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1 Introduction

This document describes and exemplifies the use of DEVS-Scripting5 Black-Box Testing for parallel
DEVS models11 developed in the DEVS-Suite simulator.4 It provides the details for the steps needed
for developing, executing, and debugging. We will show a simple processor model in UML, coding in
Java, simulation in DEVS-Suite, testing with JUnit, debugging with Eclipse, and collect results on code
coverage to evaluate the quality of testing. We will describe details on writing test scripts for atomic
and coupled models that have emergent behavior. Example failure scenarios for debugging (White-Box
Testing) are described to complement Black-Box testing.

Given modular, hierarchical simulation models, they can be evaluated using unit and integration
testing. These tests are complementary to other approaches used for model verification and simulation
validation. A common approach is to develop models that act as input generator and output transducer
using the concept of experimental frame.5,11 Modelers develop experiment cases and use them to design
a collection of tests as an attempt to break a simulation model under test, expose any failures to meet
requirements, but also keep the tests short and very focused. To develop effective and efficient test
scenarios, test cases should cover unique execution simulation paths. The tester must also consider
operational profiles, customer priority, fault proneness, and requirements volatility, to improve testing
efficiency.8

The DEVS-Scripting approach allows defining JUnit tests that can be used in the simple, compound,
and homework Test Frame types. Any atomic and coupled parallel DEVS simulation models developed
in the DEVS-Suite simulator can be tested using user-defined JUnit test cases. The DEVS-Scripting is
used for exemplar are the simple buffer (buffer), a Constant Work-In-Progress (conwip) atomic model,
a Workstation (ws) coupled model, and a few simple processor (proc) models shown in Figure 1. The
corresponding Test Frames for these simulation models are bufferFrame, conwipFrame, wsFrame, and
procHomework. The Workstation (ws) model is an example of testing hierarchical coupled atomic models.
One benefit for DEVS-Scripting is “collective testing” a collection of DEVS-Suite models using the same
JUnit tests and test frames. The JUnit and Test Frames/Fixture for collective testing is supported with
factoryTest and factoryFrame. This collection of simulation models (e.g., buffer and ws) can be tested
using JUnit testing inside Eclipse which also provides Java code debugging for DEVS-Suite simulation
models. A collection of Parallel DEVS models with their corresponding DEVS-Script Test Frame types
included in the DEVS-Suite 6.0.0 simulator is shown in Figure 1.

Figure 1: Parallel DEVS models with their corresponding DEVS-Script Test Frames.

2 A Discrete System Exemplar

The CONWIP (CONstant Work-In-Process) shown in Figure 2 is a kind of supply-chain system. This
example will be used throughout to demonstrate the use of DEVS-Scripting. The CONWIP has a series
of workstations (three shown), and two types of flow. DEVS Models of each component of this system
depicted in Figure 2 will be tested using DEVS-Scripting. This manufacturing system demonstrates the
relationships between factory models. This multiple stage production system is used to demonstrate
DEVS-Scripting. It can be replaced with any number of complex manufacturing models such as parallel
processors, pipeline merging, and logistics. This example is used for posing the following questions and
answering them.

• How to setup and run DEVS-Scripted models for automated testing in JUnit.
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• How to load DEVS-Scripted models for step-lock testing and visualization in DEVS-Suite.

• The use of each method available for test scripts to control the I/O of their test frame models.

• Testing failures in JUnit and DEVS-Suite environment.

• Unit testing atomic and coupled models.

• Integration testing with multiple models.

• Homework testing a collection of models derived from the same requirements.

Buffer Process Buffer Process Buffer Process

CONWIP

Work Station 1 Work Station 2 Work Station 3

Production Flow

Information (Card) FlowCards
(Order)

Completed
Jobs

Incomplete
Jobs

Figure 2: A supply-chain manufacturing system.

For testing, we will want to verify each atomic DEVS component. We will then move to higher levels
of abstraction and test coupled models. Finally, we can run experimentation and testing with the whole
system. A performance test will be conducted at the highest level to determine what level of CONWIP
maximizes throughput without overfilling buffers. This number is validated using mathematical formulas
used by manufacturing engineers.

Notice that the processor model from Figure 1 has multiple implementations. The requirements for
a processor model were posted and the implemented models were obtained by some means of crowd-
sourcing. Crowd-sourcing leverages the intelligence of a community through an open call.9 In education,
there is a similar mechanism. However, the instructor usually possesses an expert knowledge on the
software being requested, and the students are tasked to test their knowledge. In both scenarios, multiple
responses from the crowd may be given. The homework test frame from Figure 1 was used to evaluate
a collection of processor implementations.

2.1 Modeling a CONWIP System

Inside each workstation is an internal buffer that holds a finite number of items. These models and tests
are shown in Figure 1. Buffers are useful for preventing receiving processors from starving and sending
processors from blocking. A starved processor waits for a job to work on and a blocked process waits to
hand-off its completed job. Both starved processors and blocked processors are wasted resources because
neither are working. However, any inventory in buffers harms throughput because no work is done on
orders that wait in a queue.

Each workstation has a pull-oriented control system called a Kanban. When a processor finishes,
it sends a Kanban card to the buffer—triggering it to release the next job. This demand-driven type
of manufacturing minimizes the collective inventory of the workstation. A similar pull-oriented control
system manages the entire production process, the CONWIP. Instead of holding physical items in a
buffer, the CONWIP holds orders in a backlog. This is useful for allowing customers to make changes to
their orders, before they hit the production floor. If this factory produces the same types of products,
say products A, B, and C. We can feed these orders into the CONWIP, allow them to build on the
production floor, and queue the next order of product A when a finished product A is released from the
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last workstation. Likewise, a finished product B generates the next order for product B and a finished
product C triggers the next product C. When modeling a perpetual system like this, it is also useful to
adjust the CONWIP so that production can be dynamically stopped when CONWIP is set to zero.

