
agena >>>> > > > >

a programming language

primer and reference
for version 3.11.1

converse

by alexander walz

march 05, 2024

agena Copyright 2006 to 2024 by alexander walz, rhineland.
All rights reserved. Portions Copyright 1994-2007, 2020 Lua.org, All rights reserved.

None of the Agena project members or anyone else connected with this
documentation, in any way whatsoever, can be responsible for your use of the
information contained in or linked from it.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

The latest release of Agena can be found at http://sourceforge.net/projects/agena.

This manual has been created with Lotus Word Pro 98 running on Sun Microsystems
VirtualBox with Microsoft Windows 2000 Professional, yWorks yEd Graph Editor, and
PDF Creator.

Credits

The Sources

Agena has been developed on the ANSI C sources of Lua 5.1, written by
Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Used
by their kind permission back in 2006.

Chapter 7: Standard Library documentation

A substantial portion of Chapter 8 has been taken from the Lua 5.1 Reference
Manual written by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. Used by kind permission.

environ.anames

environ.anames has been invented by Joe Riel, put to the Maple community
back in the early nineties.

case of statement

The original code has been written by Andreas Falkenhahn and posted to the
Lua mailing list on September 01, 2004. In Agena, the functionality has been
extended to check multiple values in the of branches.

skip statement

The skip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on September 12, 2005.

environ.globals base library function

The original Lua and C code for environ.globals has been written by David
Manura for Lua 5.1 in 2008 and published on www.lua.org. The C source has
been changed so that in Agena, C functions are no longer checked.

mkdir, chdir, and rmdir functions in the os library

These functions are based on code taken from the `lposix.c` file of the POSIX
library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.x.

agena >> 3

No automatic auto-conversion of strings to numbers

was inspired by Thomas Reuben's no_auto_conversion.patch available at
lua.org.

Kilobyte/Megabyte Number Suffix ('k', 'm')

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

Binary and octal numbers ('0b', '0o')

taken from John Hind's Lua 5.1.4 patch available at lua.org.

Integer division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

math.fraction

was originally written in ANSI C by Robert J. Craig, AT&T Bell Laboratories.

The math library functions eps, epsilon, exponent, issubnormal, mantissa,
math.frexp, math.nextafter, math.wrap, modf, round, zerosubnormal, cis,
math.sincos, arctan, arctan2, sin, cos, +++ and --- operators

use a modified versions of C functions that have originally been published by
Sun Microsystems with the fdlibm IEEE 754 floating-point C library. See Appendix
B3 for the licence.

calc.diff

based on Conte and de Boor's `Coefficients of Newton form of polynomial of
degree 3`.

Advanced precision algorithm used in for/to loops, sumup, calc.fsum,
linalg.trace, stats.amean, factory.count, stats.cumsum, and stats.sumdata.

The method to prevent round-off errors in iterations with non-integral step sizes
has been developed by William Kahan and published in his paper `Further
remarks on reducing truncation errors` as of January 1965. Agena in some
cases uses a modified version of the Kahan algorithm developed by Kazufumi
Ozawa, published in his paper `Analysis and Improvement of Kahan's

4 Contents

Summation Algorithm`. Especially the statistics function use the Kahan-Babuška
variant described by Andreas Klein in his study `A generalized
Kahan-Babuška-Summation-Algorithm`.

calc.minimum, calc.maximum

use the subroutine calc.fminbr originally written by Dr. Oleg Keselyov in ANSI C
which implements an algorithm published by G. Forsythe, M. Malcolm, and C.
Moler, `Computer methods for mathematical computations`, M., Mir, 1980,
page 202 of the Russian edition.

bernoulli, besselj, bessely,euler, lambda

are completely or largely based on the functions originally written in FORTRAN by
Shanjie Zhang and Jianming Jin, Computation of Special Functions, Copyright
1996 by John Wiley & Sons, Inc. Used by Jianming Jin's kind permission.

Graphics

The graphical capabilities of Agena in the Solaris, Linux, Mac, and Windows
versions have been made possible through a Lua binding of Alexandre Erwin
Ittner to the g2 graphical library which has been written by Ljubomir Milanovic
and Horst Wagner.

ADS package

The core ANSI C functions to create, insert, delete and close the database have
been written by Dr. F. H. Toor.

MAPM binding

Mike's Arbitrary Precision Math Library has been written by late Michael C. Ring.
See Appendix B6 for the licence.

The MAPM Agena binding is an adaptation of the Lua binding written by Luiz
Henrique de Figueiredo, put to the public domain. As Mike Ring unfortunately
passed away in December 2011, you are welcome to propose a Lua C
extension of Henrique's binding.

agena >> 5

Year 2038 fix for 32-bit machines

was written by Michael G. Schwern, and has been published under the MIT
licence at http://github.com/schwern/y2038.

gzip package

and its description of the binding has originally been written and published
under the MIT licence by Tiago Dionizio for Lua 5.0.

Internal string concatenation

Some internal initialisation routines use a C function written by Solar Designer
placed in the public domain.

Functions arctan, expx2, gamma, lngamma, calc.Ai, calc.bessel0, calc.bessel1,
calc.Bi, calc.dawson, calc.dilog, calc.Ci, calc.Chi, calc.elliptic1, calc.elliptic2,
calc.En, calc.fresnelc, calc.fresnels, calc.hyp1f1, calc.hyp2f1, calc.ibeta,
calc.igamma, calc.igammc, calc.invibeta, calc.jacobian, calc.polylog,
calc.Psi, calc.Si, calc.Shi, calc.Ssi, calc.zeta, calc.zeta2, math.cosd, math.cotd,
math.sind, math.tand, stats.F, stats.Fc, stats.invF, stats.gammad,
stats.gammadc, and stats.invnormald

use algorithms written in ANSI C by Stephen L. Moshier for the Cephes Math
Library Release 2.8 as of June, 2000. Copyright by Stephen L. Moshier.

erf, erfc, inverf, inverfc, calc.intcc, calc.intde, calc.intdei, calc.intdeo

These functions use procedures originally written in C by Takuya Ooura, Kyoto,
Copyright(C) 1996 Takuya OOURA: "You may use, copy, modify this code for any
purpose and without fee."

math.random

The algorithm used to compute random numbers has been written by George
Marsaglia and published on en.wikipedia.org.

io.anykey

The Linux version uses code written by Johnathon in 2008 which was published
under the MIT licence.

6 Contents

xBASE file support

The xbase package is a binding to xBASE functions written by Frank Warmerdam
in ANSI C for the Shapelib 1.2.10 and 1.3.0 libraries. The Shapelib library has
been published under the MIT licence.

The net package

Most of the functions are based on Jürgen Wolf’s C examples published in his
book `C von A bis Z`, 3rd Edition, Galileo Computing, Bonn, 2009.

`Beej's Guide to Network Programming, Using Internet Sockets`, written by Brian
“Beej Jorgensen” Hall, was of great help. Some of the net functions use part of
Mr. Hall's public domain code published in his tutorial. Copyright © 2009 Brian
“Beej Jorgensen” Hall.

Studying the code of the LuaSocket 2.0.2 package, Copyright © 2004-2007 by
Diego Nehab, and published under the MIT licence, was very worthwhile.

strings.dleven

The implementation of Damerau-Levenshtein Distance is a blend of C code
written by Lorenz and Anders Sewerin Johansen.

utils.readxml

The original version of the core XML parser has been written in Lua 5.1 by
Roberto Ierusalimschy, published on LuaWiki.

utils.decodeb64 and utils.encodeb64

The Base64 functions have been originally written in pure ANSI C by Bob Trower,
Copyright (c) 2001, published under the MIT licence.

printf

was taken from the compat.lua file shipped with the Lua 5.1 sources published
under the MIT licence.

agena >> 7

.. operator and {} indexing

are based on code written by Sven Olsen, published in Lua Wiki/Power Patches.

copy

The deep copying mechanism has originally been written by Kurt Jung and by
Aaron Brown for Lua, and published in their book 'Beginning Lua Programming',
Wiley Publishing, Indianapolis, Indiana, 2007, page 151.

os.getenv, os.setenv, os.environ

have been written by Mark Edgar, Copyright 2007, published under the MIT
licence, and were taken from http://lua-ex-api.googlecode.com/svn.

bags package

The idea and its core implementation - ported to C - has been taken from the
book `Programming in Lua` by Roberto Ierusalimschy, 2nd Edition, Lua.org, p.
102.

xml package

The xml package actually is the LuaExpat binding to the expat library with some
few Agena-specific non-OOP modifications. LuaExpat 1.0 was designed by
Roberto Ierusalimschy, André Carregal and Tomás Guisasola as part of the
Kepler Project which holds its copyright. The implementation was coded by
Roberto Ierusalimschy, based on a previous design by Jay Carlson.

LuaExpat development was sponsored by Fábrica Digital and FINEP.

bintersect, bminus, bisequal, stats.obcount

The algorithm for binary comparison has been taken from Niklaus Wirth's book,
`Algorithmen und Datenstrukturen mit Modula-2`, 4th ed., 1986, p. 58.

linalg.mulrow, linalg.mulrowadd, stats.deltalist, stats.cumsum, stats.colnorm,
stats.rownorm, stats.sumdata

These functions have been inspired by the deltaList, cumulativeSum, centralDiff,
colNorm, rowNorm, mrow, and mrowdd functions available on the TI-Nspire™
CX CAS.

8 Contents

linalg.scale, stats.scale

is a port of function REASCL, included in the ALGOL 60 NUMAL package
published by The Stichting Centrum Wiskunde & Informatica (Stichting CWI) (legal
successor of Stichting Mathematisch Centrum) at Amsterdam. Original authors:
T. J. Dekker, W. Hoffmann; contributors: W. Hoffmann, S. P. N. van Kampen.

os.now

uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

Functions calc.clampedspline, calc.clampedsplinecoeffs, calc.interp,
calc.neville, calc.newtoncoeffs, calc.nokspline, calc.noksplinecoeffs

use C++ routines (ported to C) provided or written by Professor Brian Bradie,
Department of Mathematics, Christopher Newport University, VA, to the course
`An Introduction to Numerical Analysis with Applications to the Physical, Natural
and Social Sciences`. There have been no copyright remarks, so at least
Agena's MIT licence is not applicable to the source files `interp.c` and
`interp.h`.

stats.smallest

is based on N. Devillard's C implementation of an algorithm published in various
books written by Niklaus Wirth, published for example in `Algorithmen und
Datenstrukturen mit Modula-2`. Mr. Devillard put his code in the public domain.

strings.isiso* and strings.iso* functions

use ISO 8859/1 Latin-1 bit vector tables taken from the entropy utility ENT written
by John Walker, January 28th, 2008, Fourmilab, put in the public domain.

astro.moonriseset

Uses C functions Copyright © 2010 Guido Trentalancia IZ6RDB. This program is
freeware - however, it is provided as is, without any warranty.

astro.phase

Uses C functions taken from: http://www.voidware.com/moon_phase.htm. There
have not been any copyright remarks.

agena >> 9

astro.sunriseset

Uses C functions written as DAYLEN.C, 1989-08-16. Modified to SUNRISET.C,
1992-12-01, (c) Paul Schlyter, 1989, 1992. Released to the public domain by
Paul Schlyter, December 1992.

astro.cdate & astro.jdate

uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

strings.utf8size

of the core C code procedure has been written by mpez0, published at
StackOverflow.

strings.isutf8

of the core C code procedure has been written by written by Christoph,
published on StackOverflow.

strings.isotolatin & strings.isotoutf8

of the core C code procedures have been written by Nominal Animal published
on StackOverflow.

strings.glob

uses C code written by Arjan Kenter, Copyright 1995, Arjan Kenter.

stats.sorted

uses an iterative Quicksort algorithm written by Nicolas Devillard in 1998, put to
the public domain.

/%, *%, +%, -%, %% operators, math.dd, math.dms, math.splitdms, polar,
stats.cdf, combinat.numbcomb, combinat.numbperm, and stats.pdf

have been inspired by the TI™-30 ECO RS, TI™-30X Pro, Sharp™ EL-W531XG and
HP 35s pocket calculators.

10 Contents

E, Exp

as a constant, defines the former Maple V Release 3 implementation of E =
exp(1) = 2.71828182845904523536.

Complex arithmetic

for various mathematical functions and operators has been implemented by
primarily using Maple V Release 3, Maple V Release 4, and Maple 7.

io.getclip and io.putclip

are based on C code written by banders7, published on Daniweb.

try/catch statement

has been invented and written by Hu Qiwei for Lua 5.1 back in 2008, and has
been extended for Agena.

debug.getinfo

the 'a'/arity extension has been written by Rob Hoelz in 2012.

calc.polyfit & calc.linterp

uses C code published by Harika in 2013 at http://programbank4u.blogspot.de.

Review of the Agena interpreter at the Web

Many thanks to softpedia.com for the very kind critique and fine ranking.

linalg.det & linalg.inverse

are based on C functions written by Edward Popko published on Paul Bourke's
website at http://paulbourke.net/miscellaneous.

redo & relaunch

have been inspired by the Ruby programming language.

agena >> 11

linalg.gsolve

is based on C functions written by Edward Popko and Alexander Evans; for the
former see the link above, and for the latter the following address:
http://www.dailyfreecode.com/code/basic-gauss-elimination-method-gauss-29
49.aspx.

lnfact, dblfact, trifact, calc.Cin, calc.eta, calc.auxSiCi, calc.simaptive and
linalg.ludecomp

are based on C functions written by RLH, available at
http://www.mymathlib.com, Copyright © 2004 RLH. All rights reserved.

~=, ~<>, approx, qmdev

use methods developed by Donald Knuth.

calc.Ei & calc.Ein

uses a combination of C algorithms written by Stephen L. Moshier and RLH.

linalg.rref

is based on a C# function published at http://rosettacode.org.

linalg.forsub

is based on an algorithm explained by Timothy Vismor found on his site
http://vismor.com.

cordic package

is based on a C package written by John Burkardt, taken from
http://people.sc.fsu.edu/~jburkardt/c_src/cordic/cordic.c, with modifications
using Maple V Release 4 and TI-Nspire CX CAS. Sources provided separately.

libusb binding

is based on lualibusb1 - Lua binding for libusb 1.0, written by Tom N Harris. See:
http://lualibusb1.googlecode.com.

12 Contents

stats.extrema

is the Agena port of the `peakdet` function written by Eli Billauer for MATLAB.

mdf, xdf

have been inspired by the Sharp PC-1403H pocket computer.
os.cpuload, os.drivestat, os.getenv, os.realpath & os.setenv

are based mainly on procedures taken from Nodir Temirkhodjaev's LuaSys
package.

utils.readini

uses modified C sources written by Nicolas Devillard for his iniparser 3.1
package.

Various OS/2 operating system functions

have been made possible by the website http://www.edm2.com/os2api.

llist and heaps packages

The C implementation of singly and doubly-linked lists and AVL trees has been
accomplished by reading Michal Kottman's tip at nabble.com on how to code
new data structures using Lua's userdata and how to anchor values into the
registry. The algorithms themselves have originally been written in C by Martin
Broadhurst.

stats.dbscan & stats.neighbours

The dbscan algorithm has been invented by Martin Ester, Hans-Peter Kriegel,
Jörg Sander, and Xiaowei Xu, published at University of Munich. The Agena port
is based on a Matlab implementation written by Peter Kovesi, Centre for
Exploration Targeting, The University of Western Australia, with stats.neighbours a
C-based split-off.

hashes package

uses code published by RSA Data Security, Inc. Copyright (C) 1990. All rights
reserved. For further credits, please see the hashes.c file in the Agena sources.

agena >> 13

math.ceilpow2 and math.ilog10

use code presented by Sean Eron Anderson at his `Bit Twiddling Hacks`
webpage http://graphics.stanford.edu/~seander/bithacks.html.

os.cdrom, os.ismounted, os.isremovable, os.isvaliddrive

The Windows versions are based on code published at MSDN, page
http://support.microsoft.com/kb/165721#. The Linux version of os.cdrom is
based on Jürgen Wolf's C book `C von A bis Z`, 3rd Edition, Galileo Computing,
Bonn, 2009. The OS/2 version of os.cdrom is based on code found on the OS/2
Hobbes FTP server at NMSU, left without any copyright remarks.

os.terminate

The OS/2 version is largely based on Mark Kimes' public domain implementation.

os.monitor

The Linux version is based on Dave Drager+'s recommendation published at his
blog.

hypot2 and antilogn operators

have been inspired by the Sinclair Scientific Programmable pocket calculator.

math.eps, stats.isall, stats.isany, and linalg.reshape functions

have been inspired by Matlab.

stats.gmean

uses an algorithm taken from the COLT sources published by CERN, Geneva.

gdi.plotfn

has been improved by Slobodan from Serbia.

14 Contents

oftype metamethod

to check structures at function invocation has been proposed by Slobodan from
Serbia.

stats.durbinwatson, stats.standardise, and stats.sumdataln

have been inspired by the COLT package published by CERN, Geneva.

<<<< and >>>> operators, bytes.arshift32, bytes.extract32, bytes.replace32

have been implemented using Lua 5.2 and 5.3 code and Rupert Tombs'
arithmetic right-shift implementation.

Chapter 6.24

is based on examples published at http://www.lua.org/pil/16.html.

Exit and restart handling

via environ.onexit has been inspired by MuPAD 2.5.

with and related statements

are based on a Lua 5.1 power patch written by Peter Shook (`Unpack Tables by
Name`).

math.dms

uses an algorithms proposed by user807566 on StackOverflow.

case of boolean condition variant

has been inspired by the Go programming language.

Numeric ranges in case/of clauses

have been inspired by the Fortran 90 programming language.

agena >> 15

math.fma

for those platforms that do not provide a built-in fma C function, is based on a
method proposed by Z boson on StackOverflow.

math.signbit

for those platforms that do not provide a built-in signbit C function, is based on a
Sun Microsystems implementation.

math.signbit

Its original version has been written by Jacob Rus for Lua, taken from:
https://gist.github.com/jrus/3197011.

math.wrap

Is based on Tim Cas' answer #4633177 on StackOverflow and the restrictsymm
function of the Julia programming language.

Sinclair ZX Spectrum package

clones Spectrum ROM Z80 assembler routines disassembled by Dr. Ian Logan
and Dr. Frank O’Hara.

math.eps

optionally uses a formula suggested by trashgod on StackOverflow to compute
a small epsilon value that is suited for mathematical C double operations.

dBASE version numbers

printed in the description of xbase.attrib have been taken from:
http://stackoverflow.com/questions/3391525, answered by Les Paul.

round, mdf, and xdf

use an underlying C routine posted by Larry I Smith, see:
https://bytes.com/topic/c/answers/521405-rounding-nearest-nth-digits.

16 Contents

math.cld, math.fld, math.flipsign, math.isqrt, math.lnfact, and math.powmod

have been ported from or have been inspired by the corresponding functions
written in the Julia programming language, published under the MIT licence.

strings.appendmissing, strings.between, strings.chop, strings.chomp, strings.con-
tains, strings.uncapitalise, strings.iswrapped, strings.wrap

are ports of StringUtils functions part of the Apache Commons Lang 3.5 API.

astro.hdate and os.date ('*sdn' format)

use C functions written by Scott E. Lee, see http://www.rosettacalendar.com.

hashes.mix64 and hashes.mix64to32

use Thomas Wang's C procedures, taken from gist.github/badboy/6267743.

times

is based on the corresponding Haskell function iterate.

for/until loops

have been inspired by COBOL.

math.sincos

uses Elliot Saba's sincos implementation.

math.accu

uses Julia Language's Kahan-Babuška-Neumaier compensated summation.

hashes.droot, hashes.parity, hashes.reflect

use Henry S. Warren's code published with his book `Hacker's Delight`.

agena >> 17

hashes.pjw, hashes.rs, hashes.bp

are based on C functions written by Arash Partow.

map/@ extension to support function composition & reduce

have been inspired by Slobodan's feedback and an excellent introduction to
functional programming written by Mary Rose Cook.

bloom filter plus package

is based on C code created by Simon Howard, see Appendix B9 for ISC licence.

factory plus package

has been inspired by the `functools` package in Python 3.

strings.a64, hashes.sha256 and hashes.sha512

use C code from the musl-1.1.19/1.2.4 libraries, MIT licenced.

? statement, prepend, linalg.iszero, linalg.isallones, thus indirectly satisfy

have been inspired by the Axiom Computer Algebra System.

getorset

has been inspired by the `getOrElseUpdate` operator in the Scala
programming language.

if is operator and compound assignments, +:=, -:=, etc.

have been inspired by Algol 68.

bytes.pack, bytes.packsize, bytes.unpack, tables.move, and the utf8 package
have been taken from Lua 5.3.5 or Lua 5.4.0 RC 4 (utf8, move).

18 Contents

GMP 6.1.2 port for OS/2
compiled by KO Myung-Hun has been used to compile the mp binding.

dual package
uses definitions primarily found at blog.demofox.org and adl.stanford.edu.

os.iterate
has been derived from listing published in `Programming in Lua` 2nd Ed.,
pp 271f., by Roberto Ierusalimschy.

com package
is largely based on the LuaSys package v1.8, written by Nodir Temirkhodjaev.

assignments in conditions of while loops, if and case of statements
were inspired by Icon and C.

duplicate parser warnings for duplicate local variable declaration
have originally been designed by Domingo Alvarez Duarte for Lua 5.1.

shift
has been written by StackOverflow user ryanpattison for Lua.

type anything and more or less constants
have been inspired by Maple.

erfcx, calc.scaleddawson, calc.w
use code written by Steven G. Johnson, October 2012, MIT licence.

os.getip, os.netuse, os.netsend & os.netdomain
use code written by Antonio Escaño Scuri for the NTLua 3.0 package,
MIT licence. Non-Windows code in os.getip by Smitha Dinesh Semwal.

utils.decodeb85 and utils.encodeb85

The Base85 functions have been originally written in C by Rafa Garcia, Copyright
(c) 2016-2018, published under the MIT licence.

agena >> 19

utils.decodea85 and utils.encodea85

The ASCII85 conversion functions have been written in C by Luiz Henrique de
Figueiredo, placed in the public domain.

strings.pack, strings.packsize and strings.unpack

have been taken from Lua 5.4.4, Lua.org, PUC-Rio, MIT licence.

bimaps package
has originally been written by Pierre 'catwell' Chapuis for Lua.
Copyright (C) 2013-2015 by Pierre Chapuis. MIT licence.

heaps package
is based on a Lua package written by Geoff Leyland, New Zealand.
Copyright (c) 2008-2011 Incremental IP Limited. MIT licence.

factory.curry function
has originally been written by Rici Lake for Lua 5.x.

tuples package
is based on functions written by Roberto Ierusalimschy.

strings.walker
implements C code written by John Walker, Fourmilab.

aconv package
is based on the Lua-iconv 7 package for Lua 5.1, 2005 - 2011, MIT licence,
written by Alexandre Erwin Ittner.

factory.anyof & environ.callable
have both originally been conceived and written by Gary V. Vaughan in Lua,
included in his lyaml package for Lua 5.x, MIT licenced.

regex package
has originally been written by Reuben Thomas and Shmuel Zeigerman for Lua
5.1 to 5.4, 2000 - 2020, MIT licence. They are also the authors of the
documentation.

20 Contents

json package
has originally been written by David Heiko Kolf for Lua 5.1+,
Copyright (C) 2010-2021, MIT licenced.

AgenaEdit GUI

The GUI is based on an editor published under the GPL licence and written by
Bill Spitzak and others for FLTK 1.3 http://www.fltk.org.
Thanks to Albrecht Schlosser for making the editor work with Agena.

erf (2-arg mode), math.chi, stats.binompdf, stats.binomd, stats.poisson and
stats.poissond

have been inspired by Texas Instrument's Derive 6.1 Computer Algebra
System.

calc.Psi in 2-arg mode uses MIT-licenced C functions written by Tom Minka.

calc.gammainc, stats.gammcdf and stats.gammapdf
are based on code written by CRBond, (C) 1993, C. Bond. All rights reserved.

combinat.choose and combinat.permute
are ports of functions of the same name as found in Maple V Release 4,
Copyright (c) 1991 by the University of Waterloo. All rights reserved.

The Red-black tree implementation
has been written by Mathieu Rabine, MIT licenced.

The Base32 implementation of utils.decodeb32 and utils.encodeb32

has been written by Copyright (c) 2010 Adrien Kunysz, MIT licenced.

linalg.eigen & linalg.eigenval

have originally been written by Copyright (c) 1996 Frank Uhlig et al. and
2009 Genome Research Ltd (GRL)., MIT licenced.

agena >> 21

Recursive descent algorithm
for nested tables used by functions map and subs has been originally written
in C by Chaos, Shanghai, PRC, and posted on StackOverflow in 2020

Finally, due to very kind help and feedback, in chronological order

Many thanks to the Lua team at PUC-Rio, Brazil, and to Agena users in Israel, Italy,
Australia, Palestine, Poland, Serbia, the OS/2 community, and to all the users of
other nations.

22 Contents

Table of Contents

734.6.1 Numbers .
734.6 Arithmetic .
734.5 Precedence .
714.4 Deletion and the null Constant .
714.3 Enumeration .
694.2 Assignment .
684.1 Names, Keywords, and Tokens .
674 Data & Operations .

623.18 Using Packages .
613.17 Writing, Saving, and Running Programmes .
613.16 Comments .
603.15 Procedures .
583.14 Loops .
573.13 Conditions .
573.12 Pairs .
573.11 Sequences .
563.10 Sets .
553.9 Tables .
553.8 Booleans .
543.7 Strings .
543.6 Arithmetic .
543.5 Assignment and Unassignment .
533.4 Useful Statements .
523.3 Getting Familiar .
513.2 Input Conventions in AgenaEdit .
513.1 Input Conventions in the Console Edition .
513 Summary .

