We propose the use of Differential Evolution algorithm for the weight adjustment of base classifiers used in weighted voting heterogeneous ensemble of classifier. Average Matthews Correlation Coefficient (MCC) score, calculated over 10-fold cross-validation, has been used as the measure of quality of an ensemble. DE/rand/1/bin algorithm has been utilised to maximize the average MCC score calculated using 10-fold cross-validation on training dataset. The voting weights of base classifiers are optimized for the heterogeneous ensemble of classifiers aiming to attain better generalization performances on testing datasets.

Project Samples

Project Activity

See All Activity >

Categories

Machine Learning

License

Creative Commons Attribution Non-Commercial License V2.0

Follow DE-HEoC

DE-HEoC Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of DE-HEoC!

Additional Project Details

Intended Audience

Information Technology, Science/Research

User Interface

Console/Terminal

Programming Language

Java

Related Categories

Java Machine Learning Software

Registered

2015-11-04