Deep Reinforcement Learning TensorFlow is a comprehensive TensorFlow codebase that implements several foundational deep reinforcement learning algorithms for educational and experimental use. The repository focuses on clarity and modularity so users can study how different RL approaches are built and compare their behavior across environments. It includes implementations of well-known algorithms such as Deep Q-Networks (DQN), policy gradients, and related variants, demonstrating how neural networks can be trained through interaction with simulated environments. The project is commonly used by learners who want to move beyond theory and understand the practical mechanics of training RL agents. Visualization utilities and training scripts help users monitor learning progress and debug experiments.
Features
- Multiple deep reinforcement learning algorithms
- TensorFlow-based implementation
- Training and evaluation scripts
- Environment interaction workflows
- Visualization of learning progress
- Modular experimental code structure