482.8 Installing Library Updates .
472.7 Agena Initialisation .
472.6 Mac OS X 10.5 and above .
462.5 DOS .
462.4 OS/2 Warp 4, eComStation and ArcaOS .
442.3 Windows .
432.2 Linux .
432.1 Sun Solaris 10 .
432 Installing and Running Agena .

381.5 Origins .
371.4 History .
361.3 In Detail .
351.2 Features .
351.1 Abstract .
351 Introduction .

agena >> 23

1475.2.6 for/in Loops over Strings .
1475.2.5 for/in Loops over Sequences and Registers .
1455.2.4 for/in Loops over Tables .
1455.2.3 for/downto Loops .
1435.2.2 for/to Loops .
1405.2.1 while Loops .
1405.2 Loops .
1395.1.6 case of Statement .
1385.1.5 case Statement .
1375.1.4 Short-cut Condition with ? and ?- Tokens .
1375.1.3 if Operator, Version Two .
1365.1.2 if Operator, Version One .
1335.1.1 if Statement .
1335.1 Conditions .
1335 Control .

1294.17 Other Types .
1294.16 Exploring the Internals of Structures .
1254.15 Registers .
1224.14 Pairs .
1224.13 More on the create Statement .
1204.12 Stack Programming .
1154.11 Sequences .
1124.10 Sets .
1124.9.7 Defining Multiple Constants Easily .
1114.9.6 Unpacking Tables by Name .
1104.9.5 Table References .
1084.9.4 Table Functions .
1054.9.3 Table, Set and Sequence Operators .
1034.9.2 Dictionaries .
994.9.1 Arrays .
984.9 Tables .
964.8 Boolean Expressions .
904.7.7 Patterns and Captures .
904.7.6 Comparing Strings .
874.7.5 String Operators and Functions .
874.7.4 Concatenation .
864.7.3 Escape Sequences .
854.7.2 Substrings .
844.7.1 Representation .
844.7 Strings .
824.6.8 Adapting Basic Arithmetic Operators .
824.6.7 Range of Values .
804.6.6 Comparing Values .
794.6.5 Complex Math .
794.6.4 Mathematical Constants .
774.6.3 Increment, Decrement, Multiplication, Division .
754.6.2 Arithmetic Operations .

24 Contents

2056.25 Assigning Tables to Procedures .
2046.24 OOP-style Methods on Tables .
2046.23 Self-defined Binary Operators .
2016.22 Closures: Procedures that Remember their State .
2006.21 Extending Built-in Functions .
1986.20 Memory Management, Garbage Collection, and Weak Structures
1906.19 Overloading Operators with Metamethods .
1906.18.3 Functions for Remember Table Administration .
1886.18.2 Read-Only Remember Tables .
1866.18.1 Standard Remember Tables .
1866.18 Remember Tables .
1846.17.2 The initialise Function .
1836.17.1 Writing a New Package .
1836.17 Packages .
1816.16 Altering the Environment at Run-Time .
1806.15 Sandboxes .
1806.14 Access to Loop Control Variables within Procedures .
1786.13 Scoping Rules .
1776.12 User-Defined Procedure Types .
1766.11 Shortcut Procedure Definition .
1756.10 Procedures that Return Procedures .
1746.9 Multiple Returns .
1736.8.7 Trapping Errors with pre and post clauses .
1726.8.6 Trapping Errors with the try/catch Statement .
1716.8.5 Trapping Errors with protect/lasterror .
1716.8.4 The assume Function .
1706.8.3 Checking the Type of Return of Procedures .
1686.8.2 Type Checks in Procedure Parameter Lists .
1686.8.1 The error Function .
1686.8 Error Handling .
1666.7 Type Checking .
1666.6 Passing Options in any Order .
1636.5 Optional Arguments .
1636.4 Changing Parameter Values .
1636.3 Global Variables .
1616.2 Local Variables .
1596.1 Procedures .
1596 Programming .

1565.2.15 Alternative to Closing Keywords .
1555.2.14 with Statement for Dictionaries .
1545.2.13 Scope II: with Statement .
1545.2.12 Scope I: scope and epocs .
1525.2.11 Loop Jump Control .
1515.2.10 for/as & for/until Loops .
1505.2.9 for/while and for/until Loops .
1485.2.8 for/in Loops over Procedures .
1475.2.7 for/in Loops over Sets .

agena >> 25

43110.6 numarray - Numeric C Arrays .
42910.5 Pairs .
42610.4.2 registers Library .
41410.4.1 Operators & Functions .
41410.4 Registers .
41010.3.2 sequences Library .
39910.3.1 Operators & Functions .
39910.3 Sequences .
39210.2 Sets .
38310.1.2 tables Library .
37210.1.1 Operators & Functions .
37110.1 Tables .
37110 Structures .

3659.7 regex - Regular Expression Matching .
3629.6 bloom - Bloom Filter .
3449.5 hashes - Hashes .
3429.4 aconv - Internationalization .
3409.3 utf8 - UTF-8 Helpers .
3269.2 memfile - Memory File for Strings .
3249.1.4 Format Strings for Pack and Unpack .
3229.1.3 Patterns .
2889.1.2 The strings Library .
2829.1.1 Operators and Functions .
2819.1 Basic String Functions .
2819 Strings .

2258 Basics .

2217 The Libraries .

2156.31 The Registry .
2156.30 Userdata and Ligthuserdata .
2156.29 Numeric C Arrays .
2126.28 Linked Lists .
2116.27.10 INI Files .
2116.27.9 dBASE III/IV Files .
2116.27.8 XML Files & JSON Objects .
2116.26.7 CSV Files .
2106.27.6 Interaction with Applications .
2106.27.5 Locking Files .
2106.27.4 Default Input, Output, and Error Streams .
2096.27.3 Keyboard Interaction .
2086.27.2 Writing Text Files .
2076.27.1 Reading Text Files .
2076.27 I/O .
2076.26 Summary on Procedures .

26 Contents

60211.11 zx - Sinclair ZX Spectrum Functions .
60011.10 cordic - Numerical CORDIC Library .
59511.9 astro - Astronomy Functions .
59211.8 clock - Clock Package .
58911.7 dual - Dual Numbers .
58511.6 divs - Library to Process Fractions .
57911.5 mpf - GNU Multiple Precision Floating-Point Reliable Library
57711.4.5 Miscellaneous .
57611.4.4 Bitwise Operations .
57411.4.3 Number Theoretic Functions .
57311.4.2 Signed and Unsigned Integer Arithmetic .
57211.4.1 Creation of Signed and Unsigned Integers .
57211.4 mp - GNU Multiple Precision Arithmetic Library .
56911.3.3 Complex Domain .
56411.3.2 Real Domain .
56411.3.1 Introduction .
56411.3 mapm - Arbitrary Precision Library .
54611.2 bytes Library .
54411.1.3 fastmath Library .
51611.1.2 math Library .
48811.1.1 Operators and Functions .
48511.1 Mathematical Functions .
48511 Numbers .

47910.14.2 Functions .
47810.14.1 Metamethods .
47710.14 lookup - Lookup Tables .
47410.13 tuples - Closures Storing Data .
47110.12 bfield - Bit Fields .
46810.11.2 Functions .
46810.11.1 Metamethods .
46710.11 rbtree - Red-Black Trees .
46510.10.5 Skew Heap Functions .
46310.10.4 AVL Tree Functions .
46210.10.3 Binary Heap Functions .
46210.10.2 Metamethods .
46110.10.1 Introduction and Examples .
46110.10 heaps - Priority Queues .
45910.9 bimaps - Bi-directional Maps .
45610.8 bags - Mulitsets .
45310.7.4 Doubly-Linked Lists .
45010.7.3 Unrolled Singly-Linked Lists .
44710.7.2 Functions .
44610.7.1 Introduction and an Example .
44610.7 llist - Linked Lists .
44510.6.3 Metamethods .
43410.6.2 Functions .
43110.6.1 Introduction .

agena >> 27

91315.2 fractals - Library to Create Fractals .
90015.1.9 GDI Functions .
90015.1.8 Colours, Part 2 .
89915.1.7 Plotting Geometric Objects Easily .
89915.1.6 Plotting Graphs of Univariate Functions .
89815.1.5 Supported File Types .
89815.1.4 Closing a File or Window .
89815.1.3 Colours, Part 1 .
89715.1.2 Plotting Functions .
89715.1.1 Opening a File or Window .
89715.1 gdi - Graphic Device Interface package .
89715 Graphics .

88814.9 debug - Debugging .
88714.8 Coroutines .
88414.7 sema - Unique Identifiers .
86514.6 stack - Built-In Number, Character & Value Stacks .
86414.5 registry - Access to the Registry .
86114.4 rtable - Remember Tables .
86014.3 package - Modules .
84714.2 environ - Access to the Agena Environment .
80514.1 os - Access to the Operating System .
80514 System & Environment .

79913.3 com - Serial RS-232 Communication through COM Ports
79713.2 usb - libusb Binding .
78813.1.2 Functions .
78313.1.1 Introduction and Examples .
78313.1 net - Network Library .
78313 Communication .

77812.8 gzip - Library to Read and Write UNIX gzip Compressed Files
77612.7 tar - UNIX tar .
77412.6 json - JSON Structures .
76812.5 xml - XML Parser .
75812.4 ads - Agena Database System .
74312.3 xbase - Library to Read and Write xBase Files .
73312.2 binio - Binary File Package .
71712.1 io - Input and Output Facilities .
71712 Input & Output .

71111.16 combinat - Combinatorics .
69211.15 long - 80-Bit Floating-Point Arithmetic .
65411.14 stats - Statistics .
64011.13 linalg - Linear Algebra Package .
61011.12 calc - Calculus Package .

28 Contents

1049Index .

1047C1: Further Reading .
1047Appendix C .

1046B10 Other Copyright Remarks .
1045B9 ISC Licence .
1045B8 David Schultz's Openlibm Licence .
1044B7 RSA Security/MD5 Licence .
1044B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library)
1042B5 SOFA Software Licence .
1033B4 GNU Lesser General Public Licence .
1033B3 Sun Microsystems Licence for the fdlibm IEEE 754 Style Arithmetic Library . . .
1026B2 GNU GPL v2 Licence .
1026B1 Agena Licence .
1026Appendix B .

1025A10 Some Few Technical Notes .
1024A9 Backward Compatibility .
1024A8 Escape Sequences .
1021A7 The Agena Initialisation File .
1020A6 Define Your Own Printing Rules for Types .
1020A5.5 Command Line Switches .
1019A5.4 Running Scripts in UNIX and Mac OS X .
1019A5.3 Running a Script and then Entering Interactive Mode .
1017A5.2 Using the Internal args Table and Exit Status .
1017A5.1 Using the -e Option .
1017A5 Command-Line Usage & Scripting .
1015A4 System Variables .
1014A3 Mathematical Constants .
1012A2 Metamethods .
1011A1 Operators .
1011Appendix A .

94917 C API Functions .

94616.4 units - Physical Unit Conversion .
94216.3 factory - Iterators .
93416.2 skycrane - Auxiliary Functions .
92116.1 utils - Utilities .
92116 Utilities .

agena >> 29

30 Contents

Part One

Primer

agena >> 31

32 1 Agena

Chapter One

Introduction

agena >> 33

34 1 Agena

1 Introduction

1.1 Abstract

Agena is a procedural programming language designed for scientific,
educational, linguistic, and many other applications, including scripting.

Agena provides real and complex arithmetic, graphics, efficient text processing,
flexible data structures, intelligent procedures, package management, plus various
multi-user configuration facilities.

Its syntax looks like very simplified Algol 68 with elements taken primarily from Maple,
Lua and SQL. It has been implemented on the ANSI C sources of Lua 5.1 created
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.

Agena binaries are available for Solaris, Linux, Windows, OS/2, Mac OS X, Raspberry
Pi, and DOS.

You may download Agena, its sources, and its manual from

http://sourceforge.net/projects/agena.

1.2 Features

Agena combines features of Lua 5, Maple, Algol 60, Algol 68, ABC, SQL, ANSI C and
BASIC.

Agena provides all the common functionality found in imperative languages:

� statements,
� loops,
� conditions,
� procedures.

It also has extended programming features described later in this manual, such as:

� high-speed processing of extended data structures,
� fast string and mathematical operators,
� extended conditionals,
� abridged and extended syntax for loops,
� special variable increment, decrement and deletion statements,
� efficient recursion techniques,
� arbitrary precision mathematical libraries,
� a network package to exchange data over the Internet and LANs,
� easy-to-use package handling,
� and much more.

Like Lua, Agena is untyped and includes the following basic data structures:
numbers, strings, booleans, tables, and procedures. In addition to these types, it

agena >> 35

also supports Cantor sets, sequences, registers, pairs, complex numbers, linked lists,
and multisets. With all of these types, you can build applications easily.

1.3 In Detail

Agena offers various flow control facilities such as

� if/elif/else conditions,
� case of/else conditions similar to C's switch/case statements,
� if operator to return alternative values,
� numerical for/from/to/downto/by loops with optional start, stop and step values,

and automatic round-off error correction of iteration variables,
� combined for/while and for/until loops,
� for/in loops over strings and complex data structures,
� while and do/as loops similar to Modula's while and repeat/until iterators,
� do/od loops equal to the ones in Maple,
� a skip statement to prematurely trigger the next iteration of a loop,
� a break statement to prematurely leave a loop,
� a do nothing statement which does not do anything,
� fast and easy data type validation with the optional double colon facility in

parameter lists.

Data types provided are:

� rational and complex numbers with extensions such as infinity and undefined,
� strings,
� booleans such as true, false, and fail,
� the null value depicting the absence of a value,
� multipurpose tables implemented as associative arrays to hold any kind of data,

taken from Lua,
� Cantor sets as collections of unique items,
� sequences and registers, i.e. vectors, to internally store items in strict sequential

order,
� pairs to hold two values or pass options to procedures,
� threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types have been built into the
Agena kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

� the << (args) -> expression >> syntax to easily define simple functions,
� user-defined types for procedures to allow individual handling,
� uder-defined types for tables, sets, sequences, registers and pairs,
� a facility to return predefined results,
� remember tables for high-speed recursion,
� closures which let functions remember their state, taken from Lua,

36 1 Agena

� the nargs system variable which holds the number of arguments actually
passed to a procedure,

� metamethods to define operations for tables, sets, sequences, registers and
pairs, inherited from Lua,

� OOP-style methods for tables,
� self-defined binary operators.

Some other features are:

� graphics in the Solaris, Mac, 32-bit Linux, Raspberry Pi, and Windows editions,
provided by the gdi package,

� IPv4 networking with the Internet and LANs,
� functions to support fast text processing,
� configuration of user's environment via the Agena initialisation file,
� an easy-to-use package system also providing a means to both load a library

and define short names for all package procedures at a stroke,
� the binio package to easily write and read files in binary mode,
� facility to store any data to a file and read it back later,
� undergraduate Calculus, Linear Algebra, and Statistics packages,
� enumeration and multiple assignment,
� transfer of the last iteration value of a numeric for loop to its surrounding block,
� scope control via the scope/epocs keywords,
� efficient stack programming facilities,
� bitwise operators,
� direct access to the file system,
� arbitrary precision mathematical libraries,
� dBASE, XML, CSV, INI, GZIP and TAR file support,
� a simple editor called AgenaEdit for Solaris, Windows, Mac OS X and Linux.

Agena includes all the packages that are part of Lua 5.1. Some of the very basic
Lua library functions have been transformed to Agena operators to speed up
execution of programmes. The Lua mathematical and string handling packages
have been tuned and extended with new features.

Agena code is not compatible to Lua. Its C API, however, has been left unchanged
and many new API functions have been added. As such, you can integrate any C
package you have already written for Lua by just replacing the Lua- specific header
files, see Chapter 17.

1.4 History

I have been dreaming of creating my own programming language for the last 35
years, with my first rather unsuccessful attempt on a Sinclair ZX Spectrum in the early
1980s.

Plans became concrete in 2005 when I learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser started with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in

agena >> 37

summer 2007. Most of Agena's basic functionality had been completed in March
2008, followed by the first new data structure, Cantor sets, one month later, some
more data structures, and a lot of fine-tuning and testing thereafter. Finally, in
January 2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 68, Maple, Algol 60, and ABC, and my various ideas on the `perfect`
language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not been
met. For example, the syntax is not always consistent: you will find Algol
68-style elements in most cases, but also ABC/SQL-like syntax for basic operations
with structures. The primary reason for this is that sometimes natural language
statements are better to reminisce. I have stopped bothering about this
inconsistency issue.

After almost four years of development, Agena 1.0 has been released in August
2010.

1.5 Origins

Most of all functionality stems from Lua, Maple and C. Some of my favourite
additions to the Lua C sources include:

Maple V Release 3 and later

� if/elif/else/fi, for/while, map, remove, select, selectremove, subs, subsop,
member, readlib, package management, library.agn, agena.ini, read, save,
substrings, Cantor sets and its operators, sequences, remember tables, in,
nargs, op(s), restart, tables.indices, the linalg package, maybe all the pretty
printers, argument type checks, :: type checks, and multiple :: type parameter
checks, surely all mathematical functions and complex arithmetic, and much,
much more.

The Maple language has been designed by Michael B. Monagan, Keith O.
Geddes, K. M. Heal, George Labahn, and S. M. Vorkoetter for Waterloo Maple
Inc./Maplesoft, Waterloo, Ontario. It is loosely based on Algol 68.

This is also why Agena looks a lot like Maple, and thus somewhat like:

38 1 Agena

Algol 68

has many times been called the queen of all programming languages and
Agena's

� case/of/esac control

has originally been introduced with Algol 68.

Algol 60

� entier.

Algol 60 is the parent of Algol 68.

Modula-2

� inc and dec.

C

� printf, and most of Lua's system functions,
� compound operators such like c++, etc.

C actually is a descendent of Algol 68.

COBOL

� for/until loops.

Sinclair ZX Spectrum BASIC

� clear, cls, int.

SQL and ABC

� insert/into and thus indirectly create, delete/from, and pop/from.

PL/I and REXX

� Some of the strings library functions have been taken from PL/I and REXX.

agena >> 39

Eiffel

� Checking the return type of procedures with the proc(···) :: <typename>

statement has been taken from this language.

Ada and Perl

� inspired the skip when, break when and return when statements.

40 1 Agena

Chapter Two

Installing & Running Agena

agena >> 41

42 2 Installing and Running Agena

2 Installing and Running Agena

2.1 Sun Solaris 10

In Sun Solaris, and some of its forks, e.g. OpenSolaris, put the gzipped Agena
package into any directory. Assuming you want to install the Sparc version,
uncompress the package by entering:

> gzip -d agena-x.y.z-sol10-sparc-local.gz

Then install it with the Solaris package manager:

> pkgadd -d agena-x.y.z-sol10-sparc-local

This installs the executable into the /usr/local/bin folder and the rest of all files into
/usr/agena. The /usr/agena/lib directory is called the `main Agena library folder`.

Make sure you have the expat, fontconfig, freetype, libg2, libgmp-10, jpeg, libgcc,
libgd, libiconv, libintl, libncurses, libmpfr-6, libpng, pcre-2.8, readline, (lib)xpm, and
zlib libraries installed. From the command line, type agena and press RETURN.

Image 1: Start-up message in Solaris

The procedure for OpenSolaris and Solaris for x86 CPUs is the same. The package
always installs as SMCagena.

2.2 Linux

On Debian based x86 distributions, install the 32-bit Stretch deb installer by typing:

> sudo dpkg -i --force-all agena-x.y.z-raspi.stretch.i386.deb

On Red Hat systems, install the rpm distribution by typing as root:

> rpm -ihv --nodeps agena-x.y.z-linux-i386.rpm

This installs the executable into the /usr/local/bin folder and the rest of all files into
/usr/agena. The /usr/agena/lib directory is called the `main Agena library folder`.

agena >> 43

Note that you must have the expat, fontconfig, freetype, libg2, libgmp-10,
libjpeg62, libgcc, libgd (version 2.0.36 or earlier), libiconv, libintl, libmpfr-6,
libncurses, libpng12, libreadline6, (lib)xpm, pcre-2.8, x11proto-xext-dev and zlib
libraries installed before.

If you have no jpeg library installed on your system, also install libjpeg62. Warning:
overinstalling libjpeg*turbo with libjpeg62 may totally corrupt your system, as
happened on a Raspberry Pi.

From the command line, type agena and press RETURN.

The name of the Linux package is agena.

2.3 Windows

Just execute the Windows binary installer, and choose the components you want to
install.

Make sure you either let the installer automatically set the AGENAPATH environment
variable containing the path to the main Agena library folder (the default) or set it
later manually in the Windows Control Panel, via the `System` menu.

Image 2: Leave the framed settings checked

44 2 Installing and Running Agena

WARNING: If your system environment variable PATH already consists of 8,000 or
more characters, do NOT select the 'Append path to Agena binary to PATH' option,
as this might corrupt the PATH setting.

You may start Agena either via the Start Menu, or by typing agena in a shell.

Image 3: Start-up message in Windows

If you do not have administrative rights to start the installer, or want to use the
interpreter on a removable stick, download the portable version of Agena available
at Sourceforge.net and study the readme.w32 file.

For the portable version:

In an NT shell, create a folder called `agena` anywhere on your drive, change into
this folder and decompress this ZIP file into it preserving the subdirectory structure of
the ZIP file, which should now look like this:

 <DIR> bin
 687,461 change.log
 <DIR> doc
 <DIR> lib
 2,114 licence
 862 readme.w32
 475 run.bat <-- start-up batch file
 <DIR> share <-- includes icons

Then create a desktop shortcut to the batch file `run.bat` that resides at the root of
the installation. Choose an icon located in the `share\icons` folder to beautify the
shortcut. Recommendation: `agena256.ico` for Windows 2003 Server and above
(e.g. XP, Vista, and above) and `agena128x128.ico` for Windows 2000/Windows
2000 Server.

Check the properties of the shortcut to be sure that the value in field "Start in" is the
path to the root Agena folder, e.g. `C:\agena`, and not to `C:\agena\bin` or
anything else.

agena >> 45

2.4 OS/2 Warp 4, eComStation and ArcaOS

The WarpIN installer allows you to choose a proper directory for the interpreter, and
then installs all files into it.

The dependencies are: WarpIN & kLIBC & ncurses; install using YUM:

yum install libc readline ncurses gmp pcre-2.8

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena library folder (the WarpIN
default) by leaving the `Modify CONFIG.SYS` entry in the System Configuration
window checked, or set it later by manually editing config.sys.

Just enter agena in a shell to run the interpreter, or double-click the Agena icon in
the programme folder. Agena may require EMX runtime 0.9d fix 4 or higher in OS/2.

2.5 DOS

In DOS, create a folder called agena anywhere on your drive, change into this
directory and decompress the agena.zip file into this folder preserving the
subdirectory structure of the ZIP file.

Now set the environment variable AGENAPATH in the autoexec.bat file. Use a text
editor for this. For example, if you installed Agena into the folder c:\agena, and the
library.agn file is in the lib subfolder, enter the following line into the autoexec.bat
file:

 set AGENAPATH=c:/agena/lib

Note the forward slash in the path and the variable name in capital letters.

Also append the path to the agena folder to the PATH system variable using
backslashes, so that the entry looks something like this:

 PATH C:\;C:\NWDOS;C:\AGENA\BIN

Although it is not necessary in FreeDOS 1.1 or later, at least with Novell DOS 7, you
must install CWSDPMI.EXE delivered with the DJPGG edition of GCC as a TSR
programme before starting Agena. The binary can be found in the DJGPP
distribution.

In order to always load this TSR when booting your computer, open the
autoexec.bat file with a text editor. Assuming the CWSDPMI.EXE file is in the c:\tools
folder, add the following line:

 loadhigh c:\tools\cwsdpmi.exe -p

46 2 Installing and Running Agena

Novell DOS's command line history works correctly on the Agena prompt.

2.6 Mac OS X 10.5 and above

Simply double-click the agena-x.y.z-mac.pkg installer in the file manager and follow
the instructions. Do not choose an alternative destination for the package.

The Agena executable is copied into the /usr/local/bin folder, supporting files into
/usr/agena, and the documentation to /Library/Documentation/Agena. The
/usr/agena/lib directory is called the `main Agena library folder`.

Note that you may have to install the readline and pcre-2.8 libraries before.

From the command line, type agena and press RETURN.

2.7 Agena Initialisation

When you start Agena, the following actions are taken:

1. The standard packages are initialised so that they become available to the user
immediately.

2. All global values are copied from the _G table to its copy _origG, so that the
restart function can restore the original environment if invoked.

3. The system variables libname and mainlibname pointing to the main Agena
library folder and optionally to other folders is set by either querying the
environment variable AGENAPATH or - if not set - checking whether the current
working directory contains the string /agena or any other eligible folder name,
building the path accordingly.

The main Agena library folder contains library files with file suffix agn written in the
Agena language, or binary files with the file suffix so or dll originally written in
ANSI C.

In UNIX, Mac OS X, and Windows, if the path could not be determined as
described before, libname and mainlibname are by default set to
/usr/agena/lib in UNIX and Mac OS X, and %ProgramFiles%\agena\lib in
Windows, if these directories exist and if the user has at least read permissions for
the respective folder. The libname variable is used extensively by the import
and readlib functions that initialise packages. If it could not be set, many
package functions will not be available.

4. Searching all paths in libname from left to right, Agena tries to find the standard
Agena library library.agn and if successful, loads and runs it. The library.agn
file includes functions written in Agena that complement the C libraries. If the
standard Agena library could not be found, a warning message, but no error, is
issued. If there are multiple library.agn files in your path, only the first one found

agena >> 47

is initialised.

