Classical genetic algorithm suffers heavy pressure of fitness evaluation for time-consuming optimization problems. To address this problem, we present an efficient genetic algorithm by the combination with clustering methods. The high efficiency of the proposed method results from the fitness estimation and the schema discovery of partial individuals in current population and.
Specifically, the clustering method used in this paper is affinity propagation. The numerical experiments demonstrate that the proposed method performs promisingly for well-known benchmark problems in the term of optimization accuracy.
Features
- cluser
- ap
- ga
Follow EGA
Other Useful Business Software
MongoDB Atlas runs apps anywhere
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of EGA!