2.1.1 Workstation Components

Inventory

Buffer

P

Pull
Requests

Figure 3: Buffer System

Process

(1) (2)

Incomplete 
Job & Card

Completed 
Job & Card

Figure 4: Processor System

A processor represents a portion of the workstation where products undergo an essential step within the
manufacturing supply-chain system.2 This can be a machine, a person, a chemical process, a passive
step like time spent on a drying rack—anything that adds value to the product. For modeling, the
processor is a basic delay model10 with requirements shown in Figure 5. An atomic model is designed
and implemented for a successful evaluation of this production system.

Atomic Processor Modeling Requirements

1. The model shall implement the following extended state machine design:

idle busy

entity job := null;
real σ := ∞

¬in e = σ ∧ in? → out! job;
job := in; σ := proc time

e<σ→ σ :=σ−e
in?→ job := in;
σ := proc time

e = σ ∧¬in → out! job;
σ := ∞; job := null;

2. The model shall have an input port—"in"—and output port—"out".

3. The model shall have a constructor with the signature proc(name:String, proc time:double).

4. Messages received and sent from this model shall be of a generic entity type GenCol.entity.

The Process model accepts a job and delays its release. Jobs received while the model is busy are balked.
Internal state transitions occur when e = σ . External state transitions occur when in?. Confluent state
transitions occur when both conditions are met. Arcs are annotated with Guard→U pdate.

Figure 5: A Extended State Machine specification for a workstation.

Consider when a product does not undergo an essential step in manufacturing. This is called waiting.
The product may wait on a shelf for an available processor. It may also wait in transportation between
workstations. In manufacturing engineering, workstations are placed on the production floor in such a
way to minimize transportation time. For modeling the factory from Figure 2, we assume transportation
time is negligible. Therefore, we will model waiting in a buffer.

The buffer will be modeled as a first-in-first-out (FIFO) queue. It will have a finite buffer capacity to
represent the limitation of physical storage. When the buffer receives a pull request, it releases the next
item to the next stage of production. The items that enter the buffer do not change when they reside in
the buffer or when they exit the buffer.
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A workstation for this factory will simply marry a buffer and a processor model as shown in Figure 6.
These two models maintain a Kanban flow. The graphics used in this figure suggest it is only one
workstation from Figure 2, however, the modeling can be used for all of them

Inventory

Buffer

P

Pull Requests (Cards)

Process

P P
Completed Jobs

Incomplete 
Jobs & Cards

Figure 6: Workstation system.

2.1.2 Manufacturing Process

Production
System

B
acklog

CONWIP
Loop

CONWIP

Completed
Orders

Figure 7: CONWIP model.

The CONstant Work-In-Process (CONWIP)
model control system is implemented with FIFO
ordering and releases only enough jobs to main-
tain a constant work-in-process. Note that in real
world manufacturing, other queuing methods are
used to address priority and differing process times
between products.

As shown in Figures 2 and 7, when a job leaves
the last workstation, it notifies the CONWIP sys-
tem that a job is leaving the factory system and
that it should task the factory with manufacturing
the next job. When modeling CONWIP, this fac-
tory design will cause the factory to operate indef-
initely if the simulation were allowed to run con-
tinuously. To prevent experimentation and testing

from becoming trapped in an infinite loop, the CONWIP should be able to adjust the authorized work-
in-process within the production system.

2.2 Model and Test Frame Class Specifications

Not only does software development have design and implementation phases, but testing also needs to
be carefully designed and implemented. This section focuses on the UML design for factory models and
the test scripts that should be written to conduct a satisfactory test on these models. The specification
for the all test scripts are available in Appendix A.

Figures 8 and 9 present UML class specifications for testing the buffer and Workstation models.
Figures 10 presents the core UML classes and relationships that are used to develop DEVS-Script and
JUnit testing. These partial UML class specifications illustrate the design and integration of the DEVS-
Scripting into the core DEVS-Suite simulator.
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Figure 8: UML class specification for the CONWIP test frame.

Figure 9: UML class specification for the Workstation test frame.
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Figure 10: UML class specifications for DEVS-Scripting.

Figure 11: UML class specification for factory frame.

The UML class factoryFrame shown in Figure 11 has a set of methods for setting up and tearing
down tests. When testing models, each model may need to traverse the same path before conduct-
ing other tests. For example, the TestBulkBuffer[1-3]() methods are setup using the setup(...),
setupBulkBuffer(), and shutdown() methods. Without stopping each of the buffer testing, the simula-
tion is allowed to run until it ‘times-out.’ This time-out is assigned by the maxSimSteps parameter in the
@TestScript annotation (e.g., @TestScript(canSequence = false, maxSimSteps = 300) to prevent
infinite loops when testing.
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2.3 Parallel DEVS CONWIP with Test Frame

All models created for this simulation conform to the DEVS formalism. Their test frames are written
using DEVS-Scripting. Both test frame and models will be developed in Java10 and integrated into the
DEVS-Suite framework. Though Figure 13 shows only the CONWIP test fixture, model, and test frame,
the same layout is used for testing all atomic and coupled models from Figure 1.

Figure 12: Atomic models for the supply-
chain factory model.

Figure 13: Simple test frame for CON-
WIP.

3 DEVS Test Scripts and JUnit Testing

Test frames are derived from one of SimpleTestFrame, CompoundTestFrame, and HomeworkTestFrame. The simple
test frame focuses on a single DEVS models. Whether it is atomic or coupled does not matter. The
convenience of this type of test frame is that ports are immediately identified, replicated on the test
frame, and coupled with the model under testing. This allows child types of SimpleTestFrame to focus on
writing test scripts. The CompoundTestFrame removes this capability so that derived test frames add their
own models, establish their own ports on the test frame, and establish couplings for the test frame to
observe the system. The HomeworkTestFrame was added to evaluate multiple candidates and write results
in a comma separated value (CSV) file.