5. The global Agena initialisation file - if present - with file name agena.ini is
searched by traversing all paths in libname from left to right. As with
library.agn, this file contains code written in Agena that an administrator may
customise with pre-set variables, auxiliary procedures, etc. If the initialisation file
does not exist, no error will be issued. If there are multiple Agena initialisation files
in your libname path, only the first one found is processed.

In UNIX based systems, the name of the initialisation file may also be .agenainit.
If both an .agenainit and an agena.ini file exist, then .agenainit will be read
first.

6. The user's personal Agena initialisation file called agena.ini (optionally
.agenainit in UNIX) - if present - is searched in the user's home folder and run. If
this initialisation file does not exist, no error will be issued. After that the Agena
session begins. See Appendix A6 for further details.

In UNIX based systems, if both the .agenainit and agena.ini files exist, then
.agenainit will be read first.

7. The path to the current user's home directory is assigned to the environ.homedir
environment variable.

2.8 Installing Library Updates

Sometimes, library updates are provided at Sourceforge if library functions written in
the Agena language have been patched or also if new functions written in the
language have been developed.

For instructions on how to easily install such an update, have a look at the
libupdate.readme file residing on the root of the agena-x.y.z-updaten.zip archive
which can be downloaded from the Binaries Agena Sourceforge folder.

In general, the updates can be installed by just unpacking the respective ZIP
archive into the main Agena folder.

A library update can be installed on every supported operating system, but you
may need administrative rights.

48 2 Installing and Running Agena

Chapter Three

Overview

agena >> 49

50 3 Overview

3 Summary

Let us start by just entering some commands that will be described later in this
manual so that you can get acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

On UNIX-based systems or DOS, type agena in a shell to start the interpreter. On OS/2
and Windows, either click the Agena icon in the programme folder or type agena in
a shell.

3.1 Input Conventions in the Console Edition

Any valid Agena code can be entered at the console with or without a trailing
colon or semicolon:

� If an expression is finished with a colon, it is evaluated and its value is printed at
the console.

� If the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed on screen.

You may optionally insert one or more white spaces between operands in your
statements.

3.2 Input Conventions in AgenaEdit

The Windows, Solaris, Mac OS X and Linux distributions contain an editor providing
syntax-highlighting and the facility to run the code you edited. You may start
AgenaEdit via the Start Menu, or by typing agenaedit in a shell.

Any valid Agena code can be entered in the editor with or without a trailing
semicolon.

The output of an Agena programme typed into the editor is displayed in a second
window:

� Hit the F5 key to compute all statements you entered.

� Consecutive statements can be executed by selecting them and hitting the F6
key.

� To display results in the output window, pass the respective expression to the
print function, e.g.:

print(exp(2*Pi*I)) or a := 1; print(a);

You may optionally insert one or more white spaces between operands in your
statements.

agena >> 51

3.3 Getting Familiar

Assume you would like Agena to add the numbers 1 and 2 and show the result.
Then type:

> print(1+2)
3

If you want to store a value to a variable, type:

> c := 25;

Now the value 25 has been stored to the name c, and you can refer to this number
by the name c in subsequent calculations.

Assume that c is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> print(1.8*c + 32);
77

There are many functions available in the kernel and in various libraries. To compute
the inverse sine, use the arcsin operator:

> print(arcsin(1));
1.5707963267949

The root function determines the n-th root of a value:

> print(root(2, 3));
1.2599210498949

52 3 Overview

3.4 Useful Statements

Instead of using print, you may also output results by entering an expression and
completing it with a colon - this also works with expressions spread across multiple
lines:

> root(2, 3):
1.2599210498949

The global variable ans always holds the result of the last statement you completed
with a colon.

> ln(2*Pi):
1.8378770664093

> ans:
1.8378770664093

The console screen can be cleared by just entering the keyword cls:

> cls

The restart statement resets Agena to its initial state, i.e. clears all variables you
defined in a session.

> restart

The bye statement quits a session - you can also press CTRL+C, alternatively.

> bye

If you would like to automatically run a procedure before restarting or quitting
Agena, just assign this procedure to the name environ.onexit. See the description
of the bye statement in Chapter 8 for more details.

If you prefer another Agena prompt instead of the predefined one, assign for
example:

> _PROMPT := 'Agena$ '

Agena$ _

You may put this statement into the initialisation file in the Agena library or your
home folder, if you do not want to change the prompt manually every time you
start Agena. See Appendix A6 for further detail.

Agena$ restart;

agena >> 53

3.5 Assignment and Unassignment

As we have already seen, to assign a number, say 1, to a variable called a, type:

> a := 1;

Variables can be deleted by assigning null or using the clear statement. The latter
also immediately performs a garbage collection. Note the usage of the colon to
print results easily.

> a := null:
null

> clear a;

> a:
null

3.6 Arithmetic

Agena supports both real and complex arithmetic with the + (addition), -
(subtraction), * (multiplication), / (division) and ^ (exponentiation) operators:

> 1+2:
3

Complex numbers can be entered using the I constant or the ! operator:

> exp(1+2*I):
-1.1312043837568+2.4717266720048*I

> exp(1!2):
-1.1312043837568+2.4717266720048*I

3.7 Strings

A text can be put in single or double quotes:

> str := 'a string':
a string

Substrings are extracted by passing an index or index range:

> str[3], str[3 to 6]:
s stri

Concatenation, search, and replacement:

> str := str & ' and another one, too':
a string and another one, too

> instr(str, 'another'):
14

> replace(str, 'and', '&'):
a string & another one, too

54 3 Overview

There are various other string operators and functions available.

3.8 Booleans

Agena features the true, false, and fail constants to represent Boolean values. fail
may be used to indicate a failed computation. The operators <, >, =, <>, <=,
and >= compare values and return either true or false. The operators and, or,
not, nand, nor, xor and xnor combine Boolean values.

> 1 < 2:
true

> true or false:
true

You can also do arithmetic with numbers and Booleans where true depicts 1 and
false, fail or null 0. Also, applying the unary minus operator to Booleans will convert
them to either the numbers 0 or -1.

3.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

> tbl := [
> 1 ~ ['a', 7.71],
> 2 ~ ['b', 7.70],
> 3 ~ ['c', 7.59]
>];

To get the subtable ['a', 7.71] indexed with key 1, and the second value 7.71 in
this first subtable, input:

> tbl[1]:
[a, 7.71]

> tbl[1, 2]:
7.71

You can get a subtable by providing a range with a lower and an upper bound,
here 2 and 3, respectively:

> tbl[2 to 3]:
[2 ~ [b, 7.7], 3 ~ [c, 7.59]]

The insert statement adds further values into a table.

> insert ['d', 8.01] into tbl

> tbl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01]]

agena >> 55

Alternatively, values may be added by indexing:

> tbl[5] := ['e', 8.04];

> tbl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01], [e, 8.04]]

Of course, values can be replaced:

> tbl[3] := ['z', -5];

> tbl:
[[a, 7.71], [b, 7.7], [z, -5], [d, 8.01], [e, 8.04]]

Another form of a table is the dictionary, with indices that can be any kind of data -
not only positive integers. Key-value pairs are entered with tildes.

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

> dic['donald']:
duck

3.10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Any item is stored only once and in random order.

> s := {'donald', 'mickey', 'donald'}:
{donald, mickey}

If you want to check whether 'donald' is part of the set, just index it or use the in
operator:

> s['donald']:
true

> s['daisy']:
false

> 'donald' in s:
true

The insert statement adds new values to a set, the delete statement deletes them.

> insert 'daisy' into s;

> delete 'donald' from s;

> s:
{daisy, mickey}

Three operators exist to conduct Cantor set operations: minus, intersect, and
union.

56 3 Overview

3.11 Sequences

Sequences can hold any number of items except null. All elements are indexed
with integers starting with number 1. Compared to tables, sequences are twice as
fast when adding values to them. The insert, delete, indexing, and assignment
statements as well as the operators described above can be applied to
sequences, too.

> s := seq(1, 1, 'donald', true):
seq(1, 1, donald, true)

> s[2]:
1

> s[4] := {1, 2, 2};

> insert [1, 2, 2] into s;

> s:
seq(1, 1, donald, {1, 2}, [1, 2, 2])

3.12 Pairs

Pairs hold exactly two values of any type, including null and other pairs. Values can
be retrieved by indexing them or using the left and right operators. Values may be
exchanged by using assignments to indexed names.

> p := 10:11;

> left(p), right(p), p[1], p[2]:
10 11 10 11

> p[1] := -10;

3.13 Conditions

Conditions can be checked with the if statement. The elif and else clauses are
optional. The closing fi is obligatory.

> if 1 < 2 then
> print('valid')
> elif 1 = 2 then
> print('invalid')
> else
> print('invalid, too')
> fi;

valid

The case statement facilitates comparing values and executing corresponding
statements.

There are two flavours: The first checks an expression for certain values.

> c := 'agena';

agena >> 57

> case c
> of 'agena' then
> print('Agena!')
> of 'lua' then
> print('Lua!')
> else
> print('Another programming language !')
> esac;
Agena!

The second one works exactly like the if statement but may improve code
readability.

> v := 1;

> case
> of v > 0 then print(1)
> of v = 0 then print(0)
> else print(-1)
> esac;
1

3.14 Loops

A for loop iterates over one or more statements. It starts with an initial numeric value
(from clause), and proceeds up to and including a given numeric value (to
clause). The step size can also be given (step clause). The od keyword indicates the
end of the loop body.

The from and step clauses are optional. If the from clause is omitted, the loop starts
with the initial value 1. If the step clause is omitted, the step size is 1.

The current iteration value is stored to a control variable (i in this example) which
can be used in the loop body.

> for i from 1 to 3 by 1 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

A while loop first checks a condition and if this condition is true or any other value
except false, fail or null, it iterates the loop body again and again as long as the
condition remains true. The following statements calculate the largest Fibonacci
number less than 1000.

> a := 0; b := 1;

> while b < 1000 do
> c := b; b := a + b; a := c
> od;

> c:

987

58 3 Overview

A variation of while is the do/as loop which checks a condition at the end of the
iteration. Thus the loop body will always be executed at least once.

> c := 0;

> do
> inc c
> as c < 10;

> c:

10

All flavours of for loops can be combined with a while condition. As long as the
while condition is satisfied, i.e. is true, the for loop iterates.

> for x to 10 while ln(x) <= 1 do
> print(x, ln(x))
> od;
1 0
2 0.69314718055995

The skip statement starts another iteration of the loop immediately, thus skipping all
of the following loop statements after the skip keyword for the current iteration.

The break statement quits execution of the loop and proceeds with the next
statement right after the end of the loop. Thus the above loop could also be written
as:

> for x to 10 do
> if ln(x) > 1 then break fi;
> print(x, ln(x))
> od;
1 0
2 0.69314718055995

which of course is equivalent to

> for x to 10 while ln(x) <= 1 do
> print(x, ln(x))
> od
1 0
2 0.69314718055995

for loops can also be combined with a closing as or until condition. In this case,
the loop body is always executed at least once. The loop is iterated as long as the
as condition remains true or the until condition evaluates to false.

> for x to 10 do
> print(x, ln(x))
> as ln(x) <= 1
1 0
2 0.69314718055995
3 1.0986122886681

> for x to 10 do
> print(x, ln(x))
> until ln(x) > 1

agena >> 59

1 0
2 0.69314718055995
3 1.0986122886681

3.15 Procedures

Procedures cluster a sequence of statements into abstract units which then can be
run repeatedly.

Local variables are accessible to their procedure only and can be declared with
the local statement.

The return statement passes the result of a computation.

> fact := proc(n) is
> local result;
> result := 1;
> for i from 1 to n do
> result := result * i
> od;
> return result
> end;

> fact(10):
3628800

A procedure can call itself.

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if, for, insert, etc.

> deg := << (x) -> x * 180 / Pi >>;

To compute the value of the function at , just input:✜
4

> deg(Pi/4):
45

Alternatively, you may use the def or the define statement, e.g. a function with two
arguments can be defined as follows:

> define sum(x, y) -> x + y;

> sum(1, 2):
3

The -> assignment token is optional. Alternatively, you can also use an = or := sign
or the is keyword.

60 3 Overview

3.16 Comments

You should always document your code so that you and others will understand its
purpose if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

> # this is a single-line comment
> a := 1; # a contains a number

A multi-line comment, also called `long comment`, starts with the token sequence
#/ and ends with the closing /# token sequence1.

> #/ this is a long comment,
> split over two lines /#

Alternatively, C comments are supported, as well:

> /* this is a one-line comment */

> /* this is a long comment,

> split over two lines */

3.17 Writing, Saving, and Running Programmes

While short statements can be entered directly at the Agena prompt, it is quite
useful to write larger programmes in a text editor and save them to a text file so that
they can be reused in future sessions.

Note that Agena comes with language scheme files for some common text editors.
Look into the share/schemes subdirectory of your Agena installation.

Let us assume that a programme has been saved to a file called myprog.agn in the
directory /home/alex in UNIX, or c:\Users\alex in OS/2, DOS or Windows. Then in
UNIX, you can run it at the Agena prompt by typing:

> run '/home/alex/myprog.agn'

or in DOS-based systems:

> run 'c:/users/alex/myprog.agn' or

> run 'c:\\users\\alex\\myprog.agn'

in DOS-based systems.

agena >> 61

1 Multi-line comments cannot begin in the very first line of a programme file. Use a single comment,
i.e. #, instead.

If you both want to start an Agena session and also run a programme from a shell,
then enter:

$ agena -i /home/alex/myprog.agn

in UNIX or

C:\>agena -i c:\users\alex\myprog.agn

in Windows. See Appendix A5.5 for further switches.

3.18 Using Packages

Many functions are included in additional packages which must at first be initialised
so that the package functions can be used. Part II of this document indicates which
packages are automatically initialised at Agena start-up and which packages have
to be imported manually by the user.

For example, Regular Expression functions are included in the regex package which
can be invoked with the import statement:

> import regex;

> regex.find('15029', '^150[258][1-9]'):
1 5

Shortcuts to the package functions can be defined by passing the alias option to
the import statement.

> find('15029', '^150[258][1-9]'):
Error in stdin at line 1:
 attempt to call global `find` (a null value)

> import regex alias

> find('15029', '^150[258][1-9]'):
1 5

If you want to define shortcuts to specific package functions only, pass their names
right after the alias option:

> import regex alias find, match;

If you pass the as clause instead, it assigns an alias to a library name:

> import hashes as h;

> a := h.crc32('agena');

You may also have a look at the readlib and initialise functions described in
Chapter 8.

62 3 Overview

If you want to have detailed information on how a package is being initialised, just
issue

> environ.kernel(debug = true)

and then run the import statement. Examples:

> import ads

Processing library: ads.
 ads is an external (plus) package.

 Checking path C:\agena\src.
 Checking C library file C:\agena\src/ads.dll.
 C:\agena\src/ads.dll not present.
 Checking agn library file C:\agena\src/ads.agn: not present.

 Checking path c:/agena/lib.
 Checking C library file c:/agena/lib/ads.dll.
 c:/agena/lib/ads.dll successfully initialised.
 Checking agn library file c:/agena/lib/ads.agn: found.

 All successful, now registering ads.

> import math

Processing library: math.
 math is a standard library.
 Nothing to be done.

agena >> 63

64 3 Overview

Chapter Four

Data & Operations

agena >> 65

66 4 Data

4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, registers,
pairs, and complex numbers.

a non-preemptive multithread object (a coroutine)thread

a value representing a C pointer; available only if you modify the
ANSI C sources of the interpreter

lightuserdata

part of system memory containing user-defined data; userdata
objects can only be created by changing the ANSI C sources of
the interpreter

userdata

a complex number consisting of a real and an imaginary
number

complex

a pair of two values of any typepair

a fixed-size vector storing any value including null and featuring
a top position pointer to prevent access to elements above it

register

a dynamically-sized vector storing numbers, strings, booleans,
and all other data types except null in sequential order

sequence

the classical Cantor set storing numbers, strings, booleans, and
all other data types available

set

a predefined collection of one or more Agena statementsprocedure

a multipurpose structure storing numbers, strings, booleans,
tables, and any other data type

table

a value representing the absence of a valuenull
booleans (e.g. true, false, and fail)boolean
any textstring
any integral or rational number, plus undefined and infinitynumber
DescriptionType

Table 1: Available types

Tables, sets, sequences, registers, and pairs are also called structures in this
manual.

You can determine the type of a value with the type operator which returns a string:

> type(0):
number

> type('a text'):
string

There is also a structure derived from both tables and sets: bags, see Chapter 10.8;
also have a look on linked lists, see Chapter 10.7.

agena >> 67

4.1 Names, Keywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called `variables`. These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case letter or an underscore,
followed by one or more upper-case or lower-case letters, underscores, single
quotes or numbers in any order.

Since Agena is a dynamically typed language, no declarations of variable names
are needed.

Value'One

valueTwo
ValueOne
_1
_var1n
var1

1__var
1varvar
Invalid namesValid names

Table 2: Examples for valid and invalid names

The following keywords are reserved and cannot be used as names:

 abs addup alias and antilo2 antilog10 arccos arcsec arcsin arctan as
 assigned atendof bea bottom break by bye case catch char cis clear cls
 conjugate constant cos cosh cosxx create dec def define delete dict div
 do downto duplicate elif else empty end entier enum esac esle even
 exchange exp fail false feature fi filled first finite flip float for
 foreach from global if imag import in inc infinite infinity inrange
 insert int intdiv integral intersect into invsqrt is keys last left ln
 lngamma local lower minus mod mul muladd mulup nan nand nargs negate
 nonzero nor not notin numeric od odd of onsuccess or pop proc procname
 pushd qmdev qsumup real redo reg relaunch reminisce restart return right
 rotate seq sign signum sin sinc sinh size skip split sqrt square
 squareadd store subset sumup tan tanh then to top trim true try type
 typeof unassigned undefined union unity unless until upper when while
 with xnor xor xsubset yrt zero

 anything boolean complex lightuserdata listing null number pair register
 procedure sequence set string table thread userdata
 integer negative nonnegative nonnegint posint positive

The following symbols denote other tokens:

 + - * ** / *% /% +% -% \ & && || ~ ~~ ! !! % %% ^ ^^ # = <> <= >= < > =
 == ~= ~<> <<< >>> <<<< >>>> () { } [] ; : :: :- -> @ @@ $ $$, . .. ?
 ?- ` ++ -- +++ --- // \\ (/ \) | |- +:= -:= *:= /:= \:= %:= &:= &+ &- &*
 &/ &\

68 4 Data

4.2 Assignment

Values can be assigned to names in the following fashions:

[constant] name := value
[constant] name1, ···, [constant] namek := value1, ···, valuek

[constant] name1, ···, [constant] namek -> value

In the first form, one value is stored in one variable, whereas in the second form,
called `multiple assignment statement`, name1 is set to value1, name2 is assigned
value2, etc. In the third form, called the `short-cut multiple assignment statement`,
a single value is set to each name to the left of the -> token.

First steps:

> a := 1;

> a:
1

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value at the console.

> a := 1:
1

> a := exp(a):
2.718281828459

Multiple assignments:

> a, b := 1, 2

> a:
1

> b:
2

If the left-hand side contains more names than the number of values on the
right-hand side, then the excess names will be set to null.

> c, d := 1

> c:
1

> d:
null

agena >> 69

If the right-hand side of a multiple assignment contains extra values, they are simply
ignored.

The multiple assignment statement can also be used to swap or shift values in
names without using temporary variables.

> a, b := 1, 2;

> a, b := b, a:
2 1

A short-cut multiple assignment statement:

> x, y -> exp(1);

> x:
2.718281828459

> y:
2.718281828459

You can declare constants by putting the constant keyword in front of a variable
name in an assignment. If you try to assign a new value to the constant later on in a
session, the interpreter will issue an error:

> constant a := 1;

> a := 2;

Error at line 1: attempt to assign to constant `a` near `:=`

You can declare multiple constants at a time:

> constant b, constant c := 2, 3;

> b := 0;
Error at line 1: attempt to assign to constant `b` near `:=`

> c := 0;
Error at line 1: attempt to assign to constant `c` near `:=`

You can mix ordinary and constant declarations:

> a, constant b := 1, 2;

You should assign a value to a constant in one and the same declaration,
otherwise you cannot use it:

> a, constant b := 1; # assign 1 to name `a`, and no value to constant `b`

> b := 0

Error at line 1: attempt to assign to constant `b`, near `:=`

You can switch off this feature completely with the following statement:

70 4 Data

> environ.kernel(constants = false);

On the interactive level, if you define one and the same constant multiple times in
a body, for example a then or do body, Agena will just print a one-time warning
message but will change this constant. When executing a script file, however,
Agena will exit with a proper error message. This is due to the way the parser
evaluates bodies on the command-line. Also, in closures (see Chapter 6.22)
constants cannot be recognised, so if you try to change them, no error will be
issued.

4.3 Enumeration

Enumeration with step size 1 is supported with the enum statement:

enum name1 [, name2, ···]
enum name1 [, name2, ···] from value

All these values are constants, you cannot change them later on.

In the first form, name1, name2, etc. are enumerated starting with the numeric
value 1.

> enum ONE, TWO;

> ONE:
1

> TWO:
2

In the second form, enumeration starts with the numeric value passed right after the
from keyword.

> enum THREE, FOUR from 3

> THREE:
3

> FOUR:
4

4.4 Deletion and the null Constant

You may delete the contents of one or more variables with one of the following
methods: Either use the clear command,

clear name1 [, name2, ···, namek]

agena >> 71

> a := 1;

> clear a;

> a:
null

which also performs a garbage collection useful if large structures shall be
immediately removed from memory, or set the variable to be deleted to null:

> b := 1;

> b := null:
null

The null value represents the absence of a value. All names that are unassigned
evaluate to null. Assigning names to null quickly clears their values, but does not
garbage collect them immediately.

The null constant has its own type: 'null'.

> type(null):
null

If you want to test whether a value is of type 'null', contrary to all other types, you
have to put the type name in brackets:

> type(null) = 'null':

true

In all cases - whether using the clear statement or assigning to null - the memory
freed is not given back to the operating system but can be used by Agena for
values yet to be created.

There are two operators that quickly check whether a value is assigned or not:
assigned and unassigned.

> assigned(v):
false

> unassigned(v):
true

72 4 Data

4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

 or xor nor xnor
 and nand
 < > <= >= = == ~= ~<> <> :: :- |
 in notin subset xsubset union minus intersect atendof |-
 & : @ $ $$
 + - || ^^ split &+ &- inc dec
 * / % symmod roll \ && *% /% %% +% -% %% <<< >>> <<<< >>>> &* &/ &\
 squareadd mul div intdiv mod

 not - (unary minus) +++ ---
 ^ **

 ! and all self-defined binary operators and unary operators including ~~

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (&), exponentiation (^, **), pair (:), mapping (@), and selection ($)
operators are right associative, e.g. x^y^z = x^(y^z). All other binary operators
are left associative.

> 1+3*4:
13

> (1+3)*4:

16

4.6 Arithmetic

4.6.1 Numbers

In the `real` domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of it.

� 1
� -20
� 0
� +4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

� -1.12
� 0.1
� .1

Negative integral or rational values must always be entered with a minus sign, but
positive numbers do not need to have a preceding plus sign.

agena >> 73

You may optionally include one or more single quotes or underscores within a
number to group digits:

> 10'000'000:
10000000

You can alternatively enter numbers in scientific notation using the e symbol.

> 1e4:
10000

> -1e-4:
-0.0001

If a number ends in the letter K, M, G, T or D, then the number will be multiplied by
1,024, 1,048,576 (= 1,0242), 1,073,741,824 (= 1,0243), 1,099,511,627,776 (=
1,0244), or 12, respectively. If a number ends in the letter k, m, g, t or d, then the
number will be multiplied by 1,000, 1,000,000, 1,000,000,000, 1,000,000,000,000,
or 12 respectively. If a number is appended by p, it will be converted to
percentage.

> 2k:
2000

> 1M:

1048576

> 12D:

144

Besides decimal numbers, Agena supports binary, octal and hexadecimal numbers
which may include `thousands` separators. They are represented by the first two
letters 0b or 0B, 0o or 0O, 0x or 0X, respectively:

0x0.1 = 0.0625
0xa23p-4 = 162.1875
0X1.921FB54442D18P+1 =
3.1415926535898

0x<int>.<frac> or
0x<int>p<int> or
0x<int>.<frac>P<int>

hexadecimal
(float)

0xa = 100x<hexadecimal number> or
0X<hexadecimal number>

hexadecimal
(integer)

0o0.04 = 0.0625
0o<int>.<frac> or
0o<int>p<int> or
0O<int>.<frac>P<int>

octal
(float)

0o10 = 80o<octal number> or
0O<octal number>

octal
(integer)

0b1111.1 = 15.5
0b<int>.<frac> or
0b<int>p<int> or
0B<int>.<frac>P<int>

binary (float)

0b10 = 20b<binary number> or
0B<binary number>

binary
(integer)

Examples (to decimal)SyntaxSystem

74 4 Data

If a numeric constant should be too big - i.e. out-of-range - then Agena will not
throw an error. You can, however, let Agena validate constants by activating the
appropriate check which will result in a syntax error if a constant is out-of-bounds:

> environ.kernel(constanttoobig = true);

Alternatively, you may pass the -B switch at startup on the command-line.

