Classical genetic algorithm suffers heavy pressure of fitness evaluation for time-consuming optimization problems. To address this problem, we present an efficient genetic algorithm by the combination with clustering methods. The high efficiency of the proposed method results from the fitness estimation and the schema discovery of partial individuals in current population and.
Specifically, the clustering method used in this paper is affinity propagation. The numerical experiments demonstrate that the proposed method performs promisingly for well-known benchmark problems in the term of optimization accuracy.

Features

  • cluser
  • ap
  • ga

Project Activity

See All Activity >

Follow EGA

EGA Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of EGA!

Additional Project Details

Operating Systems

Fink, Cygwin, BSD

Languages

English, Chinese (Simplified)

Intended Audience

Government, Architects, Engineering

User Interface

Eclipse

Programming Language

Java

Related Categories

Java Genetic Algorithms, Java Artificial Intelligence Software

Registered

2011-12-27