3.1 Creating Test Scripts for Atomic and Coupled Models

A snippet of the CONWIP test frame is shown below. This excerpt establishes an annotation interface.
This allows test scripts to control the initialization of the system that is tested in the script. The
only parameter that controls the CONWIP behavior is its work-in-process (WIP). Test scripts can
be annotated with @ConwipParams(targetWIP = #) where # is replaced by some integer. We also have a
constructor. This constructor checks to see if the @ConwipParams annotation is present on the test script
passed in. It overrides default parameters passed into the constructor for CONWIP. The setTestModel

belongs to the SimpleTestFrame class to inspect ports and establish couplings automatically when the test
fixture is built.

1 @Target ({ METHOD })

2 @Retention(RUNTIME)

3 public @interface ConwipParams

4 {

5 public int targetWIP () default 1;

6 }

7

8 public conwipFrame(String name , Method run_case)

9 {

10 super(name , run_case );

11

12 int target_wip = 1;

13

14 if (run_case != null)

15 {

16 ConwipParams p = run_case. getAnnotation(ConwipParams.class);

17

18 if (p != null)

19 {

20 target_wip = p.targetWIP ();

21 }
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22 }

23

24 devs model = new conwip("conwip", target_wip );

25 setTestModel(model );

26 }

High quality tests attempt to localize bugs in as few lines as possible. That way when tests fail, the
bug is localized within the intersection of their code coverage. Ideally, we would like to test as few states
and state transitions as possible in each test, but also offer maximum coverage across all states and state
transitions when combined. However, the model we are testing is a black box and we can only achieve
confirmation of results when the system under testing produces outputs.5

If coupled models contain a collection of fully tested components, consider what the coupled model
introduces that can be tested. The coupled model specifies its components and establishes external input
couplings (EICs), external output couplings (EOCs), and internal couplings (ICs). A simple coverage
technique is to write tests that localize bugs to as few couplings as possible, but cover all couplings when
combined with other tests.

Consider how mutation testing would influence testing a coupled model. Mutation testing starts
with a collection of tests that all pass. Common programming problems are then injected and tests are
analyzed. If these mutants go unnoticed, the quality of testing may be poor. Recall the workstation
test scripts from Section 3.6, if the coupled model was correct, would an injection of an extra coupling,
deleted coupling, or misdirected coupling cause the model to fail testing?

3.2 Emergent Behavior Testing

The CompoundTestFrame class is derived for better control over test frame ports and couplings between
factory models as shown in Figure 15. The constructor for this frame and the systems under testing are
constructed and couplings are established in the overridden createFixture are given below:

1 public factoryFrame(String name , Method run_case)

2 {

3 super(name , run_case );

4

5 // Add ports for the test frame to interact with other models

6

7 addOutport("set_wip");

8 addOutport("cards");

9 addInport("out");

10 addInport("fail");

11 }

1 @Override

2 public TestFixture createFixture(String name)

3 {

4 TestFixture root = super.createFixture(name );

5

6 int ws_capacity = 5;

7 double [] proc_times = {2.0, 3.0, 2.0};

8

9 if (test_case != null)

10 {

11 factoryParams p = test_case. getAnnotation( factoryParams.class);

12

13 if (p != null)

14 {

15 ws_capacity = p. bufferCapacity ();

16 proc_times = p.procTimes ();

17 }

18 }

19

20 // Add all the models

21

22 ViewableAtomic cw = new conwip("conwip", proc_times.length );

23 ws[] work_stations = new ws[proc_times.length ];

24

25 root.add(cw);

26

27 for (int i = 0; i < proc_times.length; i++)

28 {
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29 work_stations[i] = new ws("ws" + Integer.toString(i + 1),

30 proc_times[i], ws_capacity );

31

32 root.add( work_stations[i]);

33 }

34

35 // Define all couplings

36

37 ws first_ws = work_stations [0];

38 ws last_ws = work_stations[ work_stations.length - 1];

39

40 root.addCoupling(this , "set_wip", cw , "set");

41 root.addCoupling(this , "cards", cw , "in");

42

43 root.addCoupling(cw , "out", first_ws , "in");

44 root.addCoupling(cw , "fail", this , "fail");

45 root.addCoupling(first_ws , "fail", this , "fail");

46

47 for (int i = 1; i < work_stations.length; i++)

48 {

49 root.addCoupling( work_stations[i - 1], "out", work_stations[i], "in");

50 root.addCoupling( work_stations[i], "fail", this , "fail");

51 }

52

53 root.addCoupling(last_ws , "out", this , "out");

54 root.addCoupling(last_ws , "out", cw , "release");

55 root.addCoupling(last_ws , "out", cw , "in");

56

57 return root;

58 }

This fixture contains the collection of components we see in Figure 15. The emergent behavior for
this test frame is discussed in Section 3.6.1. The construction of models were deferred to this method
because the CompoundTestFrame does not track the models nor the couplings it tests. The root model is
obtained by chaining up to the super.createFixture() implementation. This creates an empty coupled
model with a single output port and a coupling between "internal-out" port on the test frame and the
"out" port on the test fixture. This coupling is convenient for DEVS-Suite users because it shows message
content in a animated tooltip that show a pass or fail.

3.3 Testing Multiple Models

The HomeworkTestFrame allows a collection of similar models to undergo the same tests. This capability is
enabled by writing a main routine in the derived class:

1 public static void main(String [] args)

2 {

3 try

4 {

5 runTestCases(procHomework.class , "results.csv");

6 }

7 catch ( FileNotFoundException e)

8 {

9 // Cannot generate output.

