. 4 v
CRC and how to Reverse it
A CRC Tutorial & The ¢001 way to Reverse CRC THCU Papéfs
Release: 29 april
1999 .
Modified: 30 apri byanarchriz
1999
L Courtesy of Fravia's page of reverse engineering Shbg;ltli}r’ai(ii;‘fd
fra_00xx
990504
zllrll?)r;hrlz A beautiful study, that rightly belongs to the +HCU Papers
PA
PC
There is a crack, a crack in everything That's how the light
gets in
Rating “ (X)Beginner (X)Intermediate (X)Advanced ( )Expert ||

You always wanted to know what CRC exactly is? Always wanted to know how to compute it yourself?
Ever thought about ways to reverse CRC, but didnt succede? Ever tried to patch a piece of code without
altering its CRC? Ever wanted to write an anti-antivirus trick to render the CRC32 check useless?

Well then... you may have landed at the right place!

CRC and how to Reverse it
A CRC Tutorial & The c00I way to Reverse CRC

Written by anarchriz

Introduction

This essay consists of a CRC tutorial and a way of how to reverse it. Many
Coders/Fravias don't know exactly how CRC works and almost no one knows how to
reverse it, while this knowledge could be very usefull. First the tutorial will
learn you how to calculate CRC in general, you can use it as data/code
protection. Second, the reverse part will learn you (mainly) how to reverse
CRC-32, you can use this to break certain CRC protections in programs or over
programs (like anti-virus). There seem to be utilities who can 'correct' CRCs
for you, but I doubt they also explain what they're doing.

I'd like to warn you, since there is quite some math used in this essay. This
wont harm anyone, and will be well understood by the avarage Fravia or Coder.
Why? Well. If you dont know why math is used in CRC, I suggest that you click
that button with a X at the top-right of this screen. So I assume the reader has

knowledge of binair arithmetic.

Essay



http://www.woodmann.com/fravia/index.htm
http://www.woodmann.com/fravia/papers.htm
http://www.woodmann.com/fravia/papers.htm

Part 1: CRC Tutorial, what it is and how to calculate it

Cyclic Redundancy Code or CRC

We all know CRC. Even if you don't recall, you will when you think of those
annoying messages RAR, ZIP and other compressors give you when the file is
corrupted due to bad connections or those !@#$% floppies. The CRC is a
value computed over a piece of data, for example for each file at the
time of compression. When the archiver is unpacking that file, it will read the
CRC and check it with the newly computed CRC of the uncompressed file. When
they match, there is a good chance that the files are identical. With CRC-32,
there is a chance of 1/2732 of the check failing to recognize a change in data.

A lot of people think CRC is short for Cyclic Redundancy Check. If indeed CRC
is short for Cyclic Redundancy Check then a lot of people use the term incorrect.
If it was you could not say 'the CRC of the program is 12345678'. People are also
always saying a certain program has a CRC check, not a Cyclic Redundancy Check
check. Conclusion: CRC stands for Cyclic Redundancy Code and NOT for Cyclic
Redundancy Check.

How is the calculation done? Well, the main idea is to see the file as one
large string of bits divided by some number, which will leave you with a
remainder, the CRC! You always have a remainder (can also be zero) which is at
most one bit less then the divisor (else it still has a divisor in it).

(9/3=3 remainder=0 ; (9+2)/3=3 remainder=2)

Only here dividing with bits is done a little different. Dividing is repeatedly
substracting (x times) a number (divisor) from a number you want to divide, which
will leave you with the remainder. If you want the original number back you
multiply with the divisor or (idem) add x times the divisor with itself and
afterwards adding the remainder.

CRC computation uses a special way of substracting and adding, i.e. a
new 'arithmetic'. While computing the carry for each bit calculation is
'forgotten'.

Lets look at 2 examples, number 1 is a normal substraction, 2&3 are special.

-+
(1) 1101 (2) 1010 1010 (3) 0+0=0 ©0-0=0
1010- 1111+ 1111- 0+1=1 *0-1=1
——-- S 1+0=1 1-0=1
0011 0101 0101 *1+1=0 1-1=0

In (1), the second column from the right would evaluate to ©-1=-1, therefore
a bit is 'borrowed' from the bit next to it, which will give you this
substraction (10+0)-1=1. (this is like normal 'by-paper' decimal substraction)
The special case (2&3) 1+1 would normally have as answer 10, where the '1' is
the carry which 'transports' the value to the next bit computation. This value
is forgotten. The special case 0-1 would normally have as answer '-1', which
would have impact on the bit next to it (see example 1). This value is also
forgotten. If you know something about programming this looks like, or better,
it IS the XOR operation.
Now look at an example of a divide:

In normal arithmetic:

1001/1111000\1101 13 9/120\13
1001 - 09 -|
-
1100 30 |
1001 - 27 -
0110 3 -> the remainder
0000 -
1100
1001 -

011 -> 3, the remainder



In CRC arithmetic:
1001/1111000\1110 9/120\14 remainder 6
1001 -
1100
1001 -
1010
1001 -
0110
0000 -
110 -> the remainder
(example 3)

The quotient of a division is not important, and not efficient to remember,
because that would be only a couple of bits less than the bitstring where you
wanted to calculate the CRC from. What IS important is the remainder! That's

the thing that says something important over about the original file. That's
basicly the CRC!