If you use only real numbers in your programmes, then Agena will calculate only in
the real domain. If you use at least one complex value (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

Since Agena internally stores numbers in double or complex double precision, you
will sometimes encounter round-off errors. For example, some values such as or2

 cannot be accurately represented on a machine.1
3

The mapm package can be used in such situations as it provides arbitrary precision
arithmetic in both the real and complex domain. See Chapter 11.3 for more
information.

Agena knows two representation for zero: 0 and -0, where -0 means something like
zero but `approached from` . In relations, 0 and -0 are always the same, e.g. 0−∞

= -0 true, and 0 < -0 false. In arithmetic, for example -1 * -0 -0. To test fore e e

-0, use math.isminuszero.

4.6.2 Arithmetic Operations

Agena has the following arithmetical operators:

2 @ 0 » 2
2 @ 3 » 6

Conditional multiplication a @ b, returning a if
b = 0, and a*b otherwise

@

100 -% 2 » 98Percents, discount-%

100 +% 2 » 102Percents, add-on (premium)+%

100 /% 2 » 5kPercents, ratio/%

100 *% 2 » 2Percents, percentage*%

5 \ 2 » 2Integer division\

5 % 2 » 1Modulus%

2 ** 3 » 8Exponentiation with integer power**

2 ^ 3 » 8Exponentiation with rational power^

4 / 2 » 2Division/

2 * 3 » 6Multiplication*

3 - 2 » 1Subtraction-

1 + 2 » 3Addition+
Details / ExampleOperationOperator

Table 3: Arithmetic operators

agena >> 75

The modulus operator is defined as a % b = a - entier(a/b)*b, the integer division as
a \ b = sign(a) * sign(b) * entier(abs(a/b)).

Agena has a lot of mathematical functions both built into the kernel and also
available in the math, stats, linalg, and calc libraries. Table 4 lists some of the most
common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure.

Unary operators2 like ln, exp, etc. can be entered with or without simple brackets.

stats.median(
 [1, 2, 3, 4]) » 2.5statsMedianmedian([···])

stats.mean([1, 2, 3]) » 2statsArithmetic meanmean([···])
sumup([1, 2, 3]) » 6KernelSumsumup([···])
sqrt(2) » 1.414213..KernelSquare root of xsqrt(x)
sign(-1) » -1KernelSign of xsign(x)

round(
 sqrt(2), 2) » 1.41Base

Rounds the real value x to
the d-th digit

round(x, d)

log(8, 2) » 3Kernel
Logarithm of x to the
base b

log(x, b)

ln(1) » 0KernelNatural logarithmln(x)

int(2.9) » 2
int(-2.9) » -2Kernel

Rounds x to the nearest
integer towards zero

int(x)

exp(lngamma(3+1)) » 6Kernelln ✄ xlngamma(x)
exp(0) » 1KernelExponentiation exexp(x)
even(2) » trueKernelChecks whether x is eveneven(x)

entier(2.9) » 2
entier(-2.9) » -3Kernel

Rounds x downwards to
the nearest integer

entier(x)

abs(-1) » 1KernelAbsolute value of xabs(x)
tanh(0) » 0KernelHyperbolic tangenttanh(x)
cosh(0) » 1KernelHyperbolic cosinecosh(x)
sinh(0) » 0KernelHyperbolic sinesinh(x)
arctan(Pi) » 1.262627..KernelArc tangent (x in radians)arctan(x)
arccos(0) » 1.570796..KernelArc cosine (x in radians)arccos(x)
arcsin(0) » 0KernelInverse sine (x in radians)arcsin(x)
tan(1) » 1.557407..KernelTangent (x in radians)tan(x)
cos(0) » 1KernelCosine (x in radians)cos(x)
sin 0 » 0KernelSine (x in radians)sin(x)
Example and resultLibraryOperationProcedure

Table 4: Common mathematical functions

In addition, Agena can conduct bitwise operations on numbers.

76 4 Data

2 See Appendix A1 for a list of all unary operators.

setbit(3, 1) » 1, setbits(8, reg(1, 0, 0)) » 12sets bit(s)
setbit
setbits

getbit(3, 1), getbits(3)returns stored bit(s)
getbit
getbits

Equivalent to ~~(a ^^ b)
bitwise complement
exclusive-`or`

xnor

Equivalent to ~~(a || b)
bitwise complement
`or`

nor

Equivalent to ~~(a && b).
bitwise complement
`and`

nand

<<<< and >>>> rotate bits left- and
rightwards.

Bitwise rotation
<<<<,
>>>>

<<< conducts a left-shift (multiplication with
2), >>> a right-shift (division by 2).

Bitwise shift
<<<,
>>>

~~7 » -8
Bitwise complement
(bitwise `not`)

~~

7 ^^ 2 » 5Bitwise `exclusive-or`^^

1 || 2 » 3Bitwise `or`||

7 && 2 » 2Bitwise `and`&&
Details / ExampleOperationOperator

Table 5: Bitwise operators and functions

By default, the operators internally calculate with unsigned integers. You can
change this behaviour to signed integers with environ.kernel:

> environ.kernel(signedbits = true);

The default is restored as follows:

> environ.kernel(signedbits = false);

Note that in order to return useful results ~~, nand, nor and xnor should be used in
signed mode only, regardless of the environ.kernel/signedbits setting.

4.6.3 Increment, Decrement, Multiplication, Division

Instead of incrementing or decrementing a value, say

> a := 1;

by entering a statement like

> a := a + 1:

2

you can use the inc and dec commands3 which are also around 10% faster:

agena >> 77

3 Finishing an inc or dec statement with a colon instead of a semicolon is refused.

inc name [, value];
dec name [, value];

If value is omitted, name is increased or decreased by 1.

> inc a;

> a:
3

> dec a;

> a:
2

> inc a, 2;

> a:
4
> dec a, 3;

> a:
1

Likewise, the mul and div statements multiply or divide their argument by a scalar,
mod takes the modulus, and intdiv conducts an integer division, their defaults also
being 1. negate flips a Boolean; with numbers, it converts 0 to 1, and non-zero to 0.

It is advised that all inc, dec, mul, div, intdiv and mod statements are terminated
by a semicolon unless the next token in the code is a keyword, so that the parser
can discern them from the corresponding operators, see Chapter 4.6.8.

Alternatively, you may use mutate operators to express compound assignment:

n/aconditional multiplication@:=

n/astring concatenation&:=

mod statementmodulus%:=

intdiv statementinteger division\:=

div statementdivision/:=

mul statementmultiplication*:=

dec statementsubtraction-:=

inc statementaddition+:=

EquivalentOperationOperator

> a +:= 3; # equals to `a := a + 3` or `inc a, 3`

> a:
4

The suffix ++ and -- operators return the current value of a variable and
subsequently increase or decrease the variable by one. Likewise, the prefix ++ and

78 4 Data

-- operators first increase or decrease a variable by one and then return the
updates value. The operators work on indexed names, as well.

> c := 0;

> a := c++; # used as an expression

> print(a, c); # returns 0, 1

> c++; # used as a statement

> print(c)
2

4.6.4 Mathematical Constants

Agena features arithmetic constants mentioned in Appendix A9. All mathematical
constants are protected and cannot be changed.

All mathematical functions and operators return the constant undefined instead of
issuing an error if they are not defined at a given point:

> ln(0):
undefined

With values of type number, the finite function can determine whether a value is
neither infinity nor undefined.!

> finite(fact(1000)), finite(sqrt(-1)):
false false

The float function checks whether a value is a float and not an integer.

> float(1):
false

> float(1.1):
true

4.6.5 Complex Math

Complex numbers can be defined in two ways: by using the ! constructor or the
imaginary unit represented by the capital letter I. Most of Agena's mathematical
operators and functions know how to handle complex numbers and will always
return a result that is in the complex domain. Complex values are of type complex.

> a := 1!1;

> b := 2+3*I;

> a+b:
3+4*I

> a*b:
-1+5*I

agena >> 79

The following operators work on rational numbers as well as complex values: +, -, *,
/, ^, **, =, ~=, <>, abs, arccos, arcsec, arcsin, arctan, conjugate, cos, cosh,
entier, exp, flip, invsqrt, lngamma, ln, log, sign, sin, sinh, sqrt, tan, tanh, and
unary minus. With these operators, you can also mix numbers and complex
numbers in expressions. You will find that most mathematical functions are also
applicable to complex values.

> c := ln(-1+I) + ln(0.5):
-0.34657359027997+2.3561944901923*I

The real and imaginary parts of a complex value can be extracted with the real
and imag operators.

> real(c), imag(c):
-0.34657359027997 2.3561944901923

Three further functions may also be of interest: abs returns the absolute value of a
complex number, argument returns its phase angle in radians, and conjugate
computes the complex conjugate.

Note that the ! operator has the same precedence as unary operators like -, sin,
cos, etc. This means that -1!2 = -1+2*I, but also that sin 1!2 = (sin 1)!2. Thus, it
is advised that you use brackets when applying unary operators on complex values.

The setting environ.kernel(zeroedcomplex = true) makes Agena print complex
values that are close to zero as just 0 in the output region of the console. Internally,
however, complex values are not rounded by this or any other setting.

4.6.6 Comparing Values

Relational operators can compare both numeric and complex values. Whereas all
relational operators work on numbers, complex numbers can only be compared for
equality (=) or inequality (<>), or approximate equality (~=) or inequality (~<>).

You can also compare numbers with complex numbers with the =, ~=, <> and
~<> operators.

noin rangein

yesapproximately unequals~<>

yesnot equals<>

yesapproximately equals~=

yesequals=

nogreater than or equals>=

noless than or equals<=

nogreater than>

noless than<

Complex value support
and mixed comparison

DescriptionOperator

80 4 Data

> 1 < 2:
true

> 1 = 1:
true

> 1 <> 1:
false

The result true indicates that a comparison is valid, and false indicates that it is
invalid. See Chapter 4.8 for more information.

Most computer architectures cannot accurately store number values unless they
can be expressed as halves, quarters, eighths, and so on. For example, 0.5 is
represented accurately, but 0.1 or 0.2 are not.

Since Agena is not a computer algebra system, you will sometimes encounter
round-off errors in computations with numbers and complex numbers:

> 0.2 + 0.2 + 0.2 = 0.6:
false

In such cases, the ~= operator or the approx function might be of some help
since they compare values approximately.

> 0.2 + 0.2 + 0.2 ~= 0.6:
true

> 0.2!0.2 + 0.2!0.2 + 0.2!0.2 = 0.6!0.6:
false

> approx(0.2!0.2 + 0.2!0.2 + 0.2!0.2, 0.6!0.6):
true

To determine whether a number is part of a closed interval, use the in or inrange
operators:

> 2 in 0 : 10:
true

You can use the +++ and --- operators to define open borders:

> inrange(1, +++1, ---10):

false

The unary zero operator checks whether a number or complex number is 0 or
0+I*0; nonzero checks whether it is non-zero. The two operators are around 10 %
faster than the binary = and <> operators.

agena >> 81

4.6.7 Range of Values

The following ranges apply to Agena numbers and complex numbers:

(-)2.2250738585072009e-308largest subnormal (negative) positive
number

(-)4.9406564584124654e-324smallest subnormal (negative) positive
number

9.007199254741 × 1015largest positive integer without loss of
precision

+1.797 693 134 862 315 × 10308largest representable number
-1.797 693 134 862 315 × 10308smallest representable number
ValueCharacteristic

4.6.8 Adapting Basic Arithmetic Operators

There are six arithmetic binary operators that detect potential numeric overflow,
underflow and division by zero and allow the user to invoke proper self-written
functions that handle them: inc for addition, dec for subtraction, mul for
multiplication, div for division and intdiv for integer division, plus mod for modulus.

These operators after checking possible exceptions call user-defined handlers that
take the two operands plus the information on the kind of exception:

� addition: inc calls math.add,
� subtraction: dec calls math.subtract,
� multiplication: mul calls math.multiply,
� division: div calls math.divide,
� integer division: intdiv calls math.intdivide and
� modulus: mod calls math.modulo (not math.modulus !).

Examples:

Division: the handler might look like this - math.intdivide and math.modulo may
look similar, since the values for parameter kind are the same:

> math.divide := proc(n, d, kind) is
> case kind
> # kind 0b0000 means no exception
> of 0b0000 then return n/d
> # kind 0b0001 means denominator is zero
> of 0b0001 then error('division by zero')
> # kind 0b0010 means very large value to be divided by value
> # close to 0
> of 0b0010 then error('underflow')
> # kind 0b1000 indicates both operands are close to 0
> of 0b1000 then return n/d
> esac
> end;

> 1 div 0:

division by zero

82 4 Data

A multiplication handler:

> math.multiply := proc(a, b, kind) is
> case kind
> of 0b0000 then return a*b # kind 0b000 indicates no exception
> # kind 0b0010: very large value to be multiplied by value close
> # to zero
> of 0b0010 then error('underflow')
> # kind 0b0100: very large value to be multiplied by
> # very large value
> of 0b0100 then error('overflow')
> # kind 0b1000: both operands are close to zero
> of 0b1000 then return a*b
> esac
> end;

> 1e308 mul 1e308:

overflow

Addition - and subtraction if this should make any sense, the possible values for kind
are the same - could be handled like this (for subtraction redefine math.subtract):

> math.add := proc(a, b, kind) is
> case kind
> of 0b0000 then return a + b # no exception
> # very large value to be added to (subtracted) value close to 0:
> of 0b0010 then return a + b
> # very large values to be added (or subtracted):
> of 0b0100 then error('overflow')
> # both operands are close to zero:
> of 0b1000 then return a + b
> esac
> end;

Agena is shipped with six default functions math.add, math.subtract,
math.multiply, math.divide, math.intdivide and math.modulo that just conduct
the requested operation and return the result, without issuing any error. You may
overwrite them with alternatives of your choice.

The threshold that defines whether a value is `close to zero` can be set with
environ.kernel/closetozero, which by default is DoubleEps, e.g.:

> environ.kernel(closetozero = 1e-20);

The type of numerical exception that occurred the last time one the six operators
has been invoked can also be queried by calling environ.arithstate which returns
the type of exception as a bit field, see all the case/of clauses above:

> 1e308 inc 1e308:
overflow

> environ.arithstate():

1

The description of environ.arithstate in Chapter 14.2 includes a complete list of all
the numeric exceptions the six binary operators might encounter.

agena >> 83

4.7 Strings

4.7.1 Representation

Any text can be represented by including it in single or double quotes:

> 'This is a string':
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str := "I am a string.";

> str:
I am a string.

Strings - regardless whether included in single or double quotes - are all of type
string,

> type(str):
string

and can be of almost unlimited length. Strings can be concatenated, characters
or sequences of characters can be replaced by other ones, and there are various
other functions to work on strings.

Multiline-strings can be entered by just pressing the RETURN key at the end of each
line:

> str := 'Two
lines';

which prints as

> str:
Two
lines

If you do not want to include line breaks and succeeding white spaces, use the \z
escape sequence:

> str := '\z
> 1234\z
> 5678'

> str:

12345678

A string may contain no text at all - called an empty string -, represented by two
consecutive single quotes with no spaces or characters in between:

> '':

84 4 Data

4.7.2 Substrings

You may obtain a specific character by passing its position in square brackets right
after the string name. If you use a negative index n, then the |n|-th character from
the right end of the string will be returned.

> str := 'I am a string.';

> str[1];
I

In general, parts of a string consisting of one or more consecutive characters can
be obtained with the notation:

string[start [to end]]

You must at least pass the start position of the substring. If only start is given then the
single character at position start will be returned. If end is given too, then the
substring starting at position start up to and including position end will be returned.

> str := 'string'

> str[3]:
r

> str[3 to 5]:
rin

> str[3 to 3]:
r

You may also pass negative values for start and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str[3 to -1]:
ring

> str[3 to -2]:
rin

> str[-3 to -2]:
in

> str[-3]:
i

If the right index is greater than the length of string the string, it is auto-corrected to
the string length. If the left border is 0 or greater than the length of the string,
however, an error will be returned.

agena >> 85

4.7.3 Escape Sequences

In Agena, a text can include any escape sequences4 known from ANSI C, e.g.:

� \n: inserts a new line,
� \t: inserts a tabulator
� \b: puts the cursor one position to the left but does not delete any characters.

> 'I am a string.\nMe too.':
I am a string.
Me too.

> 'These are numbers: 1\t2\t3':
These are numbers: 1 2 3

> 'Example with backspaces:\b but without the colon.':
Example with backspaces but without the colon.

If you want to put a single or double quote into a string, put a backslash right in front
of it:

> 'A quote: \'':
A quote: '

> "A quote: \"":
A quote: "

However, if a string is delimited by single quotes and you want to include a double
quote (or vice versa), a backslash is not obligatory, e.g. "'agena'" is a valid string.

Likewise, a backslash is represented by typing it twice. See Appendix A8 for more
escape sequences.

A string can also be enclosed in backquotes. In this case, there will be no escaping
which is especially useful when working with regular expressions:

> `\n`:

\n

The only exception is the escape sequence \q which exists in backquoted strings
only and represents a backquote itself:

> `\qhallo\q`:

`hallo`

86 4 Data

4 See also Appendix A8.

4.7.4 Concatenation

Two or more strings can be concatenated with the & operator:

> 'First string, ' & 'second string, ' & 'third string':
First string, second string, third string

Numbers (but not complex ones) are supported, as well, so you do not need to
convert them with the tostring function before applying &:

> 1 & ' duck':
1 duck

Furthermore, the compound &:= concatenation operator appends a string to the
contents of a string variable:

> a := 'In';

> a &:= 'Sight';

> a:
InSight

4.7.5 String Operators and Functions

Agena has basic operators useful for text processing:

Returns the character corresponding to the
given numeric ASCII code n.

stringchar(n)

Returns the numeric ASCII code of character
s.

numberabs(s)

Returns the length of string s. If s is the empty
string, 0 will be returned.

numbersize(s)

Splits a string into its words with d as the
delimiting character(s). The items are returned
as a sequence of strings.

sequence of
strings

s split d

Replaces all patterns p in string s with substring
r. If p is not in s, then s will be returned
unchanged. p might also be the position (a
positive integer) of the character to be
replaced.

stringreplace(s, p, r)

Checks whether a string t ends in a substring s.
If true, the position of the position of s in t will
be returned; otherwise null will be returned.

number or nulls atendof t

Checks whether a substring s is included in
string t. If true, the position of the first
occurrence of s in t will be returned; otherwise
null will be returned.

number or nulls in t

FunctionReturnOperator

agena >> 87

Deletes leading and trailing spaces as well as
excess embedded spaces.

stringtrim(s)

Converts a number to one string. If a complex
value is passed, the real and imaginary parts
are returned separately as two strings.

stringtostring(n)

Converts a string into a number or complex
number.

number or
complex value

tonumber(s)

Converts a string to uppercase. Western
European diacritics are recognised.

stringupper(s)

Converts a string to lowercase. Western
European diacritics are recognised.

stringlower(s)

FunctionReturnOperator

Table 7: String operators

Some examples:

> str := 'a string';

The character s is at the third position:

> 's' in str:
3

Let us split a string into its components that are separated by white spaces:

> str split ' ':
seq(a, string)

str is eight characters long:

> size(str):

8

The ASCII code of the first character in str, a, is:

> abs(str[1]):
97

translated back to

> char(ans):
a

Put all characters in str to uppercase:

> upper(str):
A STRING

And now the reverse:

88 4 Data

> lower(ans):
a string

The following functions can be used to find and replace characters in a string:

strings.find(
 'string', 'tr')
» 2, 3

strings.find(
 'string', 'tr',
3)
» null

strings.find(
 'string', 't.')
» 2, 3

Returns the first match of a substring
(second argument) in a string (first
argument) and returns the positions where
the pattern starts and ends. An optional
third argument specifies the position
where to start the search. If it does not find
a pattern, the function returns null.

The function supports pattern matching
facilities described in Chapter 9.1.3.

See also: strings.mfind. which returns all
occurrences.

strings.find

'ing' atendof
 'raining'
» 5

Checks whether a string (right operand)
ends in a substring (left operand). If true,
the position will be returned; otherwise null
will be returned.

atendof

instr(
 'agena',
 '[aA]g',
 1) » 1

instr('agena', 'a',
 'reverse') » 5

Looks for the first match of a pattern
(second argument) in a string (first
argument). If it finds a match, then instr
returns its position; otherwise, it returns null.
An optional numerical argument specifies
where to start the search. The function
supports pattern matching, almost similar
to regular expressions. The function is more
than twice as fast as strings.find. If true is
given as a fourth argument, pattern
matching is switched off to speed up the
search.

If the option 'reverse' is given, then starting
from the right end and always running to
its left beginning, the function looks for the
first match of the substring and returns the
position where the pattern starts with
respect to its left beginning. When
searching from right to left, pattern
matching is not supported.

instr

'tr' in 'string' » 2Returns the first position of a substring (left
operand) in a string (right operand); if the
substring cannot be found, it returns null.

in

ExampleFunctionalityFunction

agena >> 89

replace(str,
 'string', 'text')
» text

replace('string',
 seq('s':'S',
 't':'T'))
» STring

In a string (first argument) replaces all
occurrences of a substring (second
argument) with another one (third
argument) and returns a new string.
Pattern matching facilities are not
supported.

A sequence of replacement pairs can be
passed to the function, too.

See also strings.gsub.

replace

ExampleFunctionalityFunction

Table 8: Search and replace functions and operators

For more information on these functions, check Chapter 9.1. See also the
descriptions of strings.match and strings.gmatch.

The replace function can be used to find and replace characters in a string.

4.7.6 Comparing Strings

Like numbers, single or multiple character strings can be compared with the familiar
relational operators based on their sorting order which is determined by your current
locale.

> 'a' < 'b':
true

> 'aa' > 'bb':
false

If the sizes of two strings differ, the missing character is considered less than an
existing character.

> 'ba' > 'b':
true

4.7.7 Patterns and Captures

Sometimes it my not suffice to just look for a fixed pattern, e.g. a simple substring, in
a string. You may want to search for a pattern of different kinds of characters - e.g.
both numbers and letters, or either letters or numbers, or a subset of them -, or of
variable number of characters, or both of them.

Agena provides both character classes and modifiers to accomplish this. While
common Regular Expressions are not supported, Agena offers quite similar facilities,
all taken from Lua.

90 4 Data

For performance reasons, you may use the following rule of thumb5:

� If you would like to determine the start position of the very first match of a fixed
pattern only, use the in operator, for in is the fastest.

� If you want to look as fast as possible only for the start position of the very first
match of a `variable` pattern, using character classes and/or modifiers, or
would like to give the position where to start the quickest search, use instr.

� If both the start and end position is needed, prefer strings.find. The instr function
can also return the start and end position, with or without variable patterns, but
may be slower than strings.find in most situations.

Character classes represent certain sets of tokens, e.g. the class %d represents one
digit, and %a represents one upper-case or lower-case letter. Assume we would like
to determine the position of the hour 00:00:00 in the following date/time string:

> date := '23.05.1949 00:00:00'

We could use the instr function to determine the start position of the hour,

> instr(date, '%d%d:%d%d:%d%d'):
12

or strings.find to get the start and end position of it.

> strings.find(date, '%d%d:%d%d:%d%d'):
12 19

strings.match extracts the hour.

> strings.match(date, '%d%d:%d%d:%d%d'):
00:00:00

For a complete list of all supported classes, please have a look at the end of this
chapter or Chapter 9.1.3.

Character sets denote user-defined classes comprising any character class and/or
single tokens, put in square brackets. For example, [01] may represent a binary,
and [%l -] any lower-case letter, white space or hyphen. A range of characters is
represented by a hyphen, thus [A-Ca-c] represents one of the first three upper
and lower case letters in the alphabet.

> instr('binary: 10', '[01]'):
9

A caret in front of a class indicates that a string should begin with this class, and a
dollar trailing a class denotes that it should end in the given class.

agena >> 91

5 Different kinds of pattern matching facilities have been introduced in Agena deliberately, for the
kind of search can significantly influence performance when processing a large number of strings. If
you want to parse a large number of files and know where to look, io.skiplines may boost
performance on slow drives, as well.

> instr('1 is a number', '^[%l]'):
null

> instr('1 is a number', '%l$'):
13

Patterns also support modifiers for repetition or optional parts. The plus sign indicates
one or more repetitions of a class, the asterisk denotes zero or more repetitions, and
the question mark zero or one occurrence.

> date := '23.05.1949 00:00:00'

> strings.find(date, '%d+.%d+.%d+'): # find the date 23.05.1949
1 10

> date := '23.05. 00:00:00'

> strings.find(date, '%d+.%d+.%d*'): # find 23.05., optionally the year
1 6

The single dot represents any occurrence of any character in a string, regardless
whether the character is a cipher, a letter or special character. If you would like to
search for one of the special characters *, +, -, ?, ., [,], etc. in a string, just
escape it with the percentage sign.

> instr(date, '%.'): # find the first dot in the date string
3

instr and strings.find also allow to switch off pattern matching by passing true as
the last argument:

> instr(date, '.', true):
3

If a pattern is put in parentheses, one or more portions of a string matching this
pattern are extracted from a string, to be optionally assigned to names. This feature
is also called a capture. Two examples:

> strings.match('<id>1234</id>', '<id>(.*)</id>'):
1234

> date := 'May 23, 1949 12:15:00';

> strings.find(date, '(%w+) (%d+), ?(%d+)'):
1 12 May 23 1949

> year, day, month := strings.match(date, '(%w+) (%d+), ?(%d+)'):
May 23 1949

> year, month, day:

May 1949 23

Another useful function is strings.gmatch which returns a function that iterates over
all occurrences of a pattern in a string:

92 4 Data

> f := strings.gmatch('1 10', '(%d+)'):
procedure(008E1278)

> f():
1

> f():
10

You may also use the wrapper function strings.gmatches which returns a sequence
of all the substrings matching a given pattern.