10

11 e. printStackTrace ();

12 }

13 }

When this java file is run as an executable a file named at "results.csv" is generated in the
project’s root directory. This file can be opened and its content examined. Each student implementation
is annotated with @Student (see Figure 14. This annotation may be on an internal static class, or it may be
on a public static member of type Class<? extends devs>. Multiple tests contained in the procHomework
can be executed as JUnit testing and thus as part of Regression testing. This kind of model are not
visualized with animation in the DEVS-Suite simulator’s SimView.
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Figure 14: Collective testing for multiple simulation model designs and implementations.

3.4 JUnit Testing

This test framework employs JUnit testing which is commonly used for automated regression testing. It
can also be observed in DEVS-Suite for visualization, and plotting of input, output, and state trajectories.
Loading test frames is discussed in Appendix-B. A separate file is required to conduct JUnit testing.
This file can be very small thanks to the capability introduced in JUnit 5, the @TestFactory. This file
does not need to change as new test scripts are added, modified, or removed from the conwipFrame class.
The getTestCases method reads the specified class for all @TestScript methods and generates a JUnit test
to run each. An excerpt from Models.Component.TestFixture.conwipTests is shown below:

1 class conwipTests

2 {

3 @TestFactory

4 @DisplayName("Test Case Generator")

5 Stream <DynamicTest > getTestCases ()

6 {

7 return TestFrame.getTestCases(conwipFrame.class , false );

8 }

9 }

3.5 Processor Atomic Model Test Script

A few test scripts are selected and used for demonstration. The processor model began with requirements
from Figure 5. All test scripts are available inside the Models.Component.TestFixture directory. Test
cases were developed to cover each arc in the extended state machine in Figure 5. The first arc is for
initialization. The test below assumes nothing is generated from a newly constructed processor.

1 @TestScript

2 public void TestPassivated () throws InterruptedException

3 {

4 entity job_out;

5 job_out = WaitUntilOutput (100.0 * DELAY , "out", false);

6

7 assertNull(job_out );

8 }

The WaitUntilOutput method is described in Section A.3. Note that We cannot wait infinite time to
pass the test. A test only passes when the test script method exits normally. By waiting an infinite
amount of simulation time, the simulator will believe the test frame has no more events. If the processor
model also passivates, the test script will never exit and the test will remain in limbo. Therefore, the
test script should wait for 100.0 * DELAY time. The assertNull verifies this output and allows this test to
exit the script normally.

Our next test focuses on the normal behavior of a processor. It starts from the "idle" phase, moves
into the "busy" phase for DELAY time, and returns back to the "idle" phase. Because we are testing a black
box, we must wait for outputs. The first transition from "idle" to "busy" is an external state transition.
The second transition back to "idle" is an internal state transition that generates an output. Therefore,
the following test focuses on two arcs:

1 @TestScript

2 public void TestNormal () throws InterruptedException
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3 {

4 entity job_in = new entity("job");

5 entity job_out;

6

7 // Test the normal behavior

8

9 Inject("in", job_in );

10

11 job_out = WaitForOutputAt(DELAY , "out", false , false);

12

13 assertEquals(job_in , job_out );

14 }

The Inject method from Section A.10 feeds the processor an input. For this test, we know exactly when
the processor finishes. We capture the output from the processor using WaitForOutputAt from Section A.9.
We also test that the processor did not modify the job using asserEquals.

The requirements specifically state that when a job is given to a processor simultaneous with the
completion of its current job, the processor accepts the new job and remains in the "busy" phase. We
test this behavior below:

1 @TestScript

2 public void TestConfluence () throws InterruptedException

3 {

4 entity job_in1 = new entity("job1");

5 entity job_in2 = new entity("job2");

6 entity job_out;

7

8 Inject("in", job_in1 );

9

10 WaitAndInject(DELAY , "in", job_in2 , false);

11

12 job_out = GetOutput("out", false );

13

14 assertEquals(job_in1 , job_out );

15 job_out = WaitForOutputAt(DELAY , "out", false , false);

16

17 assertEquals(job_in2 , job_out );

18 }

Here we inject the first job—the same way we did in TestNormal. The method WaitAndInject is detailed
in Section A.1. It was specifically designed to handle confluence. If these methods were separated into
Wait and Inject, the test frame would receive the output at the end of Wait, the processor would return
to "idle", and this test would result in two cycles of TestNormal. Therefore, WaitAndInject was designed to
operate in a single cycle. We then continue the test and ensure the second job is returned as expected.
We also consider interrupting the behavior a busy processor. The requirements state that any received
jobs are balked. The following script tests this behavior:

1 @TestScript

2 public void TestBalked () throws InterruptedException

3 {

4 entity job_in = new entity("job");

5 entity job_out;

6

7 // Test the balking behavior:

8 // - add jobs at t=0 and t=DELAY -.1

9 // - receive job at t= proc_time that matches the first job

10 // - wait some time to make sure job -two is lost

11

12 Inject("in", job_in );

13 Wait(DELAY - 0.1, false);

14

15 Inject("in", new entity("job -two"));

16

17 job_out = WaitForOutputAround (0.1, 1.e-10, "out", false , false);

18

19 assertEquals(job_in , job_out );

20 Wait (100.0 * DELAY , false);

21 }

We interrupt the processor at DELAY - 0.1 and wait for the processor to finish 0.1 after that. In floating
point arithmetic, operations are often inexact. Therefore, it would be näıve to believe the total time is
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precisely DELAY. We may or may not succeed using WaitForOutputAt. The WaitForOutputAround detailed in
Section A.8 was designed for this type of error. Notice the epsilon neighborhood is very small since we
are conducting one addition operation and the both numbers have relatively small base two exponents.