Going over to the real CRC computation

To perform a CRC calculation we need to choose a divisor, we call it the
'poly’ from now on. The width W of a poly is the position of the highest bit,
so the width of poly 1001 is 3, and not 4. Note that the highest bit is always
one, when you have chosen the width of the poly you only have to choose a value
for the lower W bits.

If we want to calculate the CRC over a bitstring, we want to make sure all
the bits are processed. Therefore we need to add W zero bits to the end of the
bitstring. In the case of example 3, we could say the bitstring was 1111.

Look at a little bigger example:

Poly
Bitstring + W zeros

10011, width W=4
110101101 + 0000

\110000101 (we don't care about the quotient)

1111 -> the remainder -> the CRC!
(example 4)



There are 2 important things to state here:

1.0nly when the highest bit is one in the bitstring we XOR it with the poly,
otherwise we only 'shift' the bitstring one bit to the left.

2.The effect of XORring is, that it's XORed with the lower W bits, because the
highest bit always gives zero.

Going over to a Table-Driven Algorithm

You all should understand that an algorithm based on bitwise calculation will
be very slow and inefficient. It would be far more efficient if you could
calculate it on a per-byte basis. But then we can only accept poly's with a
width of a multiple of 8 bits (that's a byte ;). Lets visualize it in a example
poly with a width of 32 (W=32):

3 2 1 o byte
s St TR
Pop! <--| | | | |<-- bitstring with W zero bits added, in this case 32
s LT TP
1<--- 32 bits ---> this is the poly, 4*8 bits

(figure 1)

This is a register you use to store the temporary result of the CRC, I call
it the CRC register or just register from now on. You are shifting bits from
the bitstring in at the right side, and bits out at the left side. When the bit
just shifted out at the left side is one, the whole register is XORred by the
lower W bits of the poly (in this case 32). In fact, we are doing exactly the
same thing as the divisions above.

What if (as I said) we would shift in & out a whole group of bits at once.
Look at an example of 8 bit CRC with 4 bits at once shifted in & out:

The register just before the shift : 10110100

Then 4 bits (at the top) are shifted out at the left side while shifting 4 new
bits in at the right side. In this example 1011 is shifted out and 1101 (new)
is shifted in.

Then the situation is this:

8 bits currently CRC/Register : 0le0llel
4 top bits just shifted out : 1o11
We use this poly : 101011100, width W=8

Now we calculate just as usual the new value of the register.

Top Register
1011 01001101 the topbits and the register
1010 11100 + (*1) Poly is XORred on position 3 of top bits (coz there is a one)

0001 10101101 result of XORring

Now we still have a one on bit position @ of topbits:
0001 10101101 previous result
1 01011100+ (*2) Poly is XORred on position @ of top bits (coz there is a one)

0000 11110001 result of second XORring

ANAN

Now there are all zero's in the topbits, so we dont have to XOR with the poly
anymore for this sequence of topbits.

The same value in the register you get if you first XOR (*1) with (*2) and the
result with the register. This is because of the standard XOR property:
(a XOR b) XOR c = a XOR (b XOR c)

1010 11100 poly on position 3 of top bits
1 01011100+ poly XORred on position © of top bits



1011 10111100 (*3) result of XORring

The result (*3) is XORred with the register
1011 1e1111e00
1011 01001101+ the top bits and the register

0000 11110001

You see? The same result! Now (*3) is important, because with the top bits 1010
is always the value (*3)=10111100 (only the lower W=8 bits) bound (under the
stated conditions, of course) This means you can precompute the XOR values for
each combination of top bits. Note that top bits always become zero after one
iteration, this must be because the combination of XORring leads to it.

