the resulting object remains a valid ELF object. For example, if you move
the sections of an ELF executable around, then you should also keep the relevant
offsets in its Program Header Table entries updated. We will not however explore
this topic further in this introductory tutorial.

Chapter 7

Processing ar Archives

During program development the ar archiver is used to manage “libraries” of
object files.

You can use the libelf library to read these archives. The libelf library’s
APIs are however ‘read-only’—ar archives cannot be created or modified using
these APIs.1

In this chapter we will build an example program that takes an ar archive
as input and lists the names and sizes of the files contained within it.

7.1 The Structure of ar Archives
Every ar archive starts with a signature sequence of 8 bytes (please see the
constant ARMAG defined in the system header ar.h). The members of the archive
follow this signature.

Figure 7.1 on the following page shows the structure of an ar archive.

7.1.1 The Archive Header
Each member of an ar archive is preceded by an archive header that describes
the member’s attributes. The archive header is a collection of fixed-size ASCII
strings that resides at an even offset within the archive file. Listing 7.1 shows
the layout of the archive header as a C struct.

Listing 7.1: Archive Header Layout
struct ar_hdr {

char ar_name [16]; /* file name */
char ar_date [12]; /* file modification time */
char ar_uid [6]; /* creator user id */
char ar_gid [6]; /* creator group id */
char ar_mode [8]; /* octal file permissions */
char ar_size [10]; /* size in bytes */

define ARFMAG "‘\n"
char ar_fmag [2]; /* consistency check */

} __packed;

1The libarchive library could be used instead to create or modify ar archives.

51

https://github.com/libarchive/libarchive/wiki

52 CHAPTER 7. PROCESSING AR ARCHIVES

“/” “//” File 0 File 1 File 2 . . .

archive “magic” archive headers

archive symbol table

archive string table
ar fmag
ar size
ar mode

ar gid
ar uid
ar date
ar name

Figure 7.1: The structure of ar archives.

7.2 Special Archive Members
The initial members of an ar archive may be special:

• An archive member with the name “/” is an archive symbol table. This
symbol table maps program symbols to archive members in the archive.
It is usually maintained by tools like ranlib and ar.

• An archive member with the name “//” is an archive string table.
The ar archive header can only contain fixed size ASCII strings. Member
file names that exceed the length limits of the ar name archive header field
would need to be placed in a special string table.2 The ar name field of
the archive header would then hold the offset within the archive string
table of the real file name, encoded as a decimal number.

7.3 Archive Flavors
ar archives come in two flavors mainly: BSD and SVR4. These flavors are
different in many respects—for example, SVR4 archives use a ‘/’ character to
terminate file names in the archive header, whereas BSD format archives use a
ASCII space character as a terminator. The way the two formats handle long
file names is also different. The archive handling APIs offered by the libelf
library will insulate your code from the differences between the archive formats.

7.4 Archive Symbol Tables
An archive symbol table helps linkers to quickly locate the ELF objects in an
archive. The BSD and SVR4 archive flavors have their own archive symbol table

2Archive string tables are not to be confused with ELF string tables. ELF string tables
were examined in section 5.3.

7.5. RANDOM ARCHIVE ACCESS USING ELF RAND 53

formats.
If an archive symbol table is present in an ar archive, it will be the archive’s

first member.
ar archive symbol tables are read using the function elf getarsym. This

function returns an array of Elf Arsym structures, where each Elf Arsym struc-
ture maps a program symbol to a file offset within the ar archive. These file
offsets can then be used with the elf rand function to retrieve the ELF object
in question (please see section 7.5 below).

Listing 7.2 contains the C definition of an Elf Arsym data type.

Listing 7.2: The Elf Arsym structure
typedef struct {

off_t as_off; /* byte offset to member header */
unsigned long as_hash; /* elf_hash () value for name */
char *as_name; /* null terminated symbol name */

} Elf_Arsym;

7.5 Random Archive Access Using elf rand

Instead of iterating over the members of an ar archive in sequence, you can also
directly access specific members in the archive using the elf rand function.