3.6 Workstation Coupled Model Test Script

The workstation is unique because it is a coupled model. A coupled model creates a hierarchy of
components. Its design is limited to specifying the models it contains and all internal and external
couplings. If the models it contains are verified, one might conclude there is nothing left to test at the
coupled level. However, the following are a list of common issues that occur in coding coupled models:
missing coupling, coupling to the wrong port, extraneous coupling, or invalid coupling. Most of these
issues are resolved by adding, removing, or changing the afflicted line of code. An invalid coupling
violates basic rules of DEVS specification and can be automatically detected. For instance, input ports
cannot send messages, nor output ports receive them. External input couplings (EIC) couple the input
for the container model with an input of a child model. Likewise an external output coupling (EOC)
couples their outputs. An internal coupling (IC) directs messages from an output port from one child
model to an input port of another.11 DEVS-Suite includes a free test for checking invalid couplings when
used in a test frame.

Ideally, we want to test as few couplings as possible and write as few tests as possible but aggregate
to every coupling specified in the coupled DEVS. Once again the struggle of black-box testing is present.
We have no access to internal couplings. There are five couplings contained in the coupled DEVS
workstation—one EICs, two EOCs, and two ICs. Given the buffer has a maximum capacity of one, the
following test covers four of these couplings:

1 @TestScript(canSequence = true)

2 public void TestNormal () throws InterruptedException

3 {

4 entity job1 = new entity("job1");

5 entity job2 = new entity("job2");

6 entity job_out;

7

8 // The capacity for the buffer is 1, but the first job should immediately

9 // begin processing .

10

11 Inject("in", job1 );

12 Inject("in", job2 );

13

14 job_out = WaitForOutputAt(DEFAULT_PROC_TIME , "out", false , false);

15 assertEquals(job1 , job_out );

16

17 job_out = WaitForOutputAt(DEFAULT_PROC_TIME , "out", false , false);

18 assertEquals(job2 , job_out );

19 }

A failure at the first WaitForOutputAt indicates there is an issue amongst three couplings: EIC between
workstation and buffer, IC from buffer to processor, and EOC between processor and workstation. The
second WaitForOutputAt verifies one additional coupling, the release from processor to buffer. Without this
coupling, the second job stay in the buffer.

The remaining EOC between the buffer and workstation needs to be tested. Recall this buffer has a
maximum capacity of one. The following test is setup to overwhelm the buffer with three jobs, causing
it to balk the job across the fail port:

1 @TestScript(canSequence = true)

2 public void TestBalked () throws InterruptedException

3 {

4 message m = new message ();

5

6 m.add(makeContent("in", new entity("job")));

7 m.add(makeContent("in", new entity("job")));

8 m.add(makeContent("in", new entity("job")));

9

10 // 1 job should immediately begin processing , 1 should queue in buffer ,

11 // and 1 should balked out of the workstation .

12

13 Inject(m);

14

15 entity e = ReadOutput("fail", false);
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16 assertEquals(e.getName (), "job");

17

18 WaitForOutputAt(DEFAULT_PROC_TIME , "out", false , false);

19 WaitForOutputAt(DEFAULT_PROC_TIME , "out", false , false);

20

21 // Nothing else should leave the workstation

22

23 Wait( DEFAULT_PROC_TIME * 5, false);

24 }

3.6.1 Emergent Behavior Testing from a Factory

This setup shows a test frame used to explore different manufacturing parameters. It only releases its next
job when the multi-processor finishes a job. The multi-processor model represents the manufacturing
process(es) involved to complete a job. It may contain complex a system of pipelines, parallel processors,
servers, buffers, and so on. Figure 15 shows the test frame builds a fixture around it and all of the factory
models. The factory is not a coupled model. The purpose of this level of testing is to test emergent
behaviors and build confidence with the underlying models.

Figure 15: Test frame the supply-chain factory model.

A manufacturing engineer can look at our setup and determine when and where our production
system will fail. A behavior that emerges that is not present when observing a single processor is the
concept of bottleneck. The processing times for three workstations in series is {2, 3, 2}. We can see the
bottleneck may be the second workstation, as it takes the longest, but now consider how we test this
bottleneck:

1 @TestScript(canSequence = false , maxSimSteps = 30000)

2 @factoryParams( bufferCapacity = 5, procTimes = {2.0, 3.0, 2.0})

3 public void TestOverCapacity () throws InterruptedException

4 {

5 message m = new message ();

6

7 // Send six item (5 to fill W/S #1 buffer , 1 of W/S #1 to work on).

8

9 m.add(makeContent("set_wip", new intEnt (9)));

10 m.add(makeContent("cards", new entity("item")));

11 m.add(makeContent("cards", new entity("item")));

12 m.add(makeContent("cards", new entity("item")));
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13 m.add(makeContent("cards", new entity("item")));

14 m.add(makeContent("cards", new entity("item")));

15 m.add(makeContent("cards", new entity("item")));

16 Inject(m);

17

18 // Send seventh and eight item when W/S #1 completes each.

19

20 m = new message ();

21 m.add(makeContent("cards", new entity("item")));

22 WaitAndInject (2.0, m, false);

23 WaitAndInject (2.0, m, false);

24

25 // We can pack more into this factory , but steady state should

26 // fail successfully with eight.