Now we come back to figure 1. For each value of the top byte (8 bits) just
shifted out, we can precompute a value. In this case it would be a table
consisting of 256 (278) entries of double words (32bit). (the CRC-32 table is
in the appendix)

In pseudo-language our algoritm now is this:
While (byte string is not exhausted)
Begin
Top = top_byte of register ;
Register = Register shifted 8 bits left ORred with a new byte from string ;
Register = Register XORred by value from precomputedTable at position Top ;
End

The direct Table Algorithm

The algorithm proposed above can be optimized. The bytes from the byte string
don't need to travel through the whole register before they are used. With
this new algorithm we can directly XOR a byte from a byte string with the byte
shifted out of the register. The result points to a value in the precomputed
table which will be XORred with the register.

I don't know exactly why this gives the same result (it has to do with a XOR
property), but it has the Big advantage you don't have to append zero
bytes/bits to your byte string. (if you know why, pleaz tell me :)

Lets visuallize this algorithm:

+----< byte string (or file)
I
\ 3 2 1 o byte
s Et TR
XOR---<| | | | | Register
[ s S C Tt TR A
|

XOR

N

[ | | | | Precomputed table
e s SEEE P
--->-: : : :
s St SEEE TP
o
s St TR
(figure 2)

I
I
I
v s St R
I
I
+

The 'reflected' direct Table Algorithm

To make things more complicated there is a 'reflected' version of this
algorithm. A Reflected value/register is that it's bits are swapped around
it's centre. For example 0111011001 is the reflection of 1001101110.

They came up with this because of the UART (chip that performs serial I0),
which sends each byte with the least significant bit (bit @) first and the most
significant bit (bit 7) last, this is the reverse of the normal situation.

Instead then of reflecting each byte before processing, every else is



reflected. An advantage is that it gives more compact code in the
implementation. So, in calculating the table, bits are shifted to the right and
the poly is reflected. In calculating the CRC the register is shifted to the
right and (of course) the reflected table is used.

byte string (or file) -->---+
| 1. In the table each entry is reflected

byte 3 2 1 @0 Vv 2. The initial register is reflected
e s SEEE P | 3. The bytes from the byte string aren't
| | | | | >---XOR reflected, because all the rest is.

kBt TR T |

|
XOR Vv
n |
s Shr EETE T |
[ | | | | |  Precomputed table
s SCTr TR S |
. .. P

R bt L E TR

Fo--to - -t

(figure 3)

Our algorithm is now:

1. Shift the register right by one byte

2. XOR the top byte just shifted out with a new byte from the byte string
to yield an index into the table ([0,255])

3. XOR the table value into the register

4. Goto 1 if there are more bytes to process

Some implementations in Assembly

To get everything settled here's the complete CRC-32 standard:
Name : "CRC-32"

Width - 32

Poly : 04C11DB7
Initial value : FFFFFFFF
Reflected . True

XOR out with : FFFFFFFF

As a bonus for you curious people, here's the CRC-16 standard: :)
Name : "CRC-16"

Width . 16

Poly : 8005
Initial value . 0000
Reflected : True
XOR out with . 0000

'XOR out with' is the value that is XORred with the final value of the register
before getting (as answer) the final CRC.

There are also 'reversed' CRC poly's but they are not relevant for this
tutorial. Look at my references if you want to know more about that.

For the assembly implementation I use 32 bit code in 16 bit mode of DOS...
so you will see some mixing of 32 bit and 16 bit code... it is easy to convert
it to complete 32 bit code. Note that the assembly part is fully tested to be
working correctly, the Java or C code is derived from that.

Ok. Here is the assembly implementation for computing the CRC-32 table:

xor ebx, ebx ;ebx=0, because it will be used whole as pointer
InitTableloop:

xor eax, eax ;eax=0 for new entry

mov al, bl ;lowest 8 bits of ebx are copied into lowest 8 bits of eax

;generate entry
xor CcX, CX
entrylLoop:



test eax, 1

jz no_topbit
shr eax, 1
xor eax, poly
jmp entrygoon

no_topbit:
shr eax, 1

entrygoon:
inc cX
test cx, 8
jz entryLoop
mov dword ptr[ebx*4 + crctable], eax
inc bx
test bx, 256
jz InitTableLoop

Notes: - crctable is an array of 256 dwords

- eax is shifted to the right because the CRC-32 uses reflected Algorithm
- also therefore the lowest 8 bits are processed...

In Java or C (int is 32 bit):

for (int bx=0; bx<256; bx++){
int eax=0;
eax=eax&9xFFFFFFO0+bx&0OxFF; // the 'mov al,bl' instruction
for (int cx=0; cx<8; cx++){
if (eax&&0Ox1) {
eax>>=1;
eax”=poly;
}
else eax>>=1;
}
crctable[bx]=eax;

}

The implementation for computing CRC-32 using the table:

computelLoop:
xor ebx, ebx
xor al, [si]
mov bl, al
shr eax, 8
xor eax, dword ptr[4*ebx+crctable]
inc si

loop computeloop
xor eax, OFFFFFFFFh

Notes: - ds:si points to the buffer where the bytes to process are
- cx contains the number of bytes to process
- eax contains current CRC
- crctable is the table computed with the code above
- the initial value of the CRC is in the case of CRC-32: FFFFFFFF
- after complete calculation the CRC is XORred with: FFFFFFFF
which is the same as NOTting.

