Home / Python_scripts
Name Modified Size InfoDownloads / Week
Parent folder
select_contig_regions.py 2017-10-12 3.6 kB
parse_blast_hits_aves.py 2017-10-12 4.5 kB
parse_blast_hits_genome.py 2017-10-12 2.1 kB
parse_blast_hits_mammals.py 2017-10-12 3.8 kB
parse_db_seqids.py 2017-10-12 753 Bytes
extract_nonannotated_genes.py 2017-10-12 739 Bytes
extract_unassigned_contigs.py 2017-10-12 729 Bytes
extract_unmapped_contigs.py 2017-10-12 980 Bytes
get_gene_symbols.py 2017-10-12 1.5 kB
extract_gene_coordinates.py 2017-10-12 986 Bytes
extract_gene_isoforms.py 2017-10-12 1.5 kB
extract_genome_coordinates.py 2017-10-12 522 Bytes
extract_longest_isoforms.py 2017-10-12 2.4 kB
concatenate_gene_sequences.py 2017-10-12 2.2 kB
convert_tids_into_gids.py 2017-10-12 673 Bytes
create_gene_transcript_map.py 2017-10-12 366 Bytes
create_taxid_map.py 2017-10-12 428 Bytes
assign_contigs_to_genes.py 2017-10-12 3.3 kB
build_consensus_sequences.py 2017-10-12 6.7 kB
build_scaffolds.py 2017-10-12 7.9 kB
assign_unassigned_contigs_to_genes.py 2017-10-12 609 Bytes
Totals: 21 Items   46.4 kB 0
These Python scripts are usable for a dual transcript-discovery approach that improves the delimitation of gene features from RNA-seq data in the chicken model.
http://bio.biologists.org/content/7/1/bio028498
https://www.ncbi.nlm.nih.gov/pubmed/?term=29183907

Full documentation is provided as supplementary information:
http://bio.biologists.org/content/biolopen/suppl/2018/01/17/bio.028498.DC1/BIO028498supp.pdf

Scripts are compatible with Python 2.7.

Supplementary files:
* galGal4_gene_annotation_model.gtf: Gene annotation model in GTF format associated with the galGal4 version of the chicken genome.
* galGal4_artificial_chromosome.fasta: Artificial chromosome in FASTA format containing the unique contig sequences generated from the de novo transcript discovery. Unique contig sequences are separated to each other by 250 bp.
* galGal4_artificial_chromosome.gtf: Gene annotation model in GTF format associated with the artificial chromosome generated from the de novo transcript discovery.

If you use any of these scripts/files, please cite:
Orgeur M., Martens M., Börno S. T., Timmermann B., Duprez D. and Stricker S. (2018). A dual transcript-discovery approach to improve the delimitation of gene features from RNA-seq data in the chicken model. Biology Open 7(1): bio028498. doi: 10.1242/bio.028498 PMID: 29183907.
Source: README.txt, updated 2018-02-01