This function configures the parent archive’s Elf descriptor to open the
desired archive member on the next call to elf begin.

The elf rand function takes the file offset to an archive header as its input
parameter. This means that the function is only useful when the file offset to
the desired member’s archive header is already known. If an archive contains an
archive symbol table then the function elf getarsym could be used to retrieve
the relevant file offsets to its member’s headers.

The elf getarsym function was described in section 7.4 above.

7.6 Example: Stepping Through an ar Archive
Listing 7.3 on the next page contains a program that traverses an ar archive,
printing out the file names and byte sizes of its members.

“/” “//” File 0 File 1 File 2 . . .

archive “magic” archive headers

elf begin(0) elf begin(1) elf begin(2)

elf next(0) elf next(1) elf next(2)

Figure 7.2: Iterating through ar archives with elf begin and elf next.

54 CHAPTER 7. PROCESSING AR ARCHIVES

Listing 7.3: Program 6

/*
* Iterate through an ar (1) archive .
*
* $Id: prog6.txt 3840 2020 -03 -14 21:19:09 Z jkoshy $
*/

include <err.h>
include <fcntl.h>
include <libelf.h>
include <stdio.h>
include <stdlib.h>
include <unistd.h>

int
main(int argc , char **argv)
{

int fd;
Elf *ar , *e;
Elf_Cmd cmd;
Elf_Arhdr *arh;

if (argc != 2)
errx(EXIT_FAILURE , "usage:␣%s␣file -name", argv [0]);

if (elf_version(EV_CURRENT) == EV_NONE)
errx(EXIT_FAILURE , "ELF␣library␣initialization␣"

"failed:␣%s", elf_errmsg (-1));

if ((fd = open(argv[1], O_RDONLY , 0)) < 0) 1

err(EXIT_FAILURE , "open␣\%s\"␣failed", argv [1]);

if ((ar = elf_begin(fd , ELF_C_READ , NULL)) == NULL) 2

errx(EXIT_FAILURE , "elf_begin ()␣failed:␣%s.",
elf_errmsg (-1));

if (elf_kind(ar) != ELF_K_AR)
errx(EXIT_FAILURE , "%s␣is␣not␣an␣ar(1)␣archive.",

argv [1]);

cmd = ELF_C_READ;

while ((e = elf_begin(fd , cmd , ar)) != NULL) { 3

if ((arh = elf_getarhdr(e)) == NULL) 4

errx(EXIT_FAILURE , "elf_getarhdr ()␣failed:␣%s.",
elf_errmsg (-1));

(void) printf("%20s␣%zd\n", arh ->ar_name ,
arh ->ar_size);

cmd = elf_next(e); 5

7.6. EXAMPLE: STEPPING THROUGH AN AR ARCHIVE 55

(void) elf_end(e); 6

}

(void) elf_end(ar);
(void) close(fd);
exit(EXIT_SUCCESS);

}

1 The call to open() opens the archive for reading.

2 The function elf begin is used to obtain an Elf descriptor. The code then
checks that libelf library has recognized the file as an ar archive.

3 The call of elf begin returns a nested Elf descriptor to an archive member.
The third parameter passed to elf begin is a pointer to the Elf descriptor
for the archive itself.

4 The function elf getarhdr retrieves the archive header for the current
archive member. This function translates the (possibly encoded) file
names in the archive header to NUL-terminated strings suitable for use
with printf.
Figure 7.4 shows the translated information returned by the elf getarhdr
function.

Listing 7.4: The Elf Arhdr Structure
typedef struct {

time_t ar_date; /* time of creation */
char *ar_name; /* archive member name */
gid_t ar_gid; /* creator ’s group */
mode_t ar_mode; /* file creation mode */
char *ar_rawname; /* ’raw ’ member name */
size_t ar_size; /* member size in bytes */
uid_t ar_uid; /* creator ’s user id */

} Elf_Arhdr;

The code then prints out the name and the size of the archive member
using the ar name and ar size fields of the returned Elf Arhdr structure.