In Java or C it is like this:

for (int cx=0; cx>=8;
eax"=crcTable[ebx];

}
eax"=0xFFFFFFFF;

So now we landed at the end of the first part: The CRC tutorial

If you want to make a little deeper dive in CRC I suggest reading the document
I did, you will find the URL at the end of this document.

Ok. On to the most interresting part of this document: Reversing CRC!



Part 2: Reversing CRC

When I was thinking of a way to reverse it... I got stuck several times. I
tried to 'deactivate' the CRC by thinking of such an sequence of bytes that it
then shouldn't matter anymore what bytes you would place behind it. I couldn't
do it... Then I realized it could NEVER work that way, because CRC algorithm is
build in such a way it wouldn't matter which _bit_ you would change, the
complete CRC _always_ (well always... almost) changes drasticly. Try that
yourself (with some simple CRC programs)... :)

I realized I only could 'correct' the CRC _after_ the bytes I wanted to
change. So I could make such a sequence of bytes, that would 'transform' the
CRC into whatever I wanted!

Lets visualize the idea:

Bunch of bytes: ©1234567890123456789012345678901234567890123456789012

You want to change from ~ this byte to ~ this one.

Thats position 9 to 26.

We also need 4 extra bytes (until position 3@ ”~) for the sequence of bytes which
will change the CRC back to its original value after the patched bytes.

When you are calculating the CRC-32 it goes fine until the byte on position 9,
in the patched bunch of bytes the CRC radically changes from that point on.
Even when pass position 26, from where the bytes are not changed, you never get
the original CRC back. NOT! When you read the rest of this essay you know how.
In short you have do this when patching a certain bunch of bytes while
maintainting the CRC:

1. Calculate the CRC until position 9, and save this value.

2. Continue calculating until position 27 and 4 extra bytes, save the resulting
value.

3. Use the value of 1 for calculating the CRC of the 'new' bytes and the extra
4 bytes (this should be 27-9+4=22 bytes) and save the resulting value.

4. Now we have the 'new' CRC value, but we want the CRC to be the 'old' CRC
value. We use the reverse algorithm to compute the 4 extra bytes.

We can to point 1 to 3, below you learn to do point 4.

Reversing CRC-16

I thought, to make it more easy for you, first to calculate the reverse of
CRC-16. Ok. We are on a certain point after the patched code where you want to
change the CRC back to its original. We know the original CRC (calculated before
patching the data) and the current CRC register. We want to calculate the
2-bytestring which changes the current CRC register to the original CRC.

First we calculate 'normally' the CRC with the unknown 2 bytes naming them X
and Y, for the register I take al a@ , the only non-variable is zero (00). :)
Look again at our latest CRC algorithm, figure 3, to understand better what im
doing.

Ok, here we go:

Take a 2-bytestring 'X Y'. Bytes are processed from the left side.
Take for register al a@.
For a XOR operation I write '+' (as in the CRC tutorial)

Processing first byte, X:

a0+X this is the calculated topbyte (1)

bl be sequence in table where the topbyte points at
00 al to right shifted register

00+bl al+be previous 2 lines XORred with eachother

Now the new register is: (bl) (al+b®)

Processing second byte, Y:



(al+b@)+Y this is the calculated topbyte (2)

cl co sequence in table where the topbyte points at
00 bl to right shifted register
00+cl bl+co previous 2 lines XORred with eachother

Now the final register is: (cl) (bl+c@)
I'll show it a little different way:

a0 + X =(1) points to bl be in table
al + be + Y =(2) points to cl1 c@ in table
bl + c0=d® new low byte of register
cl=dl new high byte of register

(1) (2)

Wow! Let this info work out on you for a while... :)
Don't be afraid, a real value example is coming soon.

What if you wanted the register to be some dl1 do@ (the original CRC) and you
know the value of the register before the transformation (so al a®@)... what 2
bytes or what X and Y would you have to fed through the CRC calculation?

Ok. We will begin working from the back to the front. d@ must be bl+c@ and
dl must be cl... But how-the-hell, I hear you say, can you know the value of
byte bl and c@??? Shalll remember you about the Table? You can just lookup
the value of the word C0 Cl in the Table because you know Cl. Therefore you
need to make a 'lookup' routine. If you found the value, be sure to remember
the index to the value because that's the way to find the unknown topbytes e.g.
(1)&(2)!

