Dash is a self-learning data agent built by the Agno AI community that generates grounded answers to English queries over structured data by synthesizing SQL and reasoning based on six layers of context, improving automatically with each run. It sidesteps common limitations of simple text-to-SQL agents by incorporating multiple context layers — including schema structure, human annotations, known query patterns, institutional knowledge from docs, machine-discovered error patterns, and live runtime context — to generate SQL queries that are both technically correct and semantically meaningful. The system then executes those queries against a database and interprets the results, returning human-friendly insights not just raw rows, while learning from errors and successes to reduce repeated mistakes.
Features
- Six layers of grounded context for SQL reasoning
- Self-learning continuous improvement loop
- Natural language to SQL generation with interpretation
- Execution against live databases with runtime introspection
- Business logic and schema awareness via annotations
- Docker-ready deployment with API access