Classical genetic algorithm suffers heavy pressure of fitness evaluation for time-consuming optimization problems. To address this problem, we present an efficient genetic algorithm by the combination with clustering methods. The high efficiency of the proposed method results from the fitness estimation and the schema discovery of partial individuals in current population and.
Specifically, the clustering method used in this paper is affinity propagation. The numerical experiments demonstrate that the proposed method performs promisingly for well-known benchmark problems in the term of optimization accuracy.

Features

  • cluser
  • ap
  • ga

Project Activity

See All Activity >

Follow EGA

EGA Web Site

Other Useful Business Software
Level Up Your Cyber Defense with External Threat Management Icon
Level Up Your Cyber Defense with External Threat Management

See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
Try for Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of EGA!

Additional Project Details

Operating Systems

BSD, Cygwin, Fink

Languages

Chinese (Simplified), English

Intended Audience

Architects, Engineering, Government

User Interface

Eclipse

Programming Language

Java

Related Categories

Java Genetic Algorithms, Java Artificial Intelligence Software

Registered

2011-12-27