So now you found cl c@, how to get bl b@? If bl+c0=d0 then bl=d0+c@! Now you
use the lookup routine to lookup the bl b@ value too. Now we know everything
to calculate X & Y ! Cool huh?

al+bo+Y=(2) so Y=al+bo+(2)
a0+X=(1) so X=a0+(1)

Non-variable example for CRC-16

Lets look at an example with real values:

-register before: (al=)DE (a@=)AD

-wanted register: (d1=)12 (de=)34

Look up the entry beginning with 12 in the CRC-16 table in the appendix.

-This is entry 38h with value 12C0. Try to find another entry beginning with 12.
You can't find another because we calculated each entry for each possible value
of the topbyte and that's 256 values, remember!

Now we know (2)= 38, cl= 12 and c@= CO, so bl= CO+34=F4, now look up the entry
of Bl beginning with F4.

-This is entry 4Fh with value F441.

Now we know (1)= 4F, bl= F4 and b@= 41. Now all needed values are known, to
compute X and Y we do:

Y=al+b0+(2)=DE+41+38=A7

X=a0+(1) =AD+4F =E2

Conclusion: to change the CRC-16 register from DEAD to 1234 we need the bytes
E2 A7 (in that order).

You see, to reverse CRC you have to 'calculate' your way back, and remember the
values along the way. When you are programming the lookup table in assembly,
remember that intel saves values backwards in Little-Endian format.

Now you probably understand how to reverse CRC-16.... now CRC-32

Reversing CRC-32

Now we had CRC-16, CRC-32 is just as easy (or as difficult). You now work with
4 bytes instead of 2. Keep looking and comparing this with the 16bit version
from above.

Take a 4-bytestring X Y Z W , bytes are taken from the LEFT side
Take for register a3 a2 al a@



Note that a3 is the most significant byte and a@ the least.

Processing first byte, X:

a0+X this is the calculated topbyte (1)

b3 b2 bl bo sequence in table where the topbyte points at
00 a3 a2 al to right shifted register

00+b3 a3+b2 a2+bl al+b@ previous 2 lines XORred with eachother

Now the new register is: (b3) (a3+b2) (a2+bl) (al+b@)

Processing second byte, Y:

(al+bo)+Y this is the calculated topbyte (2)
c3 c2 cl co sequence in table where the topbyte points at
00 b3 a3+b2 a2+bl to right shifted register

00+c3 b3+c2 a3+b2+cl a2+bl+c® previous 2 lines XORred with eachother
Now the new register is: (c3) (b3+c2) (a3+b2+cl) (a2+bl+co)

Processing third byte, Z:

(a2+bl+c0)+Z this is the calculated topbyte (3)

d3 d2 di de sequence in table where the topbyte points at
00 c3 b3+c2 a3+b2+c1 to right shifted register

00+d3 c3+d2 b3+c2+d1l a3+b2+cl+d@ previous 2 lines XORred with eachother

Now the new register is: (d3) (c3+d2) (b3+c2+d1l) (a3+b2+c1+do)

Processing fourth byte, W:

(a3+b2+c1+d0)+W this is the calculated topbyte (4)

e3 e2 el eo sequence in table where the topbyte points at
00 d3 c3+d2 b3+c2+d1 to right shifted register

00+e3 d3+e2 c3+d2+el b3+c2+dl+e@ previous 2 lines XORred with eachother

Now the final register is: (e3) (d3+e2) (c3+d2+el) (b3+c2+dl+e@)

I'll show it a little different way:

aoe + X =(1) points to b3 b2 bl be in table
al + bo + Y =(2) points to 3 c2 cl c@ in table
a2 + bl +co + 2 =(3) points to d3 d2 d1 do in table
a3 + b2 + cl +do +W =(4) points to e4 e3 e2 el in table
b3 + c2 + d1 + e®@ =f0O
c3 +d2 +el1 =f1
d3 + e2 =f2
e3 =f3
(1) (2) 3) (4
(figure 4)

This is reversed in the same way as the 16bit version. I shall give an example
with real values. For the table values use the CRC-32 table in the appendix.
Take for CRC register before, a3 a2 al a@ -> AB CD EF 66

Take for CRC register after, f3 f2 f1 f@ -> 56 33 14 78 (wanted value)

Here we go:

First byte of entries entry  value
e3=F3 =56 -> 35h=(4) 56B3C423 for e3 e2 el €@
d3=f2+e2 =33+B3 =E6 -> 4Fh=(3) E6635C01 for d3 d2 dl de

c3=fl+el+d2 =14+C4+63 =B3 -> F8h=(2) B3667A2E for c3 c2 cl c®
b3=f0+e0+d1+c2=78+23+5C+66=61 -> DEh=(1) 616BFFD3 for b3 b2 bl be