27

28 entity e = WaitUntilOutput (100.0 , "fail", true);

29 assertNotNull(e);

30

31 Inject("set_wip", new intEnt (0));

32 }

We have carefully set up the factory to sufficiently fill some buffers. We allow time to advance and
move inventory amongst the buffers in other workstations. We suspect that the second workstation is
a bottle neck. The third workstation does not have to wait as long as its buffer has inventory, but
the second workstation can only add inventory every three time units while the third workstation can
produce an output every two time units. This means in steady state, the third workstation will not have
any inventory in its buffer and produce an output every three time units. This causes same thing to
occur in the first workstation. Therefore, all buffered inventory will be packed in the second workstation.
With a CONWIP of eight in steady state, we can expect this production system to fail.

Emergent behaviors are high level concepts that cannot be proven at a smaller scale. By testing them
in this framework, clients can build confidence that your models are adequately modeled.

3.7 Regression Testing

With any software project, regression testing offers confidence that changes in one component does not
break other components. As unit tests are created, they are kept in a manual or automatic regression
test plan. Eclipse allows users to launch all automated tests within a project by right-clicking the project
in the Package Explorer and clicking “Run As→ JUnit Test” as shown in Figure 16. It is usually part of
the software release pipeline to perform either selective or full regression tests (manual and automatic)
for releasing a new version of software.

Figure 16: Launch Regression Testing.

Click on the JUnit tab shown in Figure 17 to see failed tests. We can see that all tests related to the
production system example have passed. As components are added to the project, or changes are made
to their scope and detail, faults can be introduced that cause seemingly unrelated components to fail. For
example, we may add a separate output to the processor for capturing balked inputs, model processing
time differently based on the job, or transform the output of a processed job. All of these changes can
potentially impact the work station coupled model, the overall factory, and the tests administered to
these models.
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Figure 17: Regression Testing Results.

Coverage is often mentioned as a metric for the quality of testing. Starting from Figure 16, if we re-
run the regression test from the “Coverage As” menu, we can check for statement and branch coverage
in the implemented models. If the coverage is incomplete, this may be an indication that test case
engineering did not account for all of the inherent complexity needed to implement the models being
tested. Additional test cases should be engineered to achieve better coverage. The output for coverage
is shown in Figure 18. By double-clicking a file or function, we can see coverage in-lined with the code.

Figure 18: Coverage from Regression Testing.

4 White-Box Debugging using JUnit Testing

Programmers have plenty of options for debugging. Some issues can be diagnosed as soon as an exception
is thrown. Some issues are better diagnosed before the assertion is thrown through the use of breakpoints.
Debugging the scripted test frame has a unique challenge because it is multi-threaded. To add a Java
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exception breakpoint, change to the debug perspective and click the highlighted button from the toolbar
shown in Figure 19. The dialog box shown in Figure 20 will appear that lets you type in the exact error
that was encountered:

Figure 19: Debug perspective in Eclipse/Java.

Figure 20: Exception breakpoint menu.

Assertion errors are captured by the test frame and therefore do not make it back to the debugger.
Therefore breakpoints must be used to diagnose any failures. Three scenarios are demonstrated in this
section.

Java only pauses the thread that encounters a breakpoint. To effectively debug between two commu-
nicating threads, the whole application may need to be paused as shown in Figure 21.
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Figure 21: Breakpoint suspension with thread execution traces.

4.1 Failure Scenario 1 – CONWIP Atomic Model

Suppose the failure shown in Figure 22 occurred:

Figure 22: Pass and fail tests with their corresponding Java code.

We can see that several tests have failed. We begin by choosing a test we know to be rather simple
and covers very little code. This is a common technique to help isolate issues. We click on the row with
this failed test. The assertion is shown in the bottom-left pane and is apparently thrown many levels
deep in the test frame API. We are interested in the level that contains our test script as shown with
the red arrow. By double-clicking this row, the test script is shown in the right pane.

At this point we have injected several messages into the CONWIP model and making an assertion
about its output. The problem may exist on the receiving "in" port, the "release" port, or the generated
output on "out". This is shown by the three yellow arrows. To begin, let us trace this issue as it enters
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the CONWIP model. Set a breakpoint on the deltext() method shown in Figure 23 and re-run only this
test.

Figure 23: Breakpoint in the CONWIP (conwipFrame.java) test frame.

As we step through the messages received on "in", the model appears to behave appropriately. Now
observe the message on "release", we appear to fail to meet all if conditions. The failure in atomic DEVS
model is shown in Figure 24. After removing the extra letter, the CONWIP passes all tests.
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Figure 24: Error in the CONWIP (conwip.java) atomic model.

4.2 Failure Scenario 2 – Processor Atomic Model

Figure 25: Failed Balk test in the processor (proc.java) atomic model.
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Consider what test might fail the balking test, but not the others. Balking interrupts the busy processor
model while other tests do not. An idle processor accepts the input and sets its phase and sigma. Balking
ignores the input and advances the model in time only. Consider the execution path that a balked item
would have. We apparently fail to advance time because we are missing a call to Continue(e);. This
caused the first job to reset processing and thus, it was emitted late. After correcting this issue, all tests
passed. Figure 25 depicts the tests, failure traces, and the code for debugging of the processor model.

4.3 Failure Scenario 3 – Workstation Coupled Model

This failure was encountered in the structural design of the workstation model shown in Figures 26

Figure 26: Failed Structured test in the workstation (ws.java)

.