> strings.gmatches('1 10', '(%d+)'):
seq(1, 10)

There is a small difference between the * and - modifiers for matching zero or
more occurrences which may influence execution time significantly: while * looks
for the longest match, - does for the shortest:

> strings.match('<p>a</p><p>2</p>', '<p>(.-)</p>'): # - shortest
a

> strings.match('<p>a</p><p>b</p>', '<p>(.*)</p>'): # * longest

a</p><p>b

With captures, and with captures only, strings.find not only returns the start and end
position of the match, but also the match itself as a third return.

> strings.find('<p>a</p><p>b</p>', '<p>(.-)</p>'):
1 8 a

To check whether one of the characters is in a given set, use square brackets. In the
next example, we check whether the first character in a pattern is either '1', '2' or '3',
and the rest of the pattern is 'abc'.

> strings.match('2abc', '[123]abc'):
2abc

The pattern in the above example, e.g. its second argument, in general matches a
substring in a string. If you would like to make sure that a pattern matches an entire
string, put a caret in front of the pattern and a dollar sign at its end:

> strings.match('2abc', '^[123]abc$'):
2abc

Thus, since the string to be searched is longer,

> strings.match('y2abcy', '^[123]abc$'):

returns:

null

agena >> 93

To recognise one or more ligatures and umlauts, along with one or more Latin
letters, also just use square brackets and combine them with a modifier, here %a:

> strings.match('Eckernförde, Schleswig-Holstein', '([äöüßÄÖÜ%a]*)'):
Eckernförde

Retrieve a value either residing in a conventional XML tag or its worst-case (though
here invalid) SOAP variant:

> pattern := '<.*Data.*>(%a+)</.*Data>';

> str := strings.match(
> '<soap:Data attr=\'foo\'>value</soap:Data>',
> pattern);

> str:
value

> str := strings.match('<Data>value</Data>', pattern);

> str:
value

94 4 Data

Summary6 of character classes and pattern modifiers:

zero or one occurrence?

zero or more occurrence, returning the smallest match-

zero or more occurrence, returning the largest match*

one or more occurrence+Modifiers

anything not matching an embedded zero%Z

an embedded zero, i.e. \0.%z

anything not matching the class %x%X
hexadecimal digits 0 to 9, A to F, and a to f%x

anything not matching the class %w%W
alphanumeric characters a to z, A to Z, and 0 to 9%w

anything not representing upper and lower-case vowels
including y and Y

%V

upper and lower-case vowels including y and Y%v

anything not representing upper-case letters%U
upper-case letters%u

anything not matching spaces including \t, \n, and \r%S
spaces including \t, \n, and \r%s

anything not representing special characters%P
special characters, e.g. , . : ; - + * ~ ? ! # _ () [] { } " '%p

anything not matching the letters a to z or A to Z including
diacritics and ligatures (provided Latin-1 codepage is active)

%O

letters a to z or A to Z including diacritics and ligatures
(provided Latin-1 codepage is active)

%o

a number, consisting of one or more characters, optionally
including a preceding sign, a fractional part and a scientific
E-notation suffix; a number may also just start with a sign and a
fractional part. Optional decimal separator is always the dot
with %n, and a comma with %N.

%n
%N

anything not matching lower-case letters%L
lower-case letters%l

anything not matching upper and lower-case consonants%K
upper and lower-case consonants (y is considered a vowel)%k

an integer, consisting of one or more characters, optionally
including a sign

%i

anything not matching digits 0 to 9%D
digits 0 to 9%d

anything not matching control characters%C
control characters%c

anything not matching the letters a to z or A to Z%A
letters a to z or A to Z%a

any character.Classes

Table 9: Character classes and modifiers

agena >> 95

6 Based on: `Programming in Lua`, 2nd edition, by Roberto Ierusalimschy, lua.org, pages 180f.

4.8 Boolean Expressions

Agena supports the logical values true and false, also called `booleans`. Any
condition, e.g. a < b, results to one of these logical values. They are often used to
tell a programme which statements to execute and thus which statements not to
execute.

Boolean expressions mostly result to the Boolean values true or false. Boolean
expressions are created by:

� relational operators (>, <, =, ==, ~=, ~<>, <=, >=, <>),
� logical names: true, false, fail, and null,
� in, subset, xsubset, and various functions.

Agena supports the following relational operators:

1 <> 2not equals<>

1 ~= 1
[1] ~<> [1]

approximate equality/inequality for
real and complex numbers, and
structures

~=,
~<>

[1] == [1]
1 == 1strict equality for structures7==

1 = 1equals=
2 >= 1greater than or equals>=
1 <= 2less than or equals<=
2 > 1greater than>
1 < 2less than<
ExampleDescriptionOperator

Table 10: Relational operators

The logical operators and, or, nand, nor, xor, and xnor behave a little bit differently:
They consider anything except false, fail, and null as true, and false otherwise. They
return either the first or second operand, which can be any data - not just true or
false - subject to the following rules:

true xor false» true
true xor true » false
false xor true » true
1 xor null » 1
1 xor 2 » 2

With booleans: Returns the first operand
if the second one evaluates or is false,
fail, or null. It returns the second
operand if the first operand evaluates to

xor

true or true » true
true or false » true
2 or true » 2
null or 2 » 2

Returns its first operand if it is not or does
not evaluate to false, fail, or null,
otherwise it returns its second operand.

or

true and 1 » 1
false and 1 » false
true and false » false
false and true » false

Returns its first operand if it is or evaluates
to false, fail or null, otherwise returns its
second operand.

and

ExamplesDescriptionOperator

96 4 Data

7 See Chapter 4.9.3.

false implies false
» true

Returns false if the first operand is true
and the second is false; otherwise
returns true.

implies

false xnor false » true

Returns true if both Boolean operands
are the same (where false and fail are
considered equal), and false otherwise.

xnor

false nor false » true
Returns true if both operands are false,
and false otherwise.

nor

true nand false » true
1 nand null » true

Returns true if at least one operand is
false, otherwise returns false.

nand

not true » false
not false » true
not 1 » false
not null » true

Turns a true expression to false and vice
versa.

not

false, fail, or null and if the second
operand is neither false, fail nor null.

With non-booleans: returns the first
operand if the second operand
evaluates to null, otherwise the second
operand will be returned.

ExamplesDescriptionOperator

Table 11: Logical operators

As expected, you can assign Boolean expressions to names

> cond := 1 < 2:
true

> cond := 1 < 2 or 1 > 2 and 1 = 1:
true

or use them in if statements, described in Chapter 5.

In many situations, the null value can be used synonymously for false.

The additional Boolean constant fail can be used to denote an error. With Boolean
operators (and, or, not), fail behaves like the false constant, e.g. not(fail) = true,
but remember that fail is always unlike false, i.e. the expression fail = false results to
false.

true, false, and fail are of type boolean. null, however, has its own type: the string
'null'.

The and as well as or operators only evaluate their second argument if necessary,
called short-circuit evaluation. Thus, the following statement does not issue an error:

> a := null

> if a :: number and a > 0 then print(ln(a)) fi

agena >> 97

They are also handy to define defaults for unassigned names:

> a := null

> a := a or 0

> a:
0

You can add, subtract, multiply, divide and exponentiate numbers with true or
false, where true in this context represents number 1 and false or fail number 0.
Thus, for example, the expressions abs(x > 0)*x and (x > 0)*x are equivalent
expressions. You can even apply the four basic arithmetic operations on two
booleans if deemed necessary. See also abs and signum operators in Chapter 11.

4.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except null.

Here is a first example: Suppose you want to create a table with the following
meteorological data recorded by Viking Lander 1 which touched down on Mars in
1976:

-82.967.701.10
-81.107.701.06
-78.287.711.02
Temperature in °CPressure in mbSol

> VL1 := [
> 1.02 ~ [7.71, -78.28],
> 1.06 ~ [7.70, -81.10],
> 1.10 ~ [7.70, -82.96]
>];

To get the data of Sol 1.02 (the Martian day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones.

You can control how tables are printed at the console in two ways: If the setting
environ.kernel('longtable') is true (e.g. by entering the statement
environ.kernel(longtable = true), then each key~value pair will be printed at a
separate line. If the setting environ.kernel('longtable') is false, all key~value
pairs will be printed in one consecutive line, as in the example above. Also, you
can define your own printing function that tells the interpreter how to print a table (or

98 4 Data

other structures). See Appendix A5 for further information on how to do this and
other settings.

Stripped down versions of tables are sets, sequences and registers which are
described later. Most operations on tables introduced in this chapter are also
applicable to them.

4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[value1 [, value2, ···]]]

> A := [4, 5, 6]:
[4, 5, 6]

The table values are 4, 5, and 6; the numbers 1, 2, and 3 are the corresponding
keys or indices of table A, with key 1 referencing value 4, key 2 referencing value 5,
etc. With arrays, the indices always start with 1 and count upwards sequentially. The
keys are always integral, so A in this example is an array whereas table VL1 in the last
chapter is not.

To determine a table value, enter the name of the table followed by the respective
index in square brackets:

tablename[key]

> A[1]:
4

Instead of using constants to index a table, you may also compute an index both in
table assignments or queries. The following selects the middle element of A:

> l, r := 1, size A:
1 3

> A[(l+r)\2]:
5

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order. The two forms are equivalent:

tablename[key1][key2][···]
tablename[key1, key2, ···]

agena >> 99

> A := [[3, 4]]:
[[3, 4]]

The following call refers to the complete inner table which is at index 1 of the outer
table:

> A[1]:
[3, 4]

The next call returns the second element of the inner table.

> A[1][2], A[1, 2]:
4 4

Tables may be nested:

> A := [4, [5, [6]]]:
[4, [5, [6]]]

To get the number 6, enter the position of the inner table [5, [6]] as the first index,
the position of the inner table [6] as the second index, and the position of the
desired entry as the third index:

> A[2, 2, 1]:
6

With tables that contain other tables, you might get an error if you use an index that
does not refer to one of these tables:

> A[1][0]:
Error in stdin, at line 1:
 attempt to index field `?` (a number value)

Here A[1] returns the number 4, so the subsequent indexing attempt with 4[0] is an
invalid expression. You may use the getentry function to avoid error messages:

> getentry(A, 1, 0):
null

Similarly, the .. operator allows to index tables even if its left-hand side operand
evaluates to null. In this case, null will be returned, as well, with no error issued. It is
twice as fast as getentry.

> create table A;

> A.b:
null

> A.b.c:
Error in stdin, at line 1:
 attempt to index field `b` (a null value)

> A..b..c:
null

100 4 Data

A generalisation of the .. table field separator are curly braces.

> create table A;

> A[1]:
null

> A[1, 2]:
Error in stdin, at line 1:
 attempt to index field `?` (a null value)

> A{1, 2}:
null

Sublists of table arrays can be determined with the following syntax:

tablename[m to n]

Agena returns all values from and including index position m to n, with m and n
negative or positive integers or 0. If there are no values between m and n, an
empty list will be returned. Table values with non-integral keys are ignored. If m > n,
then an empty table will be returned.

> A := [10, 20, 30, 40]

> A[2 to 3]:
[2 ~ 20, 3 ~ 30]

Tables can contain no values at all. In this case they are called empty tables with
values to be inserted later in a session. There are two forms to create empty tables.

create table name1 [, table name2, ···]

name1 := []

> create table B;

creates the empty table B,

> B := [];

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

> B[1] := 'a';

> B:
[a]

agena >> 101

Alternatively, the insert statement always appends values to the end of a table8:

insert value1 [, value2, ···] into name

> insert 'b' into B;

> B:
[a, b]

To delete a specific key~value pair, assign null to the indexed table name:

> B[1] := null;

> B:
[2 ~ b]

The delete 9statement works a little bit differently and removes all occurrences of a
value from a table.

delete value1 [, value2, ···] from name

> insert 'b' into B;

> delete 'b' from B;

> B:
[]

In both cases, deletion of values leaves `holes` in a table, which are null values
between non-null values:

> B := [1, 2, 2, 3]

> delete 2 from B

> B:
[1 ~ 1, 4 ~ 3]

You can remove the holes in many cases, especially where order is not important,
with functions tables.hashole and either tables.entries or tables.reshuffle, here is a
code snippet:

> hashole := tables.hashole(B):
true

> if hashole then tables.reshuffle(B, true) fi;

> B:
[1, 3]

102 4 Data

9 dito.

8 The insert statement cannot be applied on weak tables. See Chapter 6 for further information on
this variant.

There exists a special sizing option with the create table statement which besides
creating an empty table also sets the default number of entries. Thus you may gain
some speed if you perform a large number of subsequent table insertions, since
with each insertion, Agena checks whether there is enough space to
accommodate further elements and allocates more space if necessary, which
creates some overhead. The sizing option reserves memory for the given number of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the given default size has been exceeded.

Arrays with a predefined number of entries are created according to the following
syntax:

create table name1(size1) [, table name2(size2), ···]

When assigning entries to the table, you will save at least 1/3 of computation time if
you know the size of the table in advance and initialise the table accordingly. If you
want to insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

> create table a, table b(5);

4.9.2 Dictionaries

Another form of a table is the dictionary with any kind of data - not only positive
integers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[key1 ~ value1 [, key2 ~ value2, ···]]]

> A := [1 ~ 4, 2 ~ 5, 3 ~ 6]:
[1 ~ 4, 2 ~ 5, 3 ~ 6]

> B := [abs('þ') ~ 'th']:
[231 ~ th]

Here is another example with strings as keys:

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

> dic:
[mickey ~ mouse, donald ~ duck]

agena >> 103

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
to dictionaries.

> dic['donald']:
duck

If you use strings as keys, a short form is:

> dic.donald:
duck

Further entries can be added with assignments such as:

> dic['minney'] := 'mouse';

which is the equivalent to

> dic.minney := 'mouse';

With string indices, an alternative to putting keys in quotes with the tilde syntax is:

[[name1 = value1 [, name2 = value2, ···]]]

Hence,

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

and

> dic := [donald = 'duck', mickey = 'mouse'];

are equal. You can also mix tilde (~) and equals (=) assignments:

> dic := [donald = 'duck', mickey ~ 'mouse'];

If you want to enter the result of a Boolean equality check into a table, use the ==
token instead of the = sign:

> value := 1

> [value == 1, value <> 1]:
[true, false]

Dictionaries with an initial number of entries are declared like this:

create dict name1(size1) [, dict name2(size2), ···]

104 4 Data

You may mix declarations for arrays and dictionaries, so the general syntax is:

create {table | dict} name1[(size1)] [, {table | dict} name2[(size2)], ···]

Technically, tables consist of an array and a hash part. The array part usually stores
all the elements in an array, the hash part the values of a dictionary. You can both
pre-allocate the array and hash part of a table at once:

create table name1(arraysize1, hashsize1) [, ···]

4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are
described below. A `structure` in this context is a table, set or sequence.

Checks whether the values in structure A are also
values in B. Contrary to subset, the operator returns
false if A = B.

BooleanA xsubset B

Checks whether the values in structure A are also
values in B regardless of the number of their
occurrence. The operator also returns true if A = B.

BooleanA subset B

The negation of A ~= B.Booleannot(A ~= B)

Like ==, but checks the respective elements for
approximate equality. Use environ.kernel/eps to
change the setting for the accuracy threshold.

BooleanA ~= B

The negation of A == B.Booleannot(A == B)

Checks whether two structures A, B contain the same
number of elements and whether all key~value pairs
in tables A, B or entries in the sets, sequences or
registers are the same; if B is a reference to A, then the
result is true.

BooleanA == B

Checks whether two structures A, B do not contain the
same values regardless of the number of their
occurrence or order; if B is a reference to A, then the
result is false.

BooleanA <> B

Checks whether two structures A, B contain the same
values regardless of the number of their occurrence
and order; if B is a reference to A, then the result is also
true.

BooleanA = B

Checks whether a structure is empty.Booleanempty A

Determines whether a structure contains at least one
value. If so, it returns true, else false.

Booleanfilled A

Checks whether the structure A contains the given
value c.

Booleanc in A

FunctionReturnName

agena >> 105

Raises each value in a table, sequence or register to
the power of 2 and sums up these powers. If the
structure is empty or contains no numeric values, null
will be returned. Sets are not supported.

numberqsumup A

Sum up all numeric table, sequence or register values.
If the structure is empty or contains no numeric values,
null will be returned. Sets are not supported.

number
addup(A)
sumup A

Removes multiple occurrences of the same value and
returns the result in a new structure. With tables, also
removes all holes (`missing keys`) by reshuffling its
elements. This operator is not applicable to sets, since
they are already unique.

table,
seq, reg

unique A

This function sorts table, sequence or register A in
ascending order. It directly operates on A, so it is
destructive. With tables, the function has no effect on
values that have non-integer keys. Note that sort is not
an operator, so you must put the argument in
brackets. Please also see Chapter 7 for its derivatives:
sorted, skycrane.sorted, stats.issorted, and
stats.sorted.

table,
seq, reg

sort(A)

Returns the size of a table A, i.e. the actual number of
key~value pairs in A. With sets, sequences and
registers, the number of items will be returned.

numbersize A

Concatenates all strings in the table, sequence or
register A.

stringjoin A

Creates a deep copy of structure A, i.e. if A includes
other tables, sets, pairs, sequences or registers, copies
of these structures are created, too.

table,
set, seq,
reg

copy A

Returns all the values in A that are not in B as a new
structure.

table,
set, seq,
reg

A minus B

Returns all values in two structures A, B that are
included both in A and in B and returns them in a new
structure.

table,
set, seq,
reg

A intersect B

Concatenates two tables, or two sets, or two
sequences or registers A, B simply by copying all its
elements - even if they occur multiple times - to a new
structure. With sets, all items in the resulting set will be
unique, i.e. they will not appear multiple times.

table,
set, seq,
reg

A union B

FunctionReturnName

106 4 Data

Checks whether at least one element in A satisfies the
condition checked by function f.

Booleanf $$ A

Selects all elements of a structure A that satisfy a
condition given by function f.

table,
set, seq,
reg

f $ A

Maps a function f on all elements of structure A.
table,
seq, set,
reg

f @ A

FunctionReturnName

Table 12: Table, set, and sequence operators

Here are some examples - try them with sets, sequences and registers, as well:

The union operator concatenates two tables simply by copying all its elements -
even if they occur multiple times.

> ['a', 'b', 'c'] union ['a', 'd']:
[a, b, c, a, d]

intersect returns all values that are part of both tables as a new table.

> ['a', 'b', 'c'] intersect ['a', 'd']:
[a]

If a value appears multiple times in the structure at the left hand side of the
operator, it is written the same number of times to the resulting structure.

minus returns all the elements that appear in the table on the left hand side of this
operator that are not members of the right side table.

> ['a', 'b', 'c'] minus ['a', 'd']:
[b, c]

If a value appears multiple times in the structure at the left hand side of the
operator, it is written the same number of times to the resulting structure.

The unique function

• removes all holes (`missing keys`) in a table,
• removes multiple occurrences of the same value.

and returns the result in a new table. The original table is not overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

> unique [1 ~ 'a', 3 ~ 'a', 4 ~ 'b']:
[b, a]

agena >> 107

You can search a table for a specific value with the in operator. It returns true if the
value has been found, or false, if the element is not part of the table. Examples:

> 'a' in ['a', 'b', 'c']:

returns true.

> 1 in ['a', 'b', 'c']:

returns false. Remember that in only checks the values of a table, not its keys.

4.9.4 Table Functions

Agena has a number of functions that work on tables (and sequences and
registers), for instance:

With large tables, the function
is much faster than the in
operator.

Performs a binary search in a
table.

binsearch(o, i)

Substitutes the value at index
i in o with value v.

subsop(i:v, o)

Substitutes all occurrences of
value x in o with value v.

subs(x:v, o)

f may be also an anonymous
function. The remove
function conducts the
opposite operation.

Returns all the elements that
satisfy the Boolean condition
given by function f.

select(f, o)

The original element at
position key and all other
elements are shifted up one
place.

Inserts a key ~ value pair into
structure o.

put(o, key, value)

All elements to the right are
shifted down, so that no holes
are created.

Removes index key and its
corresponding value from o.

purge(o, key)

f may be an anonymous
function, as well. See also zip
in Chapter 8.

Maps a function f onto all
elements of structure o, or
produces the function
composition f @ g.

map(f, o)
map(f, g)

Further detailDescriptionFunction

Table 13: Basic table library procedures

The map function is quite handy to apply a function with one or more arguments to
all elements of a structure in one stroke:

> map(<< x -> x^2 >>, [1, 2, 3]):
[1, 4, 9]

108 4 Data

The @ operator also maps a function on all elements of a structure. Contrary to
map, it accepts univariate functions only, but is faster:

> << x -> x^2 >> @ [1, 2, 3]:
[1, 4, 9]

Likewise, the faster $ operator selects all the elements of a structure that satisfy a
condition checked by a univariate function.

> << x -> x > 1 >> $ [1, 2, 3]:
[2, 3]

Suppose we want to add a new entry 10 at position 3 of table C10:

> C := [1, 2, 3, 4]

> put(C, 3, 10)

> C:
[1, 2, 10, 3, 4]

Now we remove this new entry 10 at position 3 again:

> purge(C, 3)

> C:
[1, 2, 3, 4]

Determine all elements in C that are even:

> select(<< x -> even(x) >>, C):

[2 ~ 2, 4 ~ 4]

Or return all elements not even:

> remove(<< x -> even(x) >>, C):

[1 ~ 1, 3 ~ 3]

Note that remove and select do not alter the original structure passed as the
second argument. You can change this by passing the 'inplace' option which
acts destructively:

> select(<< x -> even(x) >>, C, inplace = true):
[2 ~ 2, 4 ~ 4]

> C:

[2 ~ 2, 4 ~ 4]

agena >> 109

10 put and purge have to shift elements up or down, drawing performance. You may use the llist
package to conduct these kinds of operations much faster in case of a large number of insertions
or deletions.

zip zips together two tables by applying a function to each of its respective
elements.

> C := [1, 2, 3, 4]
[1, 2, 3, 4]

> zip(<< (x, y) -> x + y >>, C, [10, 20, 30, 40]):

[11, 22, 33, 44]

For other functions, have a look at Part II of this manual and the Agena Quick
Reference Excel sheet.

4.9.5 Table References

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

> A := [1, 2];

assigning

> B := A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1, 2], hence:

> insert 3 into A;

> A:
[1, 2, 3]

also yields:

> B:
[1, 2, 3]

Use copy to create a true copy of the contents of a table. If the table contains
other structures, copies of these structures are also made (so-called `deep
copies`). Thus copy returns a new table without any reference to the original one.

> B := copy(A);

> insert 4 into A;

> B:
[1, 2, 3]

With structures such as tables, sets, pairs, sequences or registers, all names to the
left of an -> token will point to the very same structure to its right.

> A, B -> []

110 4 Data

> A[1] := 1

> B:
[1]

Tables can also directly or indirectly contain themselves, in which case they are also
called `cycles`. Just some few examples:

> A := []

> A := [A, A]

> A:
[[], []]

> A.A := A

> A:
[1 ~ [], 2 ~ [], A ~ circum_table(0236A460)]

4.9.6 Unpacking Tables by Name

There is syntactic sugar for the assignment statement to unpack named values, i.e.
data indexed with string keys, from tables using the in keyword:

key1 [, key2, ···] in tablename

is equal to

key1 [, key2, ···] := tablename.key1 [, tablename.key2, ···]

A short example may suffice:

> zips := [duedo = 40210:40629,
> bonn = 53111:53229,
> cologne = 50667:51149];

> duedo, bonn in zips

> duedo, bonn, cologne:
40210:40629 53111:53229 null

The local statement, see Chapter 6.2, supports this sugar, as well. Read also
Chapter 5.2.12 for a variant implemented available in the with statement.

agena >> 111

4.9.7 Defining Multiple Constants Easily

The // ... \\ constructor allows to define a table of constant numbers and/or strings
the simple way: items may not be separated by commas, and strings do not need
to be put in quotes as long as they satisfy the criteria for valid variable names:
names starting with a hyphen or letter, including diacritics - and keywords such like
while, sqrt, etc. do not have to be passed in quotes. Records are supported as
well. Expressions like `sin(0)` etc. are not parsed and rejected. Example:

> a := // 0~0 1 2 3 zero one two three '2and3' sqrt ~ while \\:
[0 ~ 0, 1 ~ 1, 2 ~ 2, 3 ~ 3, 4 ~ zero, 5 ~ one, 6 ~ two, 7 ~ three,
8 ~ 2and3, sqrt ~ while]

4.10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Their syntax is:

{ [item1 [, item2, ···]] }

Thus, they are equivalent to Cantor sets: An item is stored only once.

> A := {1, 1, 2, 2}:
{1, 2}

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
not:

> colours := {'red', 'green', 'blue'};

If you want to check whether the colour red is part of the set colours, just index it as
follows:

setname[item]

If an element is stored to a set, Agena returns true:

> colours['red']:
true

If an item is not in the given set, the return is false. Note that we can use the same
short form for indexing values (without quotes) as can be done with tables.

> colours.yellow:
false

112 4 Data

If you want to add or delete items to or from a set, use the insert and delete
statements. The standard assignment statement setname[key] := value is also
supported.

insert item1 [, item2, ···] into name

delete item1 [, item2, ···] from name

> insert 'yellow' into colours;

The in operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns true or false, too.

> 'yellow' in colours:
true

The data type of a set is set.

> type(colours):
set

You may predefine sets with a given number of entries according to the following
syntax:

create set name1 [(size1)] [, set name2 [(size2)], ···]

When assigning items later, you will save at least 90 % of computation time if you
know the size of the set in advance and initialise it with the maximum number of
future entries as explained above. More items than stated at initialisation can be
entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for additional entries.