5 The call of the elf next function sets up the parent archive descriptor (held
in the variable ar in our example) to return the next archive member on
a subsequent call to function elf begin.
The elf next function will return the value ELF C READ as long as the
traversal of the archive can continue. When called with a descriptor
to the last member of an archive the elf next function will return the
value ELF C NULL. This value will cause the subsequent call to function
elf begin at step 3 to return NULL, thereby terminating the loop.
Figure 7.2 on page 53 shows how the functions elf begin and elf next
work together to step through an ar archive.

56 CHAPTER 7. PROCESSING AR ARCHIVES

6 The elf end function releases the resources held by Elf descriptors.

Save the program in listing 7.3 to a file named prog6.c, and compile and
run it as shown.

Listing 7.5: Compiling and Running prog6

% cc -o prog6 prog6.c -lelf 1

% ./ prog6 /usr/lib/librt.a 2

timer.o 7552
mq.o 8980

aio.o 8212
sigev_thread.o 15528

1 We compile and link the program with libelf.

2 We run the program on an archive and obtain a listing of the archive’s
contents.

Chapter 8

Conclusion

This tutorial covered the following topics:

• We studied the basics of the ELF format. We looked at a few key ELF
data structures, and at their layout inside ELF objects.

• We covered the facilities offered by the libelf library for manipulating
ELF objects.

• We wrote example programs that retrieved and displayed the ELF data
structures present in a few ELF objects.

• We studied how to create new ELF objects using the libelf library.

• We looked at how to read ar archives using libelf.

8.1 Further Reading
8.1.1 On the Web
Peter Seebach’s DeveloperWorks article “An unsung hero: The hardworking
ELF” covers the history and features of the ELF format. Hongjiu Liu’s “ELF:
From The Programmer’s Perspective” describes how to use the features of ELF
with GCC and GNU ld. The paper “Extending Sim286 to the Intel386 Ar-
chitecture with 32-bit processing and Elf Binary input by Michael L. Haungs
and Brian A. Malloy contains a description of the ELF format in the chapter
“Executable and Linking Format (ELF)”.

Neelakanth Nadgir’s tutorial “LibElf and GElf - A Library to Manipulate
ELf Files” is a readable introduction to the ELF(3) and GELF(3) APIs in
SolarisTM.

The Linkers and Libraries Guide from Oracle R© describes the linking and
loading tools present in SolarisTM. Chapter 14 of this book, titled “Object File
Format”, contains a readable introduction to the ELF format.

8.1.2 More Example Programs
The source code for the tools being developed at the ElfToolChain Project at
SourceForge.Net show the use of the ELF(3)/GELF(3) APIs in useful programs.

57

https://web.archive.org/web/20070224140341/http://www-128.ibm.com/developerworks/power/library/pa-spec12/
https://web.archive.org/web/20070224140341/http://www-128.ibm.com/developerworks/power/library/pa-spec12/
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.8698
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.8698
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.2517
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.2517
https://web.archive.org/web/20071217235525/www.cs.ucdavis.edu/~haungs/paper/node10.html
https://web.archive.org/web/20110926220119/http://developers.sun.com/solaris/articles/elf.html
https://web.archive.org/web/20110926220119/http://developers.sun.com/solaris/articles/elf.html
https://docs.oracle.com/cd/E53394_01/html/E54813/index.html
https://sourceforge.net/p/elftoolchain/code/HEAD/tree/trunk/
https://elftoolchain.sourceforge.io/
https://sourceforge.net/

58 CHAPTER 8. CONCLUSION

For readers looking for smaller programs to study, Emmanuel Azencot offers
a website with example programs.

8.1.3 Books
John Levine’s “Linkers and Loaders” is a readable book offering a overview of
the process of linking and loading object files.