First click the “Structured Design” test and observe the failure trace in the bottom-left pane. The
message associated with this error (shown by the two red arrows) describes a bad coupling from the
buffer to the workstation along their "in" ports. This is clearly an invalid coupling because it does
not meet the definition of an external input coupling. The issue was that the source and destination
models were reversed in the code shown above. To resolve this issue, the highlighted line should read
addCoupling(this, "in", b, "in");

Appendices

A DEVS-Scripting API

Model-based testing techniques are used to generate test scripts. Consider the requirements model from
Figure 5. Each arc represents an extended state transition and each node represents an extended state.
To achieve coverage, test scripts are written to visit each arc and node.7 Each test should focus on as
few visits as possible to avoid eager testing. Eager tests attempt to test large areas of code and thus a
failure will not be well isolated and any remaining code in the test script will not be executed.3 However,
the models that we test are considered black boxes. The only way to test proper state transitions
is by manipulating the inputs of the model to guide state transitions and analyzing the outputs of the
model. Test scripts in DEVS-Suite are written using the @TestScript annotation and using the scripting
methods discussed below:

The methods discussed in this section are robust to be used with static-structure parallel DEVS
models.
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A.1 WaitAndInject

Usage

WaitAndInject(delay, bag, ignore)

WaitAndInject(delay, port, value, ignore)

Arguments

delay:double amount of time to wait before injecting a message bag.
ignore:boolean whether to ignore messages received by the test frame.
port:String the port the system should receive the message on.
value:entity the value the system should receive on the specified port.
bag:message the message to inject into the system.

Description: A scripting method for injecting a message into the system after a delay.
This method is useful for confluent testing as separate calls to Wait() and Inject() may be
problematic. If a message is received at the end of Wait(), it will be lost on the Inject()

operation. WaitAndInject() performs both in a single cycle. If ignore is set to false, and a
message is received by the test frame, an error will be thrown. If true, all messages received
by the test frame during this time are ignored.

A convenience wrapper for WaitAndInject() is available for injecting a single port/value pair.

A.2 CollectOutputs

Usage

CollectOutputs(delay)

Arguments

delay:double the amount of time to collect.
Returns a Trajectory[] all trajectories received within the specified time.

Description: This scripting method tells the test frame to collect every Trajectory it cap-
tures within the specified amount of time. Each element of the returned array is paired with
the elapsed simulation time, t, at which it was received, 0 ≤ t ≤ delay. Messages are also
returned in the same order that they were received by the test frame. This method is useful
for testing an aggregation of information. In other words, for tests that are not failing until
all information from the system has been made available. An example of this may be to
assert the number of messages returned by the system under testing.

A.3 WaitUntilOutput

Usage

WaitUntilOutput(e max)

WaitUntilOutput(e max, port name, allow others)

WaitUntilOutput(e max, port set, allow others)

Arguments
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e max:double the maximum amount of time to wait (greater than zero).
port set:String[] a set of ports the frame should filter on.
port name:String a port the system should receive the message on.
allow others:boolean whether to allow other message content with ports not

specified.
Returns a entity a value encountered on port name, or null.
Returns a Trajectory a message/elapsed time pair, or null.

Description: Causes the test frame to wait until either the specified time has elapsed or
the test frame receives an input. If an output from the system is received by the test frame,
time advances to that point and returns the message received paired with the elapsed time.
If a port name is given, only one value on that port is returned. If a port set is given, only
the ports specified in port set are returned. Otherwise if only the e max parameter is given,
a Trajectory containing all port/value pairs is returned paired with the elapsed time.

If no message was received in the specified time, a null is returned and the model will have
advanced e max time.

The frame cannot be told to wait 0.0 time because it will immediately reach deltint(), mean-
while the black-box may take multiple simulation steps. If you believe that WaitUntilOutput(0.0)

in a loop would fix it, it would, but if the system under testing passivates, this infinite loop
prevents the test from failing. If you expect an output at 0.0 time, use ReadOutput() instead.

A.4 Wait

Usage

Wait(e,ignore)

Arguments

e:double the amount of simulation time to advance.
ignore:boolean whether to ignore messages received by the test frame.

Description: This method will block for the specified amount of simulation time—allowing
the system under testing to execute simulation events. If ignore is set to false, and a message
is received by the test frame, an error will be thrown. If true, all messages received by the
test frame are ignored.

A.5 GetOutput

Usage

GetOutput()

GetOutput(port name, allow others)

GetOutput(port set, allow others)

Arguments

port set:String[] a set of ports the frame should filter on.
port name:String a port the system should receive the message on.
allow others:boolean whether to allow other message content with ports not

specified.
Returns a entity a value encountered for the specified port name.
Returns a message multiple port/value pairs, or null.
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Description: This method retrieves the current output from the system under testing. It
is important to note this function does not advance time, may be called any number of
times without changing the state of any models, and never relinquishes control back to the
simulation.

Without parameters, this method retrieves all port/value pairs passed into the current execu-
tion of deltcon() or deltext() for the test frame. If called while nested inside deltint(),
the returned value is null. Calling this method is not typically needed because methods like
ReadOutput(), WaitUntilOutput(), and so on, return messages. For testing some confluent
behaviors, we may want the output received simultaneous to the end of a WaitAndInject()

call. Making a call to these other methods would clear out the current message and hand
control back to the simulation.

If port set is specified, the current output is filtered to the specified ports. By setting
allow others to false, we can forbid content received on any other port. At the highest level,
if port name is specified, the current output is decomposed and the value found at that port
is returned. This also constrains the size of the message bag to one if allow others is false.

A.6 ReadOutput

Usage

ReadOutput()

ReadOutput(port name, allow others)

ReadOutput(port set, allow others)

Arguments

port set:String[] a set of ports the frame should filter on.
port name:String a port the system should receive the message on.
allow others:boolean whether to allow other message content with ports not

specified.
Returns a entity a value encountered for the specified port name.
Returns a message multiple port/value pairs.

Description: This method clears out the current message and waits for the next immedi-
ate message to be received by the test frame. The test frame accomplishes this behavior
having a non-zero sigma, but will throw an assertion error if any simulation time has passed.
Therefore, we cannot permit this message to be absent. This limitation is a consequence of
super-dense modeling.

If a port name or port set is specified, the test frame may receive multiple messages, but throw
out messages without any of the specified port(s). Without any parameters, this method
retrieves only the next immediate message, regardless of port/value content.

