Demixed Principal Component Analysis (dPCA) is a new data exploration technique. Just like Principal Component Analysis (PCA), dPCA searches for a subspace that captures a high amount of information about a data set. However, often your data points have labels like time, stimulus presented, reward achieved, etc. In contrast to PCA, that completely ignores these labels, dPCA benefits from the labels and tries to find components that capture variance due to only a small subsets of the labels. Using this representation often greatly facilitates the interpretation of the data.
Follow dPCA
Other Useful Business Software
Gen AI apps are built with MongoDB Atlas
MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of dPCA!