Incremental data mining algorithms process frequent up-
dates to dynamic datasets efficiently by avoiding redundant computa-
tion. Existing incremental extension to shared nearest neighbor density
based clustering (SNND) algorithm cannot handle deletions to dataset
and handles insertions only one point at a time. We present an incremen-
tal algorithm to overcome both these bottlenecks by efficiently identify-
ing affected parts of clusters while processing updates to dataset in batch
mode.

Project Activity

See All Activity >

Follow BISD

BISD Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of BISD!

Additional Project Details

Registered

2017-01-02