The behavior of allow others is the same as GetOutput().

A.7 WaitForOutputBetween

Usage

WaitForOutputBetween(e min, e max, ignore early)

WaitForOutputBetween(e min, e max, port name,

ignore early, allow others)

WaitForOutputBetween(e min, e max, port set,

ignore early, allow others)
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Arguments

e min:double the lower bound time (inclusive) the test frame should wait
for the message.

e max:double the upper bound time (inclusive) the test frame should
wait for the message.

port set:String[] a set of ports the frame should filter on.
port name:String a port the system should receive the message on.
ignore early:boolean whether to ignore messages received before e min by the

test frame.
allow others:boolean whether to allow other message content with ports not

specified.
Returns a entity a value encountered for the specified port name, or null

Returns a Trajectory multiple port/value pairs and elapsed time, or null.

Description: This method offers a lenient range to wait for messages. If no messages are
received, the model will have waited e max time and a null is returned. The time range is
always inclusive, but if exclusivity is desired, the test developer can write assertions on the
returned Trajectory.

A.8 WaitForOutputAround

Usage

WaitForOutputAround(e, eps, ignore early)

WaitForOutputAround(e, eps, port name, ignore early,

allow others)

WaitForOutputAround(e, eps, port set, ignore early,

allow others)

Arguments

e:double the approximate time the test frame should expect the
message.

eps:double the span of time (inclusive) the test frame should expect
the message.

port set:String[] a set of ports the frame should filter on.
port name:String a port the system should receive the message on.
ignore early:boolean whether to ignore messages received before e min by the

test frame.
allow others:boolean whether to allow other message content with ports not

specified.
Returns a entity a value encountered for the specified port name, or null.
Returns a Trajectory multiple port/value pairs and elapsed time, or null.

Description: This method wraps around WaitForOutputBetween() with e min=e-0.5*eps and
e max=e+0.5*eps. All other behaviors are the same. This method is especially useful for
dealing with floating point inaccuracies. Depending on the computational platform, floating
point operations are often inexact.

26



A.9 WaitForOutputAt

Usage

WaitForOutputAt(e, ignore early)

WaitForOutputAt(e, port name, ignore early,

allow others)

WaitForOutputAt(e, port set, ignore early,

allow others)

Arguments

e:double the exact time the test frame should expect the message.
port set:String[] a set of ports the frame should filter on.
port name:String a port the system should receive the message on.
ignore early:boolean whether to ignore messages received before e min by the

test frame.
allow others:boolean whether to allow other message content with ports not

specified.
Returns a entity a value encountered for the specified port name.
Returns a message multiple port/value pairs.

Description: If the exact time of the expected message is known, this function is used.
Similar to ReadOutput(), an output must be received. This is due to the limitations of super-
dense behaviors.

A.10 Inject

Usage

Inject(port, value)

Inject(bag)

Arguments

port:String the port the system should receive the message on.
value:entity the value the system should receive on the specified port.
bag:message bag the message to inject into the system.

Description: This method immediately injects the specified message (or single port/value
pair) into the system under testing. This method simply wraps InjectAndWait() with a delay

of zero.

A.11 InjectAndRead

Usage

InjectAndRead(bag)

Arguments

bag:message the message to inject into the system.
Returns a message the message from the system.

Description: This method marries an Inject(bag) and ReadOutput() into a single call. There-
fore, an output from the system must generate an immediate response based on the message
this method injects into the system.
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B DEVS-Suite Simulator Configuration

In order to use DEVS-Scripting, the DEVS-Suite simulator1 needs to be configured using the instruction
provided in its User-Guide.6 Locate ‘SimLauncher.java’ in the package explorer. It is found under the
path ‘DEVS-Suite/src/controller/SimLauncher.java’ Right-click this file. Under ‘Run As,’ click ‘Java
Application.’ This sequence is shown below. Once the simulator is launched, Detailed descriptions for
the simulator installation in Eclipse, configuration, control dashboard, visualization (animation, run-
time trajectory plotting, and database repository), and example models are available in the DEVS-Suite
User-Guide document (see Figures 27 and 28.

Figure 27: Component & Cellular
Automata start launch window

Figure 28: Paths and Model pack-
age names configurations with Pack-
age selection

Choose and click on the Component Models, after simulator is launched. Choose the Component

Models. Then, the Model Configuration dialog box is displayed. Click Configure File System to
direct DEVS-Suite to the correct model and source directories. The choices for the Package and Model
using the model package directories entered in the Model package names (one per line) as shown
below and Figure 28. Then, Click the Ok button to confirm the file system changes.

• Path to packages of model classes: target/classes

• Path to packages of model source files: Models

• Model package names: Component.TestFixture
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Figure 29: Model selection

Figure 30: Test frame selection

The model and its test frame is chosen using the dropdown lists shown in Figures 29 and 30 in the
order given. Then, click Next> to continue (see the DEVS-Suite User-Guide for additional detail). Some
models cannot be loaded. Test frames by themselves cannot demonstrate testing because the frame is
responsible for creating a fixture and nesting inside it. Also, some abstract models are shown, but cannot
be instantiated because they some operations (e.g., external event state transition) are not defined or
implemented. The model loader recognizes test frames and recognizes that its test fixture should be
loaded, as it makes little sense to load a test frame without the system it is intended to test. This
redirection is shown by the [Test Fixture] in Figure 29.

The model loader also recognizes each test script. These are offered for users to examine the inner
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workings of a single test. After it is loaded, you will see its test fixture and its components, including
the test frame, as shown in Figure 13. The simulation model can be stepped through, run, and tracking
input, output, and state trajectories just as you would in normal DEVS-Suite use.
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