8.1.4 Standards
The current specification of the ELF format, the “Tool Interface Standard (TIS)
Executable and Linking Format (ELF) Specification, Version 1.2” is freely avail-
able to be downloaded.

8.2 Getting Further Help
If you have further questions about the use of libelf, please feel free to use
our discussion list: elftoolchain-developers@lists.sourceforge.net.

http://freemanu1.free.fr/elf_examples/index.html
https://linker.iecc.com/
https://refspecs.linuxbase.org/elf/elf.pdf
https://refspecs.linuxbase.org/elf/elf.pdf

Index

ar name, 52, 55
ar size, 55
archive library, 51
ARMAG, 51
ar archive

header, 51
layout, 51
retrieval of, 55

long file names, 52
magic, 51
random access, 53
reading of, 55
sequential access, 55
string table, 52
symbol table, 52, 53

retrieval of, 53

core files, 15

d align, 36
d buf, 36
d off, 36
d size, 36
d type, 36
d version, 36

e ehsize, 18
e entry, 18
e flags, 18
e ident, 16, 23, 46
e machine, 17
e phentsize, 18
e phnum, 18, 19
e phoff, 18, 25, 49
e shentsize, 18
e shnum, 18, 19
e shoff, 18, 33, 49
e shstrndx, 18, 19, 34
e type, 17
EI DATA, 46
ELF, 7

class, 17
retrieval of, 23

class agnostic APIs, 19, 20, 27, 29
creation of, 43
descriptor, 12
dynamically loadable objects, 15
endianness, 17
executables, 15
features, 7
fill character, 49
further reading, 57
history of, 7
in open-source, 7
nested descriptors, 55
relocatable objects, 15
specification, 58
string tables, 38
typical layout, 15
versions, 13
version number, 17

Elf, 12, 13, 19, 23, 46, 48, 50, 53, 55,
56

Elf32 Ehdr, 19
elf32 getehdr, 19
elf32 getshdr, 47
elf32 newehdr, 46
elf32 newphdr, 50
Elf32 Phdr, 29
Elf64 Ehdr, 19
elf64 getehdr, 19
elf64 newphdr, 50
Elf64 Phdr, 29
Elf64 Shdr, 19
Elf Arhdr, 55
Elf Arsym, 53
elf begin, 13, 23, 46, 50, 53, 55
ELF C NULL, 47, 55
ELF C RDWR, 13, 50
ELF C READ, 13, 55
ELF C WRITE, 13, 46, 47, 49
Elf Data, 36, 37, 40, 47, 49

59

60 INDEX

Elf Data
alignment, 36
data pointer, 36
data size, 36
data type, 36
describing application memory, 36
descriptor version, 36
offset in section, 36

elf end, 13, 56
elf errmsg, 13
elf errno, 13
ELF F LAYOUT, 48
elf fill, 49
elf flag, 50
elf flagdata, 47
elf flagelf, 48
elf getarhdr, 55
elf getarsym, 53
elf getdata, 35
elf getident, 23
elf getphdrnum, 19, 23, 29
elf getscn, 35, 40, 49
elf getshdrnum, 19, 23
elf getshdrstrndx, 19, 23, 40
Elf Kind, 13
elf kind, 13
elf ndxscn, 47
elf newdata, 49, 50
elf newphdr, 46
elf newscn, 47, 50
elf next, 53, 55
elf nextscn, 35, 40
elf rand, 53
Elf Scn, 35, 36, 40, 47, 49
Elf Scn

allocation, 35
elf setshstrndx, 47
elf strptr, 38, 40
Elf Type, 36
elf update, 47, 49
elf version, 12
ELFCLASS32, 17
ELFCLASS64, 17
ELFDATA2LSB, 17
ELFDATA2MSB, 17
EM 386, 17
EM PPC, 17, 46
ET DYN, 17
ET REL, 17
EV CURRENT, 13

