| Name | Modified | Size | Downloads / Week |
|---|---|---|---|
| Parent folder | |||
| desrDL-1.6.1.tgz | 2014-11-04 | 3.1 MB | |
| desrDL-1.6.0.tgz | 2014-11-02 | 32.2 MB | |
| desr-1.4.3.tgz | 2014-03-18 | 15.4 MB | |
| desr-1.4.2.tgz | 2013-11-04 | 3.8 MB | |
| desr-1.3.2.tgz | 2013-02-11 | 3.6 MB | |
| desr-1.3.1.tgz | 2013-01-18 | 3.6 MB | |
| desr-1.2.6.tgz | 2012-04-26 | 3.6 MB | |
| desr-1.2.5c.tgz | 2012-04-05 | 3.6 MB | |
| desr-1.2.5b.tgz | 2012-03-14 | 3.6 MB | |
| desr-1.2.5a.tgz | 2012-02-23 | 3.9 MB | |
| desr-1.2.5.tgz | 2012-02-11 | 3.9 MB | |
| desr-1.2.3a.tgz | 2010-09-19 | 3.4 MB | |
| desr-1.2.2.tgz | 2010-05-15 | 3.4 MB | |
| desr-1.2.1.tgz | 2010-01-26 | 3.3 MB | |
| desr-1.1.2.tgz | 2009-09-01 | 2.4 MB | |
| desr-1.1.1.tgz | 2009-08-28 | 2.4 MB | |
| desr-1.1.0.tgz | 2009-08-28 | 2.4 MB | |
| desr-1.0.2.tgz | 2009-07-09 | 2.4 MB | |
| desr-1.0.1.tgz | 2008-11-25 | 3.0 MB | |
| desr-1.0.0.tgz | 2008-05-26 | 2.9 MB | |
| desr-0.9a.tgz | 2008-01-23 | 1.4 MB | |
| desr-0.9.gz | 2007-08-11 | 1.8 MB | |
| desr-0.9.tgz | 2007-08-10 | 1.4 MB | |
| Totals: 23 Items | 110.2 MB | 0 | |
DeSR (c) Giuseppe Attardi 2005-2014
DeSR is a statistical dependency parser for natural languages.
DeSR can be trained from annotated corpora like those supplied in the
CoNLL 2006, 2007, 2008 and 2009 shared tasks.
0. WORD EMBEDDINGS
This is a prototype version using a Deep Learning architecture.
It exploits word embeddings, as provided by either:
- Polyglot: https://sites.google.com/site/rmyeid/projects/polyglot
- SENNA:
1. INSTALLATION
This version requires the Eigen 3 algebra library (http://eigen.tuxfamily.org/).
Issue configure from this directory:
> ./configure
then build the parser with:
> make
This will produce the following program:
src/desr
2. CLASSIFIERS
This version only provides a classifier based on:
Multi Layer Perceptron (with help from Joseph Turian)
The classifier can be tuned by settings these parameters in the configuration
file:
# Number of hidden variables
DlHidden 300
# Max number of iterations
DlIterations 30
# Terminate if no updates occurr for these many iterations
DlVainIterations 3
# Learning rate
DlLearningRate 0.01
# Activation function: softsign, tanh, sigmoid, cube
DlActivationFunction softsign
Other classifiers are included instead in the full version of DeSR:
Maximum Entropy
SVM (using libSVM code from http://www.csie.ntu.edu.tw/~cjlin/libsvm)
Averaged Perceptron (by Massimilano Ciaramita)
Passive Aggressive Perceptron
3. TRAINING and PARSING
Training the parser requires an annotated corpus in the CoNLL-X tsv
(tab separated) format.
The word embeddings must be converted to DeSR format using either:
- script/polyglot2desr.py
- script/senna2desr.py
When using SENNA embeddings, which uses lowercase words, one should add
FormReplace .+ \L
in the configuration file.
The feature templates to use and other parameters for tuning the model
are supplied in a configuration file, which defaults to:
desr.conf
A visual tool for creating annotated corpora is available at:
http://medialab.di.unipi.it/Project/QA/Parser/DgAnnotator
5. INFORMATION
The home page for the project is:
https://sites.google.com/site/desrparser/
The code is available on Sourceforge at:
http://sourceforge.net/projects/desr
Enjoy
Giuseppe Attardi
attardi@di.unipi.it