Sets are useful in situations where the number of occurrence of a specific item or its
position does not concern. Compared to tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

Specifically, the more items you want to store, the faster operations will be
compared to tables.

Note that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A := {}; B := A, A and B point to the same set.
Use the copy function if you want to create `independent` sets.

Sets can also include themselves, just an example:

agena >> 113

> A := {}

> A := {A, A}:
{{}}

If you want to know the number of occurrence of a unique element in a distribution,
the bags package might be of interest, see Chapter 10.8.

The following operators operate on sets:

Checks the elements in A whether at least one satisfies
a given condition checked by function f.

Booleanf $$ A

Selects all elements in A that satisfy a given condition
checked by function f.

setf $ A

Maps a function f on all elements of a set A.setf @ A

Returns the size of a set A, i.e. the actual number of
elements in A.

numbersize A

Creates a deep copy of the set A, i.e. if A includes
other tables, sets, pairs, sequences or registers, copies
of these structures are built, too.

setcopy A

Returns all the values in A that are not in B as a new
set.

setA minus B

Returns all values in two sets A, B that are included
both in A and in B as a new set.

setA intersect B

Concatenates two sets A, B simply by copying all its
elements to a new set. All items in the resulting set will
be unique, i.e. they will not appear multiple times.

setA union B

Checks whether the values in set A are also values in B.
Contrary to subset, the operator returns false if A = B.

BooleanA xsubset B

Checks whether the values in set A are also values in B.
The operator also returns true if A = B.

BooleanA subset B

Same as =.BooleanA == B

Checks whether two sets A, B do not contain the same
values; if B is a reference to A, then the result is false.

BooleanA <> B

Checks whether two sets A, B contain the same values;
if B is a reference to A, then the result is also true.

BooleanA = B

Checks whether a set is empty.Booleanempty A

Determines whether a set contains at least one value.
If so, it returns true, else false.

Booleanfilled A

Checks whether the set A contains the given value c.Booleanc in A
FunctionReturnName

Table 14: Set operators

114 4 Data

4.11 Sequences

Besides storing values in tables or sets, Agena also features the sequence, an
object which can hold any number of items except null. You may sequentially add
items and delete items from it. Compared to tables, insertion and deletion are
twice as fast with sequences. Contrary to all other data structures, Agena
automatically frees the memory occupied by a sequence if you remove values
from it11.

Sequences store items in sequential order. As with tables, an item may be included
multiple times. Sequences are usually indexed with positive integers in the same
fashion as table arrays are, starting at index 1. If you pass a negative index n, then
the |n|-th value from the right end, i.e. the top of the sequence will be determined.
Non-integral indices are not allowed. As with tables, you can compute the index in
assignments or queries.

Suppose we want to define a sequence of two values. You may create it using the
seq operator.

seq([item1 [, item2, ···]])

> a := seq(0, 1, 2, 3);

> a:
seq(0, 1, 2, 3)

You can access the items the usual way:

seqname[index]

> a[1]:
0

> a[2], a[3]:
1 2

If the index is larger than the current size of the sequence, an error will be returned12.

> a[5]:
Error, line 1: index out of range

Sublists of sequences can be determined with the following syntax:

seqname[m to n]

agena >> 115

12 The error message can be avoided by defining an appropriate metamethod.

11You can turn off this feature by issuing: environ.kernel(seqautoshrink = false).

Agena returns all values from and including index position m to n, with m and n
positive or negative integers. In case of a non-existing key, an error will be issued. If
m > n, an empty sequence will be returned.

> a[2 to 3]:
seq(1, 2)

The way Agena outputs sequences can be changed by using the settype function.

In general, the settype function allows you to set a user-defined subtype for a
sequence, set, table or pair.

> a := seq(0, 1);

> settype(a, 'duo');

> a:
duo(0, 1)

The gettype function returns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettype returns null.

Once the type of a sequence has been set, the typeof operator also returns this
user-defined sequence type and will not return 'sequence'.

> typeof(a), gettype(a):
duo duo

This allows you to programme special operations only applicable to certain types of
sequences.

The :: and :- operators can check user-defined types. Just pass the name of your
type as a string:

> a :: 'duo':
true

> a :- 'duo':

false

Note that if a user defined-type has been given, the check for a basic type with the
:: and :- operators will return also return true or false.

> a :: sequence:
true

> a :- sequence:
false

116 4 Data

A user-defined type can be deleted by passing null as a second argument to
settype.

> settype(a, null);

> typeof(a):
sequence

The create sequence statement creates an empty sequence and optionally allows
to allocate enough memory in advance to hold a given number of elements
(which can be inserted later). Agena automatically will extend the sequence, if the
predetermined number of items is exceeded. The sequence and seq keywords are
synonyms.

create sequence name1 [, seq name2, ···]
create sequence name1(size1) [, seq name2(size2), ···]

Items can be added only sequentially. You may use the insert statement for this or
the conventional indexing method.

> create sequence a(4);

> insert 1 into a;

> a[2] := 2;

> a:
seq(1, 2)

Note that if the index is larger than the number of items stored to it plus 1, Agena
returns an error in assignment statements, since `holes` in a sequence are not
allowed. The next free position in a is at index 3, however a larger index is chosen in
the next example.

> a[4] := 4
Error, line 1: index out of range

> a[3] := 3

Items can be deleted by setting their index position to null, or by applying delete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted to the left, thus their indices will change.

> a[1] := null

> a:
seq(2, 3)

> delete 2, 3 from a

> a:
seq()

agena >> 117

Thus concerning the insert and delete statements, we have the following familiar
syntax:

insert item1 [, item2, ···] into name

delete item1 [, item2, ···] from name

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like A := seq(); B := A, A and B point to the same sequence in
memory. Use the copy function if you want to create `independent` sequences.

> A := seq()

> B := A

> A[1] := 10

> B:
seq(10)

As with tables and sets, sequences can also reference to themselves:

> A := seq()

> A[1] := A

> A[2] := A

> A:
seq(circum_sequence(01E647D8), circum_sequence(01E647D8))

The following operators, functions, and statements operate on sequences:

delete 0, 1
 from aDeletes one or more elements.delete

insert 1 into aInserts one or more elements.insert

f $$ a
Checks whether at least one element in A
satisfies a condition.

$$

Selects all elements of A that satisfy a given
condition.

$

f @ a
Maps a function on all elements of a
sequence.

@

a :- sequence
a :- 'usertype'Negation of type check operation:-

a :: sequence
a :: 'usertype'Type check operator::

a <> bInequality check the Cantor way<>
a ~= bapproximate equality check~=
a == bStrict equality check==
a = bEquality check the Cantor way=
ExampleDescriptionName

118 4 Data

zip(<< x, y ->
 x + y >>,
 seq(1, 2),
 seq(3, 4))

Zips together two sequences by applying a
function to each of its respective elements.

zip

map(<< x -> x^2
>>, seq(1, 2, 3))

Maps a function on all elements of a
sequence.

map

nseq(<< x -> x
 >>, 1, 10)Creates a new sequence and fills it with valuesnseq

unpack(a)
Unpacks a sequence. See unpack in Chapter
8.

unpack

unique a
Reduces multiple occurrences of an item in a
sequence to just one.

unique

typeof a

Returns the user-defined type of a sequence,
or the basic type if no special type has been
defined.

typeof

type a
Returns the general type of a sequence, i.e.
sequence.

type

subsop(1:0,
seq(1, 2))

Substitutes the value at index i in o with value
v.

subsop(i:v,
o)

subs(8:0,
seq(1, 8))

Substitutes all occurrences of value x in o with
value v.

subs(x:v, o)

purge(a, 2)Deletes the value o[i]purge(o, i)

sort(a)

Sorts a sequence in place. Please also see
Chapter 7 for its derivatives: sorted,
skycrane.sorted, stats.issorted, and
stats.sorted.

sort

size aReturns the current number of items.size

pop bottom from a
pop top from a

Pops the first or the last element from a
sequence.

pop

join(a)
Concatenates all strings in a sequence in
sequential order.

join

0 in seq(1, 0)

Checks whether an element is stored in the
sequence, and returns true or false. See also
binsearch.

in

getentry(a, 1, 3)
Returns entries without issuing an error if a
given index does not exist.

getentry

empty aChecks whether a sequence is empty.empty

filled a
Checks whether a sequence has at least one
item.

filled

copy a

Creates an exact copy of a sequence; deep
copying is supported so that structures inside
sequences are properly treated.

copy

pop a
as an operator works like top but also removes
the item from the sequence

pop

top aReturns the item with the largest key.top

bottom aReturns the item with key 1.bottom
ExampleDescriptionName

agena >> 119

getmetatable(a)Returns the metatable stored to a sequence.
getmeta-
table

setmetatable
 (a, mtbl)Assigns a metatable to a sequence.

setmeta-
table

gettype(a)Returns a user-defined type for a sequence.gettype

settype(a, 'duo')Sets a user-defined type for a sequence.settype

seq(1, 2)
union seq(2, 3)

Concatenates two sequences simply by
copying all its elements.

union

seq(1)
subset seq(1, 2)

Checks whether all values in a sequence are
included in the other sequence.

subset

seq(1, 2)
minus seq(2, 3)

Searches all values in one sequence that are
not values in the other sequence and returns
them as a new sequence.

minus

seq(1, 2)
intersect
seq(2, 3)

Searches all values in one sequence that are
also values in the other sequence and returns
them in a new sequence.

intersect

ExampleDescriptionName

Table 15: Basic sequence operators and functions

For more functions, consult the Agena Quick Reference Excel sheet. Also, you may
have a look at the llist linked list package presented in Chapter 6.27, if you have to
conduct a lot of insertions and/or deletions in a data structure.

The (/ ... \) constructor allows to define a sequence of constant numbers and/or
strings the simple way: items may not be separated by commas, and strings do not
need to be put in quotes as long as they satisfy the criteria for valid variable
names(name starting with a hyphen or letter, including diacritics) or if they are
keywords. Expressions like `sin(0)` etc. are rejected. Example:

> a := (/ 0 1 2 3 zero one two three '2and3' while \):
seq(0, 1, 2, 3, zero, one, two, three, 2and3), while]

4.12 Stack Programming

Sequences and sometimes table arrays can be used to implement stacks, and
besides the insert/into statement to put an element to the top, an efficient
statement is available to remove an item from the bottom or from the top of the
stack:

pop bottom from name

pop top from name

Both variants work on tables even if their integer keys are not distributed
consecutively.

120 4 Data

The bottom and top operators return the element at the bottom of the stack and
the top of the stack, respectively. They both do not delete the element returned
from the stack.

> stack := seq();

> insert 10, 11, 12 into stack;

> bottom(stack):
10

> top(stack):
12

> pop bottom from stack;

> pop top from stack;

> stack:
seq(11)

The rotate statement moves each element in a sequence or the array part of a
table one position to the bottom (downwards) or to the top (upwards):

rotate bottom name

rotate top name

The element at the bottom or the top is moved to the top or the bottom,
respectively.

> s := seq(1, 2, 3);

> rotate bottom s;

> s:
seq(2, 3, 1)

> s := seq(1, 2, 3):
seq(1, 2, 3)

> rotate top s;

> s:
seq(3, 1, 2)

The pop operator - contrary to top - both returns the top element of a sequence or
register and then removes it from the structure. With tables, it returns the value
indexed by the largest integer key and then also removes it.

> pop(s):
2

> s:
seq(3, 1)

agena >> 121

There are two other statements that work on sequences and registers only: The
exchange statement swaps the two topmost elements, and the duplicate
statement adds a copy of the current topmost element to the end of the structure.

> exchange s

> s:
seq(1, 3)

> duplicate s

> s:
seq(1, 3, 3)

You may try to use the put function to insert new values in the interior of a stack,
shifting up other values to open space, and purge to delete values in the interior of
a stack.

See also Chapter 14.6 for the six built-in number and character stacks.

4.13 More on the create Statement

You cannot only initialise any table arrays with the create statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid:

> create table a, dict b(10), set c, sequence d(100), table e(10);

> a, b, c, d, e:
[] [] {} seq() []

4.14 Pairs

The structure which holds exactly two values of any type (including null and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally to allow passing options in a more flexible way to
functions, it is defined with the colon operator:

item1 : item2

> p := 1:2

> p:
1:2

The left and right operators provide read access to its left and right operands; the
standard indexing method using indexed names is supported, as well:

122 4 Data

left [(] pair [)]
right [(] pair [)]

> left(p), p[1]:
1 1

> right p, p[2]:
2 2

An operand of an existing pair can be changed by assigning a new value to an
indexed name, where the left operand is indexed with number 1, and the right
operand with number 2:

> p[1] := 2;

> p[2] := 3;

You can compute the index as long as the result evaluates to the integers 1 or 2, as
well.

As with sequences, you may define user-defined types for pairs with the settype
function which also changes the way pairs are output.

> typeof(p):

pair

> settype(p, 'duo');

> p:
duo(2, 3)

> typeof(p):
duo

> gettype(p):
duo

> p :: pair:
true

> p :: 'duo':
true

The only other operators besides left and right that work on pairs are equality (=, ==,
~=), inequality (<>, ~<>), ::, :-, type, typeof, and in.

> p = 3:2:
false

With pairs consisting of numbers, the in operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

agena >> 123

> 2 in 0:10:
true

> 's' in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A, A and B
point to the same pair. Use the copy function if you want to create `independent`
pairs.

Summary:

getmetatable(p)Returns the metatable stored to a pair.getmetatable

setmetatable(p,
 mtbl)Sets a metatable to a pair.setmetatable

gettype(a)Returns the user-defined type of a pair.gettype

settype(a, 'duo')Sets a user-defined type for a pair.settype

typeof(a)

Returns either the user-defined type of the
pair, or the basic type ('pair') if no
special type was defined for the pair.

typeof

type(a)With pairs, always returns 'pair'.type

right(a)Returns the right operand of a pair.right

left(a)Returns the left operand of a pair.left

1.5 in 1:2

If the left operand x is a number and if the
left and right hand side of the pair a:b are
numbers, then the operator checks
whether x lies in the closed interval [a, b]
and returns true or false. If at least one
value x, a, b is not a number, the operator
returns fail.

in

copy a

Creates an exact copy of a pair; deep
copying is supported so that structures
inside pairs are properly treated.

copy

f @ aMaps a function on each operand.@

a :- pair
a :- 'udeftype'Negation of type check operation:-

a :: pair
a :: 'udeftype'Type check operator::

a <> bInequality check<>
a = bEquality checks (mostly same functionality)=, ==, ~=
ExampleDescriptionName

Table 16: Operators and functions applicable to pairs

124 4 Data

4.15 Registers

Registers are memory-efficient, fixed-size Agena `sequences` that also store null's.
They are not automatically extended if more values have to be added, but can be
manually resized.

Registers allow to hide data: by changing the pointer to the top of a register using
registers.settop, any values stored above (the position of) this pointer can neither
be read nor changed by any of Agena's functions and operators. Registers are
supported by most of the existing statements, operators and functions. Please also
refer to Chapter 6.15 `Sandboxes`.

The concept of the fixed size and the top pointer is key to understanding and
working with registers.

By default, the top pointer always refers to the very last element in a register - it is
automatically changed only if an element is removed with the pop top or pop
bottom statements, the pop operator or the purge function.

In general, registers can save memory if you know the precise number of values to
be stored, or to be added or removed later, in advance. As such, they behave like
C arrays storing any value without provoking faults. With respect to sequences, there
usually are no performance gains with most operations - but since registers do not
automatically shift elements, they are eight times faster when deleting items.

Let us first create a register with eight items:

> a := reg(1, 2, 3, 4, 5, 6, 7, 8):
reg(1, 2, 3, 4, 5, 6, 7, 8)

Read the first element:

> a[1]:
1

Set the first entry to null - contrary to other data structures, the size of register is not
reduced, and no values are shifted.

> a[1] := null;

> a:
reg(null, 2, 3, 4, 5, 6, 7, 8)

Now reset the pointer to the top of the register to the fourth element:

> registers.settop(a, 4);

> size(a):
4

> a:
reg(null, 2, 3, 4)

agena >> 125

> a[5]:
In stdin at line 1:
 Error: register index 5 out of current range.

Stack traceback:
 stdin, at line 1 in main chunk

By changing the position of the top pointer beyond 4, we can read and change
the values again:

> registers.settop(a, 8);

reg(null, 2, 3, 4, 5, 6, 7, 8)

When passing no elements to the reg operator, by default a register with sixteen
slots is created.

> reg():
reg(null, null, null, null, null, null, null, null, null, null, null, null,
null, null, null, null)

But you can change this default to another value:

> environ.kernel(regsize = 8);

> reg():
reg(null, null, null, null, null, null, null, null)

Registers containing null's may issue errors with some functions or operators.

Changing the size of a register at runtime is easy:

> b := reg('a', 'b', 'c'):
reg(a, b, c)

register.extend enlarges a register to the given number of elements.

> registers.extend(b, 8);

> b:
reg(a, b, c, null, null, null, null, null)

register.reduce shrinks a register to the given number of elements.

> registers.reduce(b, 4);

> b:
reg(a, b, c, null)

Registers support metamethods and user-defined types. To hide the current size of
the register as defined above, we could assign:

> size a:
8

126 4 Data

> mt := [
> '__size' ~ proc(x) is
> return 0
> end
>]

> setmetatable(a, mt);

> size a:
0

type a
Returns the general type of a register, i.e.
register.

type

sort(a)
Sorts a register in place. Please also see
sorted.

sort

size aReturns the number of `visible` elements.size

pop bottom from a
pop top from a

Pops the first or the last element from a
register, shifting other elements to close the
space, if necessary. Reduces the size of the
register by one.

pop
bottom/
top

0 in reg(1, 0)
Checks whether an element is stored in the
register, returns true or false.

in

getentry(a, 1, 3)
Returns entries without issuing an error if a
given index does not exist.

getentry

filled a
Checks whether a register has at least one
item, including null. This is always true.

filled

copy a

Creates an exact copy of a register; deep
copying is supported so that structures inside
register are properly treated.

copy

pop a
as an operator works like top but also removes
the item from the register.

pop

top aReturns the item with the largest key.top

bottom aReturns the item with key 1.bottom

delete 0, 1
 from a

Deletes one or more elements and replaces
them with null.

delete

insert 0, 1
 into a

Inserts an element at the first position that
holds a null value.

insert

f $$ a
Checks whether at least one element satisfies
a given condition.

$$

f $ a
Selects all elements of a that satisfy a given
condition.

$

f @ aMaps a function on all elements of a register.@
a :- registerNegation of type check operation:-
a :: registerType check operator::
a <> bInequality check the Cantor way<>
a ~= bApproximate equality check~=
a == bStrict equality check==
a = bEquality check the Cantor way=
ExampleDescriptionName

agena >> 127

Sets the default size of newly created registers
the given value, a non-posint.

environ.
kernel/
regsize

Enlarges the size of a register to the given
value.

registers.
extend

Shrinks the size of a register to the given value.
registers.
reduce

Resets the top pointer to the given position, an
integer.

registers.
settop

getmetatable(a)Returns the metatable stored to a register.
getmeta-
table

setmetatable
 (a, mtbl)Assigns a metatable to a register.

setmeta-
table

reg(1, 2)
union reg(2, 3)

Concatenates two registers simply by copying
all its elements.

union

reg(1)
xsubset reg(1, 2)

Checks whether all values in a register are
included in another register.

xsubset

reg(1)
subset reg(1, 2)

Checks whether all values in a register are
included in another register.

subset

reg(1, 2)
minus reg(2, 3)

Searches all values in one register that are not
values in another register and returns them as
a new register.

minus

reg(1, 2)
intersect
reg(2, 3)

Searches all values in one register that are
also values in another register and returns
them in a new register.

intersect

zip(<< x, y ->
 x + y >>,
 reg(1, 2),
 reg(3, 4))

Zips together two registers by applying a
function to each of its respective elements.

zip

subsop(1:0,
reg(1, 2))

Substitutes the value at index i in o with value
v.

subsop(i:v,
o)

subs(8:0,
reg(1, 8))

Substitutes all occurrences of value x in o with
value v.

subs(x:v, o)

purge(a, 2)

Removes the value at the given position and
shifts all elements to close the space. Also
reduces the size of the register by one.

purge

map(<< x -> x^2
>>, reg(1, 2, 3))Maps a function on all elements of a register.map

duplicates(a)Finds duplicate elements.duplicates

unpack(a)Unpacks a register. See unpack in Chapter 8.unpack

unique a
Reduces multiple occurrences of an item in a
register to just one.

unique

ExampleDescriptionName

Table 17: Some operators and functions applicable to registers

128 4 Data

4.16 Exploring the Internals of Structures

If you would like to know how a table, set, sequence, register or pair is represented
internally, please have a look at the environ.attrib function explained in Chapter
14.2. It might help when debugging code.

The function returns the estimated number of bytes used by a structure, how many
slots have been pre-allocated and how many are actually occupied, whether a
user-defined type has been set, how many elements have been allocated to the
array and hash parts of a table, etc.

4.17 Other Types

For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation
and Chapter 6.30.

Agena supports the following metamethods with all data types: =, ==, ~=, size,
in, union, intersect, minus, addup, mulup, sumup, qsumup and qmdev.
'__index' , '__writeindex', '__gc', and '__tostring' are supported, as well.

agena >> 129

130 4 Data

Chapter Five

Control

agena >> 131

132 5 Control

5 Control

5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the if or case statement.

5.1.1 if Statement

The if statement checks a condition and selects one statement from many listed. Its
syntax is as follows:

 if condition1 then
 statements1

 [elif condition2 then
 statements2]
 [onsuccess
 statements3]
 [else
 statements4]
 fi

The condition may always evaluate to one of the Boolean values true, false or fail,
or to any other value.

The elif, else, and onsuccess
clauses are optional. While
more than one elif clause
can be given, only one else
and one onsuccess clause is
accepted.

If an if or elif condition results
to true or any other value
except false, fail or null, its
corresponding then clause is
executed. If all conditions
result to false, fail or null, the
else clause is executed if
present - otherwise Agena
proceeds with the next
statement following the fi
keyword.

If an onsuccess clause is given, and an if or elif condition results to true, the
statements in this onsuccess branch are executed. This allows to move code
common to all then clauses into one single branch, reducing code size. When

agena >> 133

Condition1 B lock1

Condition2 B lock2

if

elif

els e

then

then

fi

B lock3

B lock4

ons ucces s

true

false

true

false

using both onsuccess and else clauses, the onsuccess clause must be put given
before the else snippet.

Examples:

The condition true is always true, so the string 'yes' is printed.

> if true then
> print('yes')
> fi;
yes

The next example demonstrates the behaviour if the condition is neither a Boolean
nor null:

> if 1 then
> print('One')
> fi;
One

In the following statement, the condition evaluates to false, so nothing is printed:

> if 1 <> 1 then
> print('this will never be printed')
> fi;

An if statement with an else clause:

> if false then
> print('this will never be printed')
> else
> print('this will always be printed')
> fi;
this will always be printed

An if statement with an elif clause:

> if 1 = 2 then
> print('this will never be printed')
> elif 1 < 2 then
> print('this will always be printed')
> fi;
this will always be printed

An if statement with elif and else clauses:

> if 1 = 2 then
> print('this will never be printed')
> elif 1 < 2 then
> print('this will always be printed')
> else
> print('neither will this be printed')
> fi;

this will always be printed

134 5 Control

Sometimes certain conditions may just be skipped with an empty statement,
denoted by do nothing, to make the code more readable:

> if 1 = 2 then
> do nothing
> elif 1 < 2 then
> print('this will always be printed')
> else
> print('neither will this be printed')
> fi;

this will always be printed

One last example, this time demonstrating the optional onsuccess clause. As
shown, both then statements include the same flag := true statement.

> if 1 = 2 then
> print('this will never be printed');
> flag := true
> elif 1 = 1 then
> print('this will always be printed');
> flag := true
> else
> flag := false
> fi;
this will always be printed

> flag:
true

So the two assignment statements may be moved into one onsuccess clause.

> if 1 = 2 then
> print('this will never be printed');
> elif 1 = 1 then
> print('this will always be printed');
> onsuccess
> flag := true
> else
> flag := false
> fi;
this will always be printed

> flag:
true

if and elif statements also support simple assignments in the conditions, as well.

> if flag := true then
> print('Output: ' & flag)
> fi;

Output: true

Only if the right-hand side of the assignment does neither result to false, fail nor null,
will the corresponding then clause be executed.

You can also combine an assignment and a condition in the if clause:

agena >> 135

> if c := 0, c >= 0 do
> print(c)
> od;
0

5.1.2 if Operator, Version One

The if operator checks a condition and returns the respective expression.

[with name1, ··· := expr1, ··· [->]]
if condition1 then expr1 [elif condition2 then expr2, ···] else exprk fi

The result is expression expr1 if condition1 is true or any other value except false, fail
or null; and exprk otherwise. You can also optionally add one or more elif clauses.

Example:

> x := if 1 = 1 then true else false fi:

true

which is the same as:

> if 1 = 1 then
> x := true
> else
> x := false
> fi;

The if operator only evaluates the expression that it will return. Thus the other
expression which will not be returned will never be checked for semantic
correctness, e.g. out-of-range indices, etc. You may nest if operators.

An optional preceding with clause allows to define one or more auxiliary variables
that are local to this operator only:

> x := Pi;

> a := with n := 2*x -> if x < 0 then n else 2*n fi;

which is syntactic sugar for:

> x := Pi;

> scope
> local n := 2*x;
> a := if x < 0 then n else 2*n fi
> epocs;

The arrow token is optional. Multiple auxiliary variables are defined as follows:

> a := with m, n := x, 2*x -> if x < 0 then m else n fi;

136 5 Control

The if operator cannot return multiple values, only one.