Now we have all needed values, then
X=(1)+ ao= DE+66=B8
Y=(2)+ bo+al= F8+D3+EF=C4
Z=(3)+ cO+bl+a2=  A4F+2E+FF+CD=53
W=(4)+do+cl+b2+a3=35+01+7A+6B+AB=8E
(final computation)

Conclusion: to change the CRC-32 register from ABCDEF66 to 56331478 we need
this sequence of bytes: B8 C4 53 8E



The reverse Algorithm for CRC-32

If you look at the by-hand computation of the sequence of bytes needed to
change the CRC register from a3 a2 al a@ to {3 f2 f1 f@ its difficult to
transform this into a nice compact algorithm.

Look at an extended version of the final computation:

Position

X =(1) + a0 0
Y =(2) + bo + al 1
Z =(3) + cO + bl + a2 2
W =(4) + do + c1 + b2 + a3 3
fO= e® + d1 + c2 + b3 4
fl= el + d2 + c3 5
f2= e2 + d3 6
3= e3 7
(figure 5)

It is just the same as figure 4, only some values/bytes exchanged. This view
will help us to get a compact algorithm. What if we take a buffer of 8 bytes
that is, for every line you see in figure 5 one byte is reserved. Bytes @ to
3 are filled with a@ to a3, bytes 4 to 7 are filled with f@ to f3. As before,
we take the last byte e3 which is equal to f3 and lookup the complete value in
the CRC table. Then we XOR this value (e3 e2 el e@) on position 4 (as in figure
5). Then we automatically know what the value of d3 is, because we already
XORred f3 f2 f1 f0 with e3 e2 el e@, and f2+e2=d3. Because we now already know
what the value of (4) is (the entry number), we can directly XOR the value into
position 3. Now we know d3 use this to lookup the value of d3 d2 di1 do and XOR
this on one position earlier, that is position 3 (look at the figure!). XOR the
found entry number (3) for the value on position 2. We now know c3 because we
have the value fl+el+d2=c3 on position 5.

We go on doing this until we XORred b3 b2 bl b@ on position 1. Et voila!
Bytes @ to 3 of the buffer now contains the needed bytes X to W!

Summarized is here the algorithm:

1. Of the 8 byte buffer, fill position © to 3 with a@ to a3 (the start value of
the CRC register), and position 4 to 7 with f© to f3 (wanted end value of CRC
register).

2. Take the byte from position 7 and use it to lookup the complete value.

3. XOR this value (dword) on position 4

4, XOR the entry number (byte) on position 3

5. Repeat step 2 & 3 three more times while decreasing the positions each time
by one.

Implementation of the Reverse Algorithm

Now its time for some code. Below are the implementation of the reverse
algorithm for CRC-32 in Assembly (it is not difficult to do this for other
languages and/or CRC standards). Note that in assembly (on PC's) dwords are
written to and read from memory in reverse order.

crcBefore dd (?)

wantedCrc dd (?)

buffer db 8 dup (?)
mov eax, dword ptr[crcBefore] ;/*
mov dword ptr[buffer], eax
mov eax, dword ptr[wantedCrc] ; Step 1
mov dword ptr[buffer+4], eax ;*/
mov di, 4

computeReverselLoop:
mov al, byte ptr[buffer+di+3] ;/*
call GetTableEntry ; Step 2 */
xor dword ptr[buffer+di], eax ; Step 3

xor byte ptr[buffer+di-1], bl ; Step 4



dec di /%
jnz computeReverselLoop ; Step 5 */

Notes:
-Registers eax, di bx are used

Implementation of GetTableEntry

crctable dd 256 dup (?) ;should be defined globally somewhere & initialized of course
mov bx, offset crctable-1

getTableEntrylLoop:
add bx, 4 ;points to (crctable-1)+k*4 (k:1..256)
cmp [bx], al smust always find the value somewhere
jne getTableEntrylLoop
sub bx, 3
mov eax, [bx]
sub bx, offset crctable
shr bx, 2
ret

On return eax contains a table entry, bx contains the entry number.

Outtro

Well... your reached the end of this essay. If you now think: wow, all those
programs which are protected by CRC can say 'bye, bye'. Nope. It is very easy
to make an anti-anti-CRC code. To make a succesfull CRCreverse you have to
know exactly from what part of the code the CRC is calculated and what CRC
algorithm is used. A simple countermeasure is using 2 different CRC algorithms,
or combination with another dataprotection algorithm.

