We propose the use of Differential Evolution algorithm for the weight adjustment of base classifiers used in weighted voting heterogeneous ensemble of classifier. Average Matthews Correlation Coefficient (MCC) score, calculated over 10-fold cross-validation, has been used as the measure of quality of an ensemble. DE/rand/1/bin algorithm has been utilised to maximize the average MCC score calculated using 10-fold cross-validation on training dataset. The voting weights of base classifiers are optimized for the heterogeneous ensemble of classifiers aiming to attain better generalization performances on testing datasets.

Project Samples

Project Activity

See All Activity >

Categories

Machine Learning

License

Creative Commons Attribution Non-Commercial License V2.0

Follow DE-HEoC

DE-HEoC Web Site

Other Useful Business Software
Keep company data safe with Chrome Enterprise Icon
Keep company data safe with Chrome Enterprise

Protect your business with AI policies and data loss prevention in the browser

Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
Download Chrome
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of DE-HEoC!

Additional Project Details

Intended Audience

Information Technology, Science/Research

User Interface

Console/Terminal

Programming Language

Java

Related Categories

Java Machine Learning Software

Registered

2015-11-04