5.1.3 if Operator, Version Two

There is a second operator form, reminiscent to the if statement; for example:

> a := 10;

> sgn := if is a < 0 then # determines sign of `a'
> print('I am negative');
> [further statements ...]
> return -1
> elif a = 0 then
> print('I am zero');
> return 0
> else
> return 1
> fi;
> sgn:
1

You may omit the elif and else clauses. Each clause may contain zero, one ore
more statements, but it must always finish with the return expression which defines
the resulting value (-1, 0 or 1 in the example above). In procedures, this special
return expression does not cause a procedure to quit. Note that if the else clause is
omitted, the operator returns null if no condition is met.

The operator returns exactly one value.

5.1.4 Short-cut Condition with ? and ?- Tokens

The question mark ? expresses a short-cut `if`-like statement: if any condition
preceding ? evaluates to true, exactly one statement right after the token is
executed, otherwise the statement is simply skipped. Likewise, the ?- token checks
an expression and executes a one-line statement if it evaluates to false, fail or null.

> x := 0;

> x = 0 ? x := 1;

> x:
1

> x := 0;

> x <> 0 ?- x := 1;

> x:
1

agena >> 137

5.1.5 case Statement

The case statement facilitates comparing values and executing corresponding
statements. There exist two variants, the first one is:

case name
 [of value11 [, value12, ···] then statements1
 [of value21 to value22 then statements2]
 [of ···]
 [onsuccess ···]
 [else statementsk [esle]]
esac

> a := 'k';

> case a
> of 'a', 'e', 'i', 'o', 'u', 'y' then
> result := 'vowel'
> else
> result := 'consonant'
> esle
> esac;

> result:
consonant

You can add as many of/then statements as you like. Fall through is not supported.
This means that if one then clause is executed, Agena will not evaluate the
following of clauses and will proceed with the statement right after the closing esac
keyword. An else clause may be terminated by the esle token, but this is optional.

Instead of passing one or more individual values, you can also check whether a
number x or the first character of a - non-empty - string x is part of a range a to b,
i.e. . One to range is accepted per of clause.a [x [b

> a := 0;

> case a
> of -1 then result := -1
> of 0 to 10 then result := 10
> of 'a' to 'c' then result := 0
> esac;

As with the if statement, if an onsuccess clause is given, and in case one of the
conditions results to true, the statements in the onsuccess branch are executed.
This allows to move code common to all then clauses into one single branch,
reducing the code size.

If none of the of conditions is satisfied, and if an else clause is given, then the
respective else statements will be processed, otherwise Agena executes the code
following the esac token.

138 5 Control

The second variant is
exactly equal to the if
statement but may
improve the readability
of programme code.

With both variants,
instead of the then
keyword the -> token
can be used.

5.1.6 case of Statement

A flavour of the if
statement is the case of
control. It may improve
the readability of code.

There is no functional
difference between if
and case of statements.

Example:

> x := 0; flag := false;

> case
> of x < 0 then r := -1;
> of x = 0 then r := 0;
> onsuccess flag := true;
> else r := 1 esle
> esac

> r, flag:
0 true

case
 of condition1 then statements1
 [of condition2 then statements2]
 [of ···]
 [onsuccess ···]
 [else statementsk [esle]]
esac

case of statements also support simple assignments in the case of clause, and
their optional of clauses, as well.

agena >> 139

Value1 B lock1

Value2 B lock2

B lock3

of

els e

then

then

Check Value

esac

of

cas e

B lock4

ons ucces s

yes

no

yes

no

> case of flag := io.read() then
> print('Output: ' & flag)
> esac;
Agena

Output: Agena

Only if the right-hand side of the
assignment does neither result to
false, fail nor null will the then clause
be executed.

5.2 Loops

Agena has three basic forms of
control-flow statements that perform
looping: while and for, each with
different variations.

5.2.1 while Loops

A while loop first checks a condition and if this condition is true or any other value
except false, fail or null, it iterates the loop body again and again as long as the
condition remains true.

If the condition is false, fail or null, no further iteration is done and control returns to
the statement following right after the loop body.

If the condition is false, fail or null right from the start, the loop is not executed at all.

 while condition do
 statements
 od

The programme flow is as shown in the diagram above.

The following statements calculate the largest Fibonacci number less than 1000.

> a := 0; b := 1;

> while b < 1000 do
> c := b;
> b := a + b;
> a := c
> od;

> c:

987

140 5 Control

Loop Header

Loop End

Block

Condition

while

quit
loop

iteration

od

next
iteration

true

false

The following loop will never be executed since the condition is false:

> while false do
> print('never printed')
> od;

You can also conduct a simple assignment in the while condition. If an assignment
is given in the while clause, its right-hand side is evaluated and stored to the
left-hand side name. The result of the evaluation is then checked and either the
loop body is executed - the result of the evaluation is neither false, fail nor null - or
not.

This allows for shorter code: Instead of

> flag := true;
> while flag do
> flag := io.read();
> if flag = 'Z' then break fi
> od

you can now simply write (no need to assign flag before):

> while flag := io.read() do
> if flag = 'Z' then break fi
> od

The variable assigned in the while clause is not local to the loop body but can be
accessed later on the level that surrounds the loop. You may explicitly declare the
variable local before.

You can also combine an assignment and a condition in the while clause. In this
case, the assignment will be done only once and the condition will always be
checked:

> while c := 0, c < 3 do
> print(c++)
> od;
0
1
2

> c:

3

Variations of while are the do/as and do/until loops which check a condition at the
end of the iteration, and thus will always be executed at least once.

In the do/as variant, as long as the condition evaluates to true, the loop body is
executed.

agena >> 141

> c := 0;

> do
> inc c
> as c < 10;

> c:
10

do/until loops are iterated until the given condition is met.

> c := 0;

> do
> inc c
> until c > 10;

> c:
11

do/as and do/until support simple assignments in the respective condition.

Another flavour of the while loop is the infinite do/od loop which executes
statements infinitely and can be interrupted with the break or return statements.
See Chapter 5.2.10 for further information on the break statement. It is syntactic
sugar for the while true do/od construct.

 do
 statements
 od

> i := 0;

> do
> inc i;
> if i > 3 then break fi;
> print(i)
> od;
1
2
3

for loops are used if the number of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for table and string iterations.

142 5 Control

 do
 statements
 as condition

 do
 statements
 until condition

5.2.2 for/to Loops

Let us first consider numeric for/to loops which use numeric values for control:

for name [from start] [to stop]
 [by step] do
 statements
od

name, start, stop, and step are all
numeric values or must evaluate to
numeric values.

The statement at first sets the
variable name to the value of start.
name is called the control or loop
variable. If start is not given, the start
value by default is +1.

When omitting the to clause, the
loop iterates until the largest number
representable on your platform has
been reached. If left out, the step
size is +1.

The for loop then checks whether
start stop. If so, it executes[

statements and returns to the top of
the loop, increments name by step
and then checks whether the new
value is less or equal stop. If so,
statements are executed again.

> for i from 1 to 3 by 1 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

> for i to 3 do
> print(i, i^2, i^3)
> od;
1 1 1
2 4 8
3 9 27

The control variable of a loop is always accessible to its surrounding block, so you
may use its value in subsequent statements. This rule applies only to
for/from/to-loops with or without a while, as or until extension, but not to for/in loops

agena >> 143

Lo op Header

Loop End

Block

name > stop

numeric for

quit
loop

iteration

od

name := start

name :=
name + step

next
iteration

false

true

described below. Note that within procedures, the loop control variable is
automatically declared local, while on the interactive level it is global.

> for i while fact(i) < 1k do od

> i:

7

The following rules apply to the value of the control variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until the stop value has been
reached, then the value of the control variable will be its stop value plus the step
size.

2. If the loop is left prematurely by executing a break statement13 within the loop,
or if a for/while loop is terminated because the while condition evaluated to
false (see Chapter 5.2.8), then the control variable will be set to the loop's last
iteration value before quitting the loop. There will be no increment with the loop's
step size. The same applies to for/as and for/until loops (see Chapter 5.2.9).

Loops can count backwards if the step size is negative (see also the next chapter):

> for i from 2 to 1 by -1 do
> print(i)
> od
2
1

A special form is the to/do loop which does not feature a control variable and
iterates exactly n times.

> to 2 do
> print('iterating')
> od
iterating
iterating

Agena automatically uses an advanced precision algorithm based on Neumaier
summation if the step size is non-integral, e.g. 0.1, -0.01. This mostly prevents
round-off errors, thus avoids that the loop stops before the last iteration value - the
limit - has been reached and that iteration values with round-off errors are returned.
You may switch Agena into Kahan-Ozawa or Kahan-Babuška summation mode to
use extended round-off prevention by issuing the statement in a session:

> environ.kernel(kahanozawa = true);

or

> environ.kernel(kahanbabuska = true);

144 5 Control

13 See Chapter 5.2.8 for more information in the break statement.

As a further measure to prevent a loop stopping before the stop limit has been
reached, numeric for loops with fractional step sizes automatically increase the
stop limit by the value of the constant hEps. If a you pass a step size that is equals
or less then hEps, Agena now issues an error. You can entirely switch off this
math.Eps to zero, but only by calling environ.kernel:

> environ.kernel(hEps = 0);

Kahan-Babuška summation may be more accurate than Kahan-Ozawa
summation. The speed loss with both algorithms compared to Neumaier is around
20 percent or more.

If the step size is an integer, e.g. 1000, 1, -1.0, then Agena will not use advanced
precision to ensure maximum speed.

5.2.3 for/downto Loops

count from a start value down to a stop value, with a default countdown step size
of (implicit minus) one. To count down, the optional step size should be positive.

for name from start downto stop [by step] do
 statements
od

5.2.4 for/in Loops over Tables

are used to traverse tables, strings, sets, and sequences, and also iterate over
functions.

If null is passed after the in keyword, or if the value evaluates to null, then Agena will
not execute the loop and continue with the statement following it.

Let us first concentrate on table iteration.

 for key, value in tbl do
 statements
 od

agena >> 145

The loop iterates over all key~value pairs in table tbl and with each iteration assigns
the respective key to key, and its value to value.

> a := [4, 5, 6]
> for i, j in a do
> print(i, j)
> od
1 4
2 5
3 6

There are two variations: When putting the token keys in front of the control variable,
the loop iterates only over the keys of a table:

 for keys key in tbl do
 statements
 od

Example:

> for keys i in a do
> print(i)
> od
1
2
3

The other variation iterates on the values of a table only:

 for value in tbl do
 statements
 od

> for i in a do
> print(i)
> od
4
5
6

The control variables in for/in loops are always local to the body of the loop (as
opposed to numeric for loops). You may assign their values to other variables if you
need them later.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copy function to safely traverse any structure
if you want to change, add, or delete its entries.

Because of the implementation of tables, please note that the keys in a table are
not necessarily traversed in ascending order. You may want to iterate sequences or

146 5 Control

linked lists (see Chapter 6.27).

5.2.5 for/in Loops over Sequences and Registers

All of the features explained in the last subchapter are applicable to sequences
and registers, as well.

5.2.6 for/in Loops over Strings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations are supported.

for key, value in string do statements od

for value in string do statements od

for keys value in string do statements od

The following code converts a word to a sequence of abstract vowel, ligature, and
consonant place holders and also counts their respective occurrence:

> str := 'æfter';

> result := '';

> c, v, l -> 0;

> for i in str do
> case i
> of 'a', 'e', 'i', 'o', 'u' then
> result &:= 'V';
> inc v
> of 'å', 'æ', 'ø', 'ö' then
> result &:= 'L';
> inc l
> else
> result &:= 'C'
> inc c
> esac
> od;

> print(result, v & ' vowels', l & ' ligatures', c & ' consonants');
LCCVC 1 vowels 1 ligatures 3 consonants

5.2.7 for/in Loops over Sets

All for loop variations support sets, as well. The only useful one, however, is the
following:

> sister := {'swistar', 'sweastor', 'svasar', 'sister'}

> for i in sister do print(i) od;

agena >> 147

svasar
swistar
sweastor
sister

You may try the other loop alternatives to see what happens.

5.2.8 for/in Loops over Procedures

The following procedure, called an iterator, returns a sequence of values multiplied
by two. If state = n, then the procedure will return null, quitting the for/in iteration.
Note that the iterator in its first result n returns the next value of the loop control
variable i. We use state to hold the number of iterations we wish to perform. See
Chapter 6 which describes procedures in detail.

> double := proc(state, n) is
> if state > n then
> inc n;
> return n, 2*n
> else
> return null
> fi
> end;

In the following loop, 5 denotes the state and 0 the initial value.

> for i, j in double, 5, 0 do
> print(i, j)
> od
1 2
2 4
3 6
4 8
5 10

Another means to iterate over procedures are closures, see Chapter 6.22. So far,
here is just an example that you can use as a template for further experiments:

> iterate := proc(obj) is
> local n := 0; # with each call, counts up by one
> return proc() is
> inc n;
> if n <= size obj then
> return n, obj[n]
> else
> return null # quit iteration
> fi
> end
> end;

> f := iterate(seq(Pi, 2*Pi, 3*Pi));

> for i, j in f do
> print(i, j)
> od;

148 5 Control

1 3.1415926535898
2 6.2831853071796
3 9.4247779607694

You might also use the generic ipairs and pairs functions with for/in loops:

ipairs iterates table arrays, sequences, registers, strings and userdata that have an
'__index' metamethod, in a standard way:

> for i, j in ipairs(s) do
> print(i, j)
> od;
1 3.1415926535898
2 6.2831853071796
3 9.4247779607694

> d := numarray.double(3)

> for i to 3 do d[i] := i*Pi od

> for i, j in ipairs(d) do
> print(i, j)
> od
1 3.1415926535898
2 6.2831853071796
3 9.4247779607694

To check whether a userdata features an '__index' entry in its associated
metatable, just enter:

> getmetatable(d).__index:

procedure(01CE6DD0)

pairs allows to iterate all the keys and corresponding values of a dictionary, but as
the following example shows, not surprisingly in a `random` fashion:

> t := [a = Pi, b = 2*Pi, c = 3*Pi]

> for i, j in pairs(t) do
> print(i, j)
> od
a 3.1415926535898
c 9.4247779607694
b 6.2831853071796

Take in mind that ipairs and pairs are much slower than iterating structures directly.

agena >> 149

5.2.9 for/while and for/until Loops

All flavours of for loops can be
combined with a while condition.
As long as the while condition is
satisfied, the for loop iterates. To
be more precise, before Agena
starts the first iteration of a loop or
continues with the next iteration, it
checks the while condition to be
true or any other value except
false, fail or null. An example:

> for x to 10
> while ln(x) <= 1 do
> print(x, ln(x))
> od
1 0
2 0.69314718055995

Regardless of the value of the
while condition, the loop control
variables are always initiated with
the start values: in the summary
frame below, with for/to loops, a is
assigned to i (or 1 if the from
clause is not given); key and/or
value are assigned with the first

item in the table, set or sequence struct or the first character in string string. Likewise,
the until condition quits a loop until it is satisfied.

for i [from a] [to b] [by step] (while|until) condition do statements od
for [key,] value in struct (while|until) condition do statements od

for keys key in struct (while|until) condition do statements od
for [key,] value in string (while|until) condition do statements od

for keys key in string (while|until) condition do statements od

The optional while and until clauses accept a simple assignment. In such a case,
the right-hand side of the assignment is evaluated and stored to the left-hand side
non-local name. The result of the evaluation is then checked and either the loop
body is executed or not. Example:

> a := [10, 20, 4 ~ 30] # the table has no index 3

> for i to 4 while t := a[i] do # since a[3] evaluates to null,
> # which is equal to false in this context, the loop quits with i = 3.
> print(a[i], t)
> od
10 10

20 20

150 5 Control

Loop Header

Loop End

Block

name > stop

numeric
for/while

quit
loop

iteration

od

name := start

name :=
name + step

Condition

next
iteration

true

false

true

false

5.2.10 for/as & for/until Loops

As with the optional while
clause, all flavours of for loops
can be combined with an as
or an until condition.

In these cases, a loop is
always iterated at least once,
and after the first iteration is
completed, Agena checks
the given condition and
decides whether to start the
next iteration or to leave the
loop.

In the following example, the
for/as loop starts with i=0 and
since the first check to the as
condition results to true, the
next iteration with i=1 is
conducted. The next check to
the as condition results to
false, thus the loop quits.

> for i from 0 do
> print(i, 10^i)
> as 10^i < 10
0 1
1 10

The next loop iterates three times, until i=2, since only then the until condition
becomes true.

> for i from 0 do
> print(i, 10^i)
> until 10^i > 10
0 1
1 10
2 100

agena >> 151

L oop Header

L oop E nd

B lock

name > s top

numeric
for/as /until

quit
loop

iteration

od

name := s tart

name :=
name + s tep

Condition

next
iteration

false

true

as: false
until: true

5.2.11 Loop Jump Control

Agena features statements to manipulate loop execution. skip and break are
applicable to all loop types, whereas redo and relaunch work in for loops only.

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

> for i to 5 do
> if i = 3 then skip fi;
> print(i)
> if i = 4 then break fi;
> od;
1
2
4

This is equivalent to the following
statement:

> for i to 5 while i < 5 do
> if i = 3 then skip fi;
> print(i)
> od;
1
2
4

> a := 0;

> while true do
> inc a;
> if a > 5 then break fi;
> if a < 3 then skip fi;
> print(a)
> od;
3
4
5

There exists syntactical sugar for both the skip and the break statements: instead of
putting these statements into if clauses, just add the when or unless tokens along
with a condition to the respective keyword.

> a := 0;
> while true do
> inc a;
> break unless a <= 5;
> skip unless a >= 3;
> print(a)
> od;

> a := 0;
> while true do
> inc a;
> break when a > 5;
> skip when a < 3;
> print(a)
> od;

152 5 Control

Loop Header

Loop End

skip

break

next
iteration

initiate
next

iteration

quit
loop

immediately

Both flavours return:

3
4
5

In for/to and for/in loops, the
redo statement is similar to
skip: it jumps back to the
beginning of the loop but does
not change the loop control
variable in for/to loops or the
index/value control variables in
for/in loops. Thus, it restarts the
current iteration. At restart, it
checks an optional while
condition, if present.

> flag := true;

> for j in [10, 11, 12] do
> print(j, flag);
> if flag and j = 11 then
> clear flag;
> print(j, flag,
> 'jump back')
> redo
> fi;
> until j > 12;

10 true
11 true
11 false jump back
11 false
12 false

The relaunch statement completely restarts a for/to and for/in loop from its very
beginning, i.e. resets the current control variable to its start value (from clause or first
element, respectively).

> flag := true;

> for j in [10, 11, 12] do
> print(j, flag);
> if flag and j = 11 then
> clear flag;
> print(j, flag,
> 'restart')
> relaunch
> fi;
> until j > 12;
10 true
11 true
11 null restart
10 null
11 null
12 null

agena >> 153

for H eader

for E nd

s kip

break

redo

relaunch

next
iteration

initiate
next

iteration

quit
loop

immediately

restart
current
iteration

restart loop

5.2.12 Scope I: scope and epocs

You can define the scope of local variables with the scope/epocs statement. Any
variable declared local between the scope and epocs keywords exists only in this
block, and they are not available outside of it:

scope
 declarations and statements
epocs

An example:

> a := 2;

> scope
> local b := 3; # b is local to the scope only
> c := a*b # c is available outside the block
> epocs;

> print(a, b, c);
2 null 6

5.2.13 Scope II: with Statement

The with statement allows to define a scope and assign one or more local variables
in only one stroke. It is syntactic sugar to the scope statement only. The following
example refers to the example in the preceding subchapter:

with name1, ··· := expr1, ··· do
 declarations and statements
od

> a := 2;

> with b := 3 do # b is local, a and c are global
> c := a*b
> od;

> print(a, b, c);
2 null 6

Assign multiple local variables, in this case two variables:

> a := 2;

> with b, c := 3, 4 do
> d := a*b*c
> od;

> print(a, b, c, d);
2 null 6 24

154 5 Control

5.2.14 with Statement for Dictionaries

The with statement can also unpack table values, indexed by string keys, declare
them local and then access them in the respective block. After leaving the block,
all the values listed right between the with and in tokens are automatically written
back to the table:

with key1 [, key2,, ···] in tablename do
 statements
od

> zips := ['duedo' ~ 40210:40629,
> bonn = 53111:53229,
> cologne = 50667:51149];

> with duedo, cologne in zips do # bonn has not been given here
> print(duedo, bonn, cologne);
> cologne := null; # cologne entry will be deleted from table zips
> duedo := 40210:51149 # duedo entry in zips will be changed
> # bonn entry will not be changed since not listed in the header
> bonn := null
> print(bonn, cologne, duedo)
> od;
40210:40629 null 50667:51149
null null 40210:51149

> zips:
[bonn ~ 53111:53229, duedo ~ 40210:51149]

Another flavour of the with statement has the following syntax:

with tablename do
 statements
od

Within the body of this variant, the table tablename can be referenced by just an
underscore. It also allows to actively change values in tablename. Example:

> zips := [duedo = 4000, bonn = 5300]

> with zips do
> print(_.bonn);
> _.bonn := 53111
> od
5300

> zips:
[bonn ~ 53111, duedo ~ 4000]

agena >> 155

5.2.15 Alternative to Closing Keywords

You can use the end token instead of the closing fi, od, esac, yrt and epocs
keywords, or mix both.

Example:

> if os.system()[1] in {'SunOS', 'Windows', 'Linux', 'Darwin'} then
> if environ.kernel().is32bit then
> readlib('fractals');
> readlib('gdi');
> readlib('gzip');
> a, b := gzip.deflate('agena programming language');
> if [gzip.inflate(a, b)] <> ['agena programming language', 26] then
> print('error in gzip.in\\deflate')
> end;
> try # provoke segfaults
> for i from 0 to 100 do
> gzip.inflate(a, i)
> od
> end
> end;
> to 100 do readlib('net') end # try crashing Agena at exit
> fi;

156 5 Control

Chapter Six

Programming

agena >> 157

158 6 Programming

6 Programming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programmes are usually represented by procedures. The words
`procedure` and `function` are used synonymously in this text.

6.1 Procedures

In general, procedures conflate a sequence of statements into abstract units which
then can be repeatedly invoked.

Writing procedures in Agena is quite simple:

 procname := proc([par1 [::type1] [, par2 [::type2], ···]]) [:: returntype] [is]
 [local name1 [, name2,···]];
 statements
 end

All the values that a procedure shall process are given as parameters par1, etc. A
function may have no, one or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.8.2), or a set of up to four types, that an
argument must satisfy when the procedure is called.

If a type is given right after the parameter list, Agena checks whether the return of
the procedure is of the given returntype, which may also be a user-defined type.
The is keyword is optional.

A procedure usually uses local variables which are private to the procedure and
cannot be accessed by other procedures or on the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned on the
interactive level are global, and you can also create global variables within a
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure will be returned through the return keyword which may be
put anywhere in the procedure body, and which also immediately terminates
execution of the procedure.

return [value [, value2,···]]

As you can see, you may not only return a single result, but also multiple ones, or
none at all.

agena >> 159

Furthermore, a procedure will not return anything - not even the null value -

� if no return statement is given at all,
� if no values are given in the return statement.

The following procedure computes the factorial of an integer14:

> restart;

> fact := proc(n) is
> # computes the factorial of an integer n
> if n < 0 then return fail
> elif n = 0 then return 1
> else return fact(n-1)*n
> fi
> end;

It is invoked using the syntax:

funcname([arg1 [, arg2,···]])

> fact(4):
24

where the first parameter is replaced by the first argument arg1, the second
parameter is substituted with arg2, etc.

When calling a function recursively, instead of writing out its real name, you may
use the procname keyword, which in runtime is substituted by the name with which
the procedure was invoked:

> fact := proc(n) is
> # computes the factorial of an integer n
> if n < 0 then return fail
> elif n = 0 then return 1
> else return procname(n-1)*n
> fi
> end;

A when clause can be added to a return statement that does not pass back any
value including null. In this case, the execution of a function is being finished if the
Boolean when condition has been satisfied, e.g. return when x <> 0. return can
be combined with both a when and with clause - for example

> return when x <> 0 with true;

is syntactic sugar for

> if x <> 0 then
> return true
> fi;

160 6 Programming

14The library function fact is much faster.

The unless keyword is the "opposite" to when, causing Agena not to return if the
condition evaluates to true.

Last of all, procedures can alternatively be defined as follows:

[local] proc procname([par1 [::type1] [, par2 [::type2], ···]]) [:: returntype] [is]
 [local [constant] name1 [, [constant] name2,···]];
 statements
end

Instead of the proc keyword, you can use the procname token. Thus, the factorial
function can also be entered as follows:

> proc fact(n) is
> if n < 0 then return fail
> elif n = 0 then return 1
> else return procname(n-1)*n
> fi

> end;

6.2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately cause stack overflows. So we should use an iterative
algorithm to compute the factorial and store intermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where the local variable has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable as local and assign
values later to this variable, then it will be global. Note that control variables in for
loops are always implicitly declared local to either their surrounding (for/to loops) or
inner block (for/in loops), so we do not need to explicitly declare them.

Local declarations come in different flavours:

local name1 [, name2, ···]
local [constant] name1 [, [constant] name2, ···] := value1 [, value2, ···]

local [constant] name1 [, [constant] name2, ···] -> value

local enum name1 [, name2, ···] [from value]
local key1 [, key2, ···] in tablename

In the first form, name1, etc. are declared local.

agena >> 161

In the second and third form, name1, etc. are declared local and, as opposed to
the first form, followed by initial assignments of values to these names.