Anywayz... I hope all this stuff was interesting and that you enjoyed reading
it as I enjoyed writing it.

Fnx go out to the beta-testers Douby/DREAD and Knotty Dread for the good
comments on my work which made it even better!

For a sample CRC-32 correcting patcher program visit my webpages:
http://surf.to/anarchriz -> Programming -> Projects

(it's still a preview but will give you a proof of my idea)

For more info on DREAD visit http://dread99.cjb.net

If you still have questions you can mail me at anarchriz@hotmail.com,

or try the channels #DreaD, #Win32asm, #C.I.A and #Cracking4Newbies (in that

order) on EFnet (on IRC).

CYA ALL! - Anarchriz

"The system makes its morons, then despises them for their ineptitude, and
rewards its 'gifted few' for their rarity." - Colin Ward

Appendix

CRC-16 Table

00h 0000 COCl C181 0140 C301 ©3CO 0280 (C241
08h (601 06CO 0780 C741 0500 C5C1 C481 0440
16h  CCo1 OCCO oD80 CD41 OF00 CFC1l CE81 OE40
18h  ©APO CAC1 CB81 ©B40© (901 ©9CO 0880 (841



20h
28h
30h
38h

40h
48h
56h
58h

60h
68h
706h
78h

80h
88h
90h
98h

Aoh
A8h
Boh
B8h

Coh
C8h
Doh
D8h

Eoh
E8h
Foh
F8h

D801 18Co
1E00 DEC1
1400 D4C1l
D201 12Co

Feol 30Co
3600 F6C1
3Co0 FCC1
FA@1l 3ACO

2800 E8C1
EEQ1 2ECO
E401 24Co
2200 E2C1

Aol 60Co
6600 A6C1
6C00 ACC1
AAQ1 6ACO

7800 B8C1
BEO1 7ECO
B401 74Co
7200 B2C1

5000 90C1
9601 56C0
9Co1 5CCo
5A00 9AC1

8801 48Co
4EQ0 8EC1
4400 84C1
8201 42C0

CRC-32 Table

00h
04h
o8h
oCh

106h
14h
18h
1Ch

206h
24h
28h
2Ch

36h
34h
38h
3Ch

40h
44h
48h
4Ch

56h
54h
58h
5Ch

00000000
076DC419
OEDB8832
09B64C2B

1DB71064
1ADAD47D
136C9856
14015C4F

3B6E20C8
3CO3E4D1
35B5A8FA
32D86CE3

26D930AC
21B4F4B5
2802B89E
2F6F7C87

76DC4190
71B18589
7807C9A2
7F6A0DBB

6B6B51F4
6CO695ED
65B0OD9C6
62DD1DDF

1980 D941 1Beo DBC1 DAS81
DF81 1F4e DDol1l 1DCo 1C8@
D581 1540 D701 17C0 1680
1380 D341 1100 D1C1 De81

3180 F141 3300 F3Cl1l F281
F781 3740 F501 35C0 3480
FD81 3D40 FFOl1 3FCoO 3E80
3B80 FB41 3900 F9Cl F881

E981 2940 EBO1 2BCO 2A80
2F80 EF41 2D00 EDC1 EC81
2580 E541 2700 E7C1 E681
E381 2340 E101 21Co 2080

6180 A141 6300 A3C1 A281
A781 6740 A501 65C0 6480
AD81 6D40 AFO1 6FCo 6E80
6B80 AB41 6900 A9C1 A881

B981 7940 BBO1 7BCO 7A80
7F80 BF41 7D00 BDC1 BC81
7580 B541 7700 B7C1 B681
B381 7340 B101 71Co 7080

9181 5140 9301 53CO 5280
5780 9741 5500 95C1 9481
5D80 9D41 5F00 9FC1l 9ES81
9B81 5B40 9901 59C0 5880

4980 8941 4Boo 8BC1l 8A81
8F81 4F40 8Dl 4DCo 4C80
8581 4540 8701 47Co 4680
4380 8341 4100 81C1 8081