executable header, 8, 15
allocation, 46
executable architecture, 17
executable type, 17
flags, 18
layout, 16
own size, 18
program entry point, 18
retrieval of, 23
section name string table, 47
updating, 47

extended numbering, 18
need for, 18
program headers, 19
sections, 19
use of, 40

file representation, 8

GELF API, 19, 20
downsides to, 19

GElf Ehdr, 23
gelf getclass, 23
gelf getehdr, 23
gelf getphdr, 30
gelf getshdr, 35, 40
GElf Phdr, 29, 30
getting help

mailing list, 58

libelf
additional examples, 57
API, 7

data structure refresh rules, 49
memory management rules, 49
pointer validity, 49

automatic data conversion, 20
header file elf.h, 12
header file gelf.h, 23
linking with, 13, 23, 30, 40, 48, 56
manual data conversion, 20

linking
books about, 57, 58
definition of, 15

loading, 16, 25

memory representation, 8

object creation, 46
application control of layout, 48
default layout, 48

INDEX 61

fill character, 49
writing to file, 47

object modification, 50
adding new structures, 50
flagging modified data, 50

object representation, 20
automatic translation, 35
file vs memory, 20

p align, 27
p filesz, 27
p flags, 27
p memsz, 27
p offset, 27
p paddr, 27
p type, 26, 29
p vaddr, 27
PF W, 27
PF X, 27
PN XNUM, 19
program header table, 8, 15, 25

entry, 25
entry size, 18
iteration over, 30
layout, 18, 26
retrieval of, 29
self-description, 31

PT INTERP, 26, 31
PT LOAD, 26
PT NOTE, 27
PT PHDR, 26
PT TLS, 31

sections, 15, 16, 33
alignment of, 34
coverage by data descriptors, 36
flags, 34
hash values, 46
header table entry, 40
indices, 35

valid indices, 35
iteration over, 35
names, 34

as offsets, 34
string table, 18, 34, 40

placement in file, 33
retrieval, 35
size of, 34
type, 34
use of, 33

section header table, 8, 16
entry size, 18, 34
layout in file, 18
retrieval of, 35

segments, 25
aligment of, 27
definition of, 25
examples of, 31
example layout, 25
file size of, 27
flags, 27
memory size of, 27
offset in object, 27
type, 26
virtual address of, 27

sh addralign, 34, 49
sh entsize, 34
sh flags, 47
sh info, 19, 34
sh link, 19, 34
sh name, 34, 40
sh offset, 49
sh size, 19, 34, 49
sh type, 34
shared library, 15
SHF ALLOC, 47
SHN HIRESERVE, 35
SHN LORESERVE, 35
SHN UNDEF, 35
SHN XINDEX, 19
SHT HASH, 47
SHT NULL, 35, 40
SHT PROGBITS, 34
SHT STRTAB, 37, 47
SHT SYMTAB, 34
string tables, 46

allocation of, 47
layout, 37
retrieval of strings, 38

	Introduction
	What to Expect From This Tutorial

	Getting Started
	Peering Inside an ELF Object
	ELF Object Kinds
	ELF File Layout
	Extended Numbering
	The Elf32, Elf64 and GElf APIs
	File and Memory Representations
	Example: Reading an ELF Executable Header

	Examining the Program Header Table
	The ELF Program Header Table
	Example: Reading a Program Header Table

	Looking at Sections
	The Section Header Table
	ELF Section Handling With libelf
	ELF String Tables
	Example: Listing Section Names

	Creating New ELF Objects
	Example: Creating an ELF Object
	Controlling ELF Layout
	Fill Characters
	Memory Ownership
	Data Structure Lifetimes
	Modifying Existing ELF Objects

	Processing ar Archives
	The Structure of ar Archives
	Special Archive Members
	Archive Flavors
	Archive Symbol Tables
	Random Archive Access Using elf_rand
	Example: Stepping Through an ar Archive

	Conclusion
	Further Reading
	Getting Further Help