77073096
706AF48F
79DCB8A4
7EB17CBD

6ABO20F2
6DDDE4EB
646BA8CO
63066CD9

4C69105E
4B04D447
42B2986C
45DF5C75

51DEOGO3A
56B3C423
5F058808
58684C11

01DB7106
06B6B51F
OF0OF934
086D3D2D

1C6C6162
1BO1A57B
12B7E950
15DA2D49

EEQE612C
E963A535
EOD5EQ1E
E7B82D07

F3B97148
FADAB551
FD62F97A
FAOF3D63

D56041E4
D20D85FD
DBBBC9D6
DCD6ODCF

C8D75180
CFBA9599
C60CD9B2
C1611DAB

98D220BC
9FBFE4A5
9609A88E
91646C97

856530D8
8208F4C1
8BBEBSEA
8CD37CF3

990951BA
9E6495A3
97D2D988
90BF1D91

84BE41DE
83D385C7
8A65C9EC
8DO8ADF5

A2677172
AS50AB56B
ACBCF940
ABD13D59

BFDO6116
B8BDAS5OF
B10BE924
B6662D3D

EFD5102A
E8B8D433
E10E9S818
E6635CO1

F262004E
F50FC457
FCB9887C
FBD44C65

1A40
DC41
D641
1040

3240
F441
FE41
3840

EA41
2C40
2640
E041

6240
Ad441
AE41
6840

BA41
7C40
7640
Bo41

9241
5440
5E40
9841

4A40
8C41
8641
4040



60h  4DB26158 3AB551CE A3BC0074 D4BB3OE2
64h  4ADFA541 3DD895D7 A4D1C46D D3D6F4FB
68h  4369E96A 346EDI9FC AD678846 DA6OBBDO
6Ch  44042D73 33031DE5 AAOGA4C5F DDOD7CC9

706h 5005713C 270241AA BEOB1010 (C90C2086
74h 5768B525 206F85B3 B966D409 CE61E49F
78h S5EDEF9OE 29D9C998 BOD09822 C7D7A8B4
7Ch 59B33D17 2EB406D81 B7BD5C3B COBA6CAD

80h EDB88320 9ABFB3B6 ©3B6E20C 74B1D29A
84h EAD54739 9DD277AF 04DB2615 73DC1683
88h E3630B12 94643B84 OD6D6A3E 7A6A5AA8
8Ch E40ECFOB 9309FF9D OAQGOAE27 7DO79EB1

90h FOOF9344 8708A3D2 1EOQ1F268 6906C2FE
94h F762575D 806567CB 196C3671 6E6BO6E7
98h FEDA1B76 89D32BE@ 10DA7AS5A 67DD4ACC
9Ch FOBODF6F 8EBEEFFS 17B7BE43 60BO8EDS

Aoh D6D6A3E8 A1D1937E 38D8C2C4 4FDFF252
A4dh D1BB67F1 A6BC5767 3FB506DD 48B2364B
A8h D80D2BDA AFOA1B4C 36034AF6 41047A60
ACh DF6OEFC3 A867DF55 316E8EEF 4669BE79

Boh CB61B38C BC66831A 256FD2A0 5268E236
B4h CCaoC7795 BBOB4703 220216B9 5505262F
B8h C5BA3BBE B2BD0OB28 2BB45A92 5CB36A04
BCh C2D7FFA7 B5DOCF31 2CD99E8B 5BDEAE1D

Coh 9B64C2B0O EC63F226 756AA39C 026D930A
C4h 9CO906A9 EBOE363F 72076785 05005713
C8h 95BF4A82 E2B87A14 7BB12BAE OCB61B38
CCh 92D28ESB ES5D5BEOD 7CDCEFB7 ©BDBDF21

DOh 86D3D2D4 F1D4E242 68DDB3F8 1FDA836E
D4h 81BE16CD F6B9265B 6FBO77E1 18B74777
D8h 88085AE6 FFOF6A70 66063BCA 11010B5C
DCh 8F659EFF F862AE69 616BFFD3 166CCF45

Eoh  AGOAE278 D70DD2EE 4E048354 3903B3C2
E4h  A7672661 DO6016F7 4969474D 3E6E77DB
E8h  AED16A4A D9D65ADC 40DFOB66 37D83BF0
ECh  A9BCAE53 DEBB9EC5 47B2CF7F 3@B5FFE9

Foh BDBDF21C CABAC28A 53B39330 24B4A3A6
F4h BADO3605 CDD70693 54DE5729 23D967BF
F8h B3667A2E C4614AB8 5D681B02 2A6F2B94
FCh B40BBE37 C30C8EA1l 5A05DF1B 2DO2EF8D

References

> A painless guide to CRC error detection algorithm
url: ftp://ftp.adelaide.edu.au/pub/rocksoft/crc_v3.txt
(I bet this 'painless guide' is more painfull then my 'short' one ;)
> I also used a random source of a CRC-32 algorithm to understand the algorithm
better.
> Link to crc calculation progs... hmmm search for 'CRC.ZIP' or 'CRC.EXE' or something
alike at ftpsearch (http://ftpsearch.lycos.com?form=advanced)

Copyright (c) 1998,1999 by Anarchriz
(this is REALLY the last line :)

You are deep inside Fravia's page of reverse engineering, choose your way out: @ homepage


http://www.woodmann.com/fravia/index.htm