In the fourth form, name1, etc. are declared local and subsequently enumerated,
i.e. assigned integers in ascending order, by default starting from 1, or the integer
given in the optional from clause.

In the last form, table values are unpacked, equivalent to the assignment
statement key1, key2, etc. := tablename.key1, tablename.key2, etc., with key1, key2,
etc. being automatically declared local.

By passing the constant keyword in front of a variable name, a variable will
become a constant that cannot be changed later in a session. This feature works in
procedures only, not on the interactive level.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite number, we also add a clause to quit loop
iteration in such a case.

> fact := proc(n) is
> if n < 0 then return fail fi;
> local result := 1;
> for i from 1 to n do
> result := result * i
> if not finite(result) then break fi
> od;
> return result
> end;

> fact(10):
3628800

Since result has been declared local it does not exist on the interactive level:

> result:
null

There is a shortcut to create local structures - tables, sets, and sequences:

create local <structure> name1 [, <structure> name2, ···]

where <structure> might be the keyword table, set or sequence. You can declare
different local structures with one create local statement.

A useful function is environ.globals which determines global variable assignments
inside procedures and helps to find those positions where a local declaration has
been forgotten.

162 6 Programming

6.3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere in your code.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
to define a global variable _EnvMoreInfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be depicted with the global statement. It checks whether the
given variable or variables have not been declared local before its execution and
issues an error otherwise.

> fact := proc(n) is
> if n < 0 then return fail fi;
> local result := 1;
> global _EnvMoreInfo;
> for i from 1 to n do
> result := result * i
> if result = infinity then
> if _EnvMoreInfo then print('Overflow !') fi;
> break
> fi
> od;
> return result
> end;

We should assign _EnvMoreInfo any value different from null, fail or false in order to
get a warning message at runtime.

> _EnvMoreInfo := true;

> fact(10000):
Overflow !
infinity

6.4 Changing Parameter Values

You can change the values of procedure parameters within a procedure. Thus, an
alternative to the abs operator might be:

> myAbs := proc(x) is
> if x < 0 then
> x := -x
> fi;
> return x
> end;

> myAbs(-1):
1

6.5 Optional Arguments

A function does not have to be called with exactly the number of parameters given
at procedure definition. You may also pass less or more values. If no value is

agena >> 163

passed for a parameter, then it will be automatically set to null at function
invocation. If you pass more arguments than there are actual parameters, excess
arguments will be ignored.

For example, we can control whether a warning message is printed during function
execution by passing an optional argument:

> fact := proc(n, warning) is
> if n < 0 then return fail fi;
> local result := 1;
> for i from 1 to n do
> result := result * i
> if result = infinity then
> if warning then print('Overflow !') fi;
> break
> fi
> od;
> return result
> end;

> fact(10000):
infinity

In this example, the option must be any value other than null, false or fail to get the
effect.

> fact(10000, true):
Overflow !
infinity

A variable number of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargs system table in
the procedure body. The ? token can be used within in the procedure body as a
shortcut to the varargs table.

> varadd := proc(?) is
> local result := 0;
> for i to size ? do
> inc result, ?[i]
> od;
> return result
> end;

> varadd(1, 2, 3, 4, 5):
15

You may determine the number of arguments actually passed in a procedure call
by querying the system variable nargs inside the respective procedure. A variant of
the above procedure might thus be:

> varadd := proc(?) is
> local result := 0;
> for i to nargs do
> inc result, ?[i]
> od;
> return result
> end;

164 6 Programming

> varadd(1, 2, 3, 4, 5):
15

Note: With OOP-style methods, nargs will also count the method itself.

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqrt := proc(x, mode) is
> if nargs = 1 or mode = 'domain':'real' then
> return sqrt(x)
> elif mode = 'domain':'complex' then
> return sqrt(x + 0*I)
> else
> return fail
> fi
> end;

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain':'real'):
undefined

If the left-hand side value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the = token which converts the
left-hand name to a string15.

> xsqrt(-2, domain = 'complex'):

1.4142135623731*I

You can mix optional arguments and the variable-arguments feature in parameter
lists, with the question mark always the last item in the list:

> xsqrt := proc(x, mode, ?) is
> ...
> end;

Finally, if you would like to define defaults for missing arguments, just use the binary
or operator as shown below as it returns the first operand if it is non-null, and it
returns the second operand if the first is null:

> f := proc(x) is
> x := x or 0;
> return x
> end;

> f():
0

agena >> 165

15 If you need a Boolean equality check in a function call, such like f(a=b), use the isequal function or
the == operator, like f(isequal(a, b)) or f(a == b).

6.6 Passing Options in any Order

We can use variable arguments along with pairs in order to pass one or more
optional arguments in any order.

> f := proc(?) is
> local bailout, iterations := 2, 128; # default values
> for i to nargs do
> case left(?[i])
> of 'bailout' then
> bailout := right(?[i]);
> of 'iterations' then
> iterations := right(?[i]);
> else
> print 'unknown option'
> esle
> esac
> od;
> print('bailout = ' & bailout, 'iterations = ' & iterations)
> end;

> f();
bailout = 2 iterations = 128

> f('bailout':10);
bailout = 10 iterations = 128

> f('iterations':32, 'bailout':10);

bailout = 10 iterations = 32

Again, the quotes around the option name (the left-hand side of the pair) can be
spared by giving the = token which converts the name to a string.

> f(bailout = 10, iterations = 32);

bailout = 10 iterations = 32

Sometimes, implementing checks on options may take a substantial amount of
programming time, so please have a look at the checkoptions, copyadd and the
opt* functions which may save up to 20 % of code. You might consult Chapter 8
for further details.

6.7 Type Checking

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has four facilities for this:

1. the type operator determines the basic type of its argument;
2. the typeof operator returns a basic or user-defined type;
3. the :: operator checks for a basic or user-defined type;
4. the :- operator checks whether a value is not of a given basic or user-defined

type;

166 6 Programming

Basic or user-defined types can optionally be specified in the parameter list of a
procedure by means of the preceding :: token so that they will be checked at
procedure invocation, see Chapter 6.8.2. Furthermore, the type or types of return of
a procedure may be given right after the parameter list, see Chapter 6.8.3.

The following basic types are available in Agena:

 boolean, complex, lightuserdata, null, number, pair, procedure,
 register, sequence, set, string, table, thread, userdata.

These names are reserved keywords, but with the exception of the null constant
evaluate to strings so that they can be compared with the result of the type
operator:

type(value)

> type(1):

number

> type(1) = number:
true

If you want to check for the null type, put the null token in quotes:

> a := null;

> type(a) = 'null':
true

The :: and :- operators check whether their arguments are or are not of a specific
type - or user-defined type - and return true or false. They are speed-optimised and
around 20 % faster than comparing the return of the type operator with a type
name.

value :: typename
value :- typename

Examples:

> 1 :: number:
true

> '1' :- number:
true

In case of user-defined types, the type name must always be a string, in quotes.
See Chapter 6.12 for more information. The :: and :- operators can also isolate
numbers further by passing the tokens integer, posint, nonnegint, positive,
negative, or nonnegative, see Chapter 6.8.2 for further information.

agena >> 167

> -1 :: nonnegative:
false

6.8 Error Handling

6.8.1 The error Function

The error function immediately terminates procedure execution, and prints an error
message if given.

error('error string')

> fact := proc(n) is
> if n :- number then
> error('Error: number expected')
> fi;
> if n < 0 then return null
> elif n = 0 then return 1
> else return fact(n - 1)*n
> fi
> end;

> fact('10'):
Error: number expected

Stack traceback:
 stdin, at line 3, at line 1

6.8.2 Type Checks in Procedure Parameter Lists

You may specify permitted types in the parameter list of a procedure by using
double colons:

> fact := proc(n :: number) is
> if n < 0 then return null
> elif n = 0 then return 1
> else return fact(n - 1)*n
> fi
> end;
> fact('10'):
Error in stdin:
 invalid type for argument #1: expected number, got string.

This form of type checking is more than twice as fast as the if/type/error
combination. If the argument is of the correct type, Agena executes the
procedure, otherwise it will issue an error. Agena will also throw an error if the
argument is not given:

> fact()
Error in stdin:
 missing argument #1 (type number expected).

Finally, argerror is a little bit smarter than error for it automatically indicates the type
of an argument actually passed to a procedure in its error message.

> a := 1;

168 6 Programming

> if a :- string then
> argerror(a, 'myproc', 'expected a string')
> fi
Error in `myproc`: expected a string, got number.

Furthermore, you may specify a set of one to five permissible basic types for any
parameter with the set notation:

> sec := proc(x :: {number, complex}) is
> return 1/cos(x)
> end;

Besides the basic types number, complex, string, table, set, pair, sequence and
register, you can also pass the following keywords to further isolate numbers:

checks for a non-negative number (float or integer)nonnegative

checks for a negative number (float or integer)negative

checks for a positive number (float or integer)positive

a number that represents a non-negative integernonnegint

a number that represents a positive integerposint

a number that represents a signed integerinteger

Check forKeyword

Note that in Agena there is only one type that represents floats and integers: type
number. The above mentioned five numeric `types` are only supported in
parameter lists and by the :: and :- operators.

Finally, there are three pseudo-types:

� anything stands for any type, including 'null'. If given in a parameter list, then
Agena will check whether the corresponding argument of any type, even
'null', has been passed in a function call - if not, an error will be issued. The
pseudo-type can also be passed as the right operand to the :: and :- operators;

� listing identifies a table, sequence or register in the parameter list of a
procedure. The type can be passed as the right operand to :: and :-, as well.

� basic identifies a number, string, Boolean or null, and is recognised in
parameter lists and the :: and :- operators.

Examples that summarise these special types:

> proc f(x :: anything) :: listing is
> return x
> end;

> f()
Error in stdin:
 missing argument #1 (of type anything).

Stack traceback:

agena >> 169

 stdin, in `f`
 stdin, at line 1 in main chunk
> f(1)
Error in stdin at line 2:
 Error in `return`: result of type listing expected, got number.

Stack traceback:
 stdin, at line 2 in `f`
 stdin, at line 1 in main chunk

> f([1]):

[1]

6.8.3 Checking the Type of Return of Procedures

Agena can check whether all returns of a procedure are of one given type by
specifying this return type right after its parameter list.

> fact := proc(n :: number) :: number is
> if n < 0 then return undefined
> elif n = 0 then return 1
> else return fact(n-1)*n
> fi
> end;

> fact(10):
3628800

If one of the returns is not of the return type, the procedure issues an error.

> fact := proc(n :: number) :: number is
> if n < 0 then return undefined
> elif n = 0 then return 1
> else return 'don\'t know'
> fi
> end;

> fact(10):
Error in stdin, at line 5:
 `return` value must be of type number, got string.

Stack traceback:
 stdin, at line 5, at line 1

The `virtual` types integer, posint, nonnegint, positive, negative and nonnegative
can also be queried, see previous subchapter.

You can define up to five basic types that are allowed to be returned by putting
them in curly brackets, just like in parameter lists:

> f := proc(x) :: {number, complex} is return 'a' end

> f()
In stdin at line 1:
 Error in `return`: unexpected type string in return.

If you would like to automatically check structures for proper content at function
invocation, please have a look at the end of Chapter 6.19.

170 6 Programming

There are further functions for error handling:

6.8.4 The assume Function

assume checks a Boolean relation. If the relation is valid, it returns true and
continues execution of the procedure. In case of an invalid relation, it bails out of
the procedure and prints an error message. The second argument to assume is
optional; if not given, the text `assumption failed` is printed, and 'error string'
otherwise.

assume(relation [, 'error string'])

> assume(1 = 1, '1 is not 1'):
true 1 is not 1

> assume(1 <> 1, '1 is 1'):
Error in `assume`: 1 is 1.

Stack traceback: in `assume`
 stdin, at line 1 in main chunk

6.8.5 Trapping Errors with protect/lasterror

protect traps any error that might occur, but does not terminate a function call. In
case of no errors, it returns all results of the call. But if there was an error, it returns the
error message as a string and also sets the global variable lasterror to this error
message. In case of a successful call, lasterror will always be null.

protect takes the name of the function to be executed as its first argument, and all
its arguments a, b, etc. as optional arguments:

protect(f [, a [, b,···]])

Thus, if a function has no arguments, simply pass the expression protect(f).

> iszero := proc(x) is
> if x <> 0 then
> error('argument must be zero')
> else
> return true
> fi
> end;

Now call iszero in protected mode:

> protect(iszero, 0):
true

agena >> 171

> lasterror:
null

> protect(iszero, 1):
argument must be zero

> lasterror:
argument must be zero

To conveniently check whether an error occurred you might enter:

> protect(iszero, 0) = lasterror:
false

> protect(iszero, 1) = lasterror:
true

6.8.6 Trapping Errors with the try/catch Statement

Instead of intercepting errors with protect and lasterror, you may use the try/catch
statement:

try
 statements1

[catch [in errvar then]
 statements2]
yrt

Any statements statements1 - one or more - are put right after the try keyword. If an
error occurs in one of these statements, Agena immediately will jump to the catch
clause if present, ignoring any subsequent statements in statements1. If there is no
catch clause, execution will immediately continue with the statement right after the
yrt token, regardless of whether an error occurred or not, also ignoring all
subsequent commands in statements1.

If a catch clause is given, then in case of an error the error message will be stored
to the local variable errvar, and after that all the statements statements2 following
the then keyword are processed. errvar does not need to be declared, it is
implicitly local to the catch clause only. You may also do without specification of
an error variable - in this case the error message is automatically stored to the local
lasterror variable, and the in and then keywords must be left out.

Examples:

> try
> error('Oops !');
> print('Invalid index !')
> yrt;

172 6 Programming

As shown above, due to the immediate jump out of the try body, the print function
is not called. In the next example, the error message is stored to the variable
message, and in the catch clause it is then printed at the console.

> try
> error('Oops !');
> print('Invalid index !')
> catch in message then
> print('The error was: ' & message);
> yrt;
The error was: Oops !

> message:
null

Now we do not specify an error variable in the catch clause:

> try
> error('Oops !');
> print('Invalid index !')
> catch
> print('The error was: ' & lasterror);
> yrt;
The error was: Oops !

6.8.7 Trapping Errors with pre and post clauses

Instead of writing long special error treatment code when checking arguments or
the return of a function, you may use the pre and post clauses:

The pre clause, placed right before the is keyword, checks a condition and issues
an error if it is not met:

> golden := proc(n :: number) # approximation of golden ratio
> pre isint(n) and n > -1 is # if n < 0 or float, quit with an error
> if n = 0 then return 1 fi;
> return 1.0 + 1.0/procname(n - 1);
> end;

> golden(-1):
In stdin at line 2:

 Error in pre-condition: posture not satisfied.

It is faster than checking arguments with calls to the assume function.

The post clause in return statements checks a condition and issues an error if it is
not met:

> proc(x :: number) is
> [...]
> # issue an error if x <> 1, and return x otherwise
> return post x <> 1 with x
> end;

A function can include both pre and post conditions.

agena >> 173

6.9 Multiple Returns

As stated before, a procedure can return no, one, or more values. Just specify the
values to be returned:

> f := proc() is
> a := 2;
> return 1, a
> end;

> f():
1 2

There are two ways to refer to these multiple returns in subsequent statements. If you
assign the return to only one variable, e.g.

> m := f():
1

the second return is lost, so enter:

> m, n := f();

> m:
1

> n:
2

A function may return a variable number of values, so it might be useful to put them
in a sequence, register or table:

> seq(f()):
seq(1, 2)

Sometimes a procedure shall return the first result of a computation only. In this
case, put the call that results into multiple returns into brackets. math.fraction
returns three values: the numerator, the denominator, and the accuracy, in this
order. Let us write a numerator function that only returns the first result of
math.fraction.

> numerator := proc(x :: number) is
> return (math.fraction(x))
> end;
> numerator(0.1):
1

The ops function returns all its arguments after argument number index, an integer.

ops(index, arg1 [, arg2,···])

The following statement determines the denominator and the accuracy.

174 6 Programming

> ops(2, math.fraction(0.1)):
10 0

To return only the first result, the denominator, put the call to ops in brackets.

> denominator := proc(x :: number) is
> return (ops(2, math.fraction(x)))
> end;

> denominator(0.1):
10

unpack returns all elements in a table or sequence:

> squared := proc(t :: table) is
> local result := << x -> x^2 >> @ t;
> return unpack(result)
> end;

> squared([1, 2, 3, 4]):
1 4 9 16

Alternatively, unpack accepts the positions of the first to the last element to be
returned as its second and third argument. If only the second argument is given, all
elements in a structure from the given position up to the end are passed back.

unpack(structure [, beginning [, end]])

> squared := proc(t :: table, ?) is
> local result := << x -> x^2 >> @ t;
> return unpack(result, unpack(?))
> end;

> squared([1, 2, 3, 4], 2):
4 9 16

> squared([1, 2, 3, 4], 2, 3):
4 9

6.10 Procedures that Return Procedures

Besides returning numbers, strings, tables, etc., procedures can also return
procedures. As an example, the function polygen

> polygen := proc(?) is
> local s := seq(unpack(?));
> return proc(x) is
> local r := bottom(s);
> for i from 2 to size s do
> r := r*x + s[i]
> od;
> return r
> end
> end;

agena >> 175

returns a procedure that evaluates a polynomial of degree n from the given
coefficients cn, cn-1, ···, c2, c1:

<< (x) -> cn*xn-1 + cn-1*xn-2 + ··· + c2*x + c1 >>

In the following example, polygen creates the polynomial as a procedure.3x2 − 4x+1

> f := polygen(3, -4, 1)

> f(2):
5

6.11 Shortcut Procedure Definition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if/then, for, insert, etc.

<< [(] [par1 [:: type1] [, par2 [:: type2], ···]] [)] -> expr1 [, expr2, ···] >>

<< [(] [par1 [:: type1] [, par2 [:: type2], ···]] [)]
[with var1 [, ···] := val1 [, ···]] -> expr1 [, expr2, ···] >>

As you see, optional basic and user-defined types can be specified in the
parameter section.

Let us define a simple factorial function.

> fact := << (x :: number) -> exp(lngamma(x + 1)) >>;

> fact(4):
24

Brackets around parameters are optional if at least one parameter is given, even if
you specify types.

> isInteger := << x -> int(x) = x >>;

> isInteger(1):
true

> isInteger(1.5):
false

> one := << () -> 1 >>; # with no parameters, use empty bracket pair

Optional arguments and the ? notation are supported.

One or more local variables can be defined by the with clause put in front of the
expression that computes the result:

176 6 Programming

> fact := << (x :: number)
> with n := 1
> -> exp(lngamma(x + n)) >>;

> fact(4):
24

Short-cut procedures can return multiple results:

> f := << x -> x, x+1, x+2 >>

> f(0):
0 1 2

6.12 User-Defined Procedure Types

The settype function allows to group procedures proc1, proc2, ···, by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pairs.

settype(proc1 [, proc2, ···], 'your_proctype')

User-defined procedures can be queried with the typeof operator which returns a
string.

> f := << x -> 1 >>;

> settype(f, 'constant');

> typeof(f):
constant

> type(f): # only returns the basic type
procedure

The :: and :- operators can also validate a user-defined procedure type. Pass the
name of the user- defined type as a string:

proc1 :: 'your_proctype'
proc1 :- 'your_proctype'

> f :: 'constant':
true

> f :- 'constant':
false

Note that the type operator only checks for basic types.

An alternative to typeof is the gettype function. If a user-defined type has been set
for a value, then it will return its name as a string, otherwise, it will return null.

agena >> 177

If you want to check whether user-defined types have been passed to a
procedure, use the double colon notation in the parameter list.

Suppose you have defined a type called triple:

> t := [1, 2, 3]

> settype(t, 'triple')

> sum := proc(x :: triple) is
> return sumup(x)
> end

> sum(t):
6

6.13 Scoping Rules

In Agena, variables live in blocks or `scopes`. A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks or outside the procedure in
which they are hosted.

Procedures, if- and case-statements, while-, do- and for-loops create blocks, or
more precisely, a block resides between:

1. then and elif, else or fi keywords - in if statements;
2. then and of, else or esac keywords - in case statements;
3. do and as - in do/as loops;
4. do and od - in for and while and do/od loops;
5. is and end - in procedures;
6. scope and epocs - in scope blocks (including the with statement; see below).

As an example, variables declared as local in the then clauses of an if-statement
live only in the respective then part. The same applies to variables declared locally
in else clauses.

> f := proc(x) is
> if x > 0 then
> local i := 1; print('inner', i)
> else
> local i := 0; print('inner', i)
> fi;
> print('outer', i) # i is not visible
> end;
> f(1);
inner 1
outer null

Variables declared as local in for- or while-loops are only accessible in the bodies
of these loops. The loop control variables of for/to-loops are automatically declared
local to their surrounding block, while control variables of for/in-loops are implicitly
declared local to the respective loop bodies.

178 6 Programming

> f := proc(x) is
> while x < 2 do
> local i := x
> inc x
> print('inner', i)
> od;
> print('outer', i) # i is not visible
> end;

> f(1);
inner 1
outer null

A special scope can be declared with the scope and epocs statements:

 scope
 declarations & statements
 epocs

The next example demonstrates how it works:

> f := proc() is
> local a := 1;
> scope
> local a := 2;
> writeline('inner a: ', a);
> epocs;
> writeline('outer a: ', a);
> end;

> f()
inner a: 2
outer a: 1

The scope statement can also be used on the interactive level to execute a
sequence of statements as one unit. Compare

> print(1);
1

> print(2);
2

> print(3);
3

with

> scope
> print(1);
> print(2);
> print(3)
> epocs;
1
2
3

agena >> 179

6.14 Access to Loop Control Variables within Procedures

As already mentioned, the control variable of a for/to loop is always local to the
body surrounding the loop.

> mandelbrot := proc(x, y, iter, radius) is
> local i, c, z;
> z := x!y;
> c := z;
> for i from 0 to iter while abs(z) < radius do
> z := z squareadd c # = z^2 + c
> od;
> return i # return the last iteration value
> end;

The procedure counts and returns the number of iterations a complex value z takes
to escape a given radius by applying it to the formula z = z^2+c.

> mandelbrot(0, 0, 128, 2):
129

The following example demonstrates that local variables are bound to the block in
which they have been declared.

> f := proc() is
> local i;
> for i to 3 do
> local j;
> for j to 3 do od;
> print(i, j)
> od;
> print(i, j)
> end;

> f()
1 4
2 4
3 4
4 null

6.15 Sandboxes

By default, every procedure has access to the full Agena environment, i.e. to all of
Agena's functions, packages, and all the other values. You might want to limit this
access, for example if one of your procedures offers services on the Internet, or you
want a procedure maintain its own environment.

Here, the environ.setfenv function comes into play. It initialises the environment a
function can use.

Example 1: Give access to all functions except the os package.

First copy Agena's environment represented by the system table _G to a new table
so that altering this new table will not effect Agena's normal environment:

180 6 Programming

> _newG := copy(_G); # copy can also duplicate cycles like _G

Delete the os package from this new environment:

> delete os from _newG;

Define a function that tries to determine the current working directory:

> curdir := proc() is
> return os.chdir()
> end;

Set the environment excluding the os package:

> environ.setfenv(curdir, _newG);

> curdir():
Error in stdin, at line 2:
 attempt to index global `os` (a null value) with a string value

Stack traceback:
 stdin, at line 2, at line 1

Example 2: Give access only the specific functions.

Let us redefine curdir: it will only access a redefined print function and all of the
functions of the os package. curdir cannot call any other function.

> curdir := proc() is
> print(os.chdir())
> end;

> environ.setfenv(curdir,
> ['print' ~ << x -> print('cwd is ' & x) >>, 'os' ~ os])

> curdir():
cwd is C:/agena/src

To determine the current environment used by a function, use environ.getfenv:

> environ.getfenv(curdir):

[os ~ (···), print ~ procedure(01D4BA18)]

Please see Chapter 14.2 (environ.getfenv, environ.setfenv, environ.isselfref) for
further features.

To hide data in a sandbox, please have a look at registers - explained in Chapter
4.15.

6.16 Altering the Environment at Run-Time

Besides using a special environment (see preceding subchapter), a procedure can
also create new variables and put them into Agena's standard environment.

agena >> 181

Why should one do so ? Consider the utils.decodexml function. It converts an XML
string into a table consisting of key-value pairs, the keys being the XML tags, and the
values the corresponding data. XML allows to use name spaces, so that tags might
look like <soap:body>, etc.

So, XML data like

> str := '<soap:body>
> <orderid>123</orderid>
> </soap:body>'

is converted to

> order := utils.decodexml(str):
[soap_body ~ [orderid ~ 123]]

To read the order number, one might just enter:

> order.soap_body.orderid:
123

Unfortunately, especially the SOAP standard allows one to define ones own name
space, so that the following is also equivalent and valid XML data:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

In this case you would have to write a new statement to get the order ID since
fetching it with

> order.soap_body.orderid:
Error in stdin, at line 1:
 attempt to index field `soap_body` (a null value)

will not work. Fortunately, Agena stores all values in the _G system table, with its keys
being strings representing the variable names, and the entries the values of the
these variables. So flexible code to read data from XML code featuring different
name spaces might look like this:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

> tag := tables.indices(order)[1]:
s_body

> prefix := tag[1 to ('_' in tag) - 1]:
s

182 6 Programming

> _G['order'][prefix & '_body'].orderid:
123

Likewise, defining new variables within code can be done like this:

> _G['jpl'] := ['Jet Propulsion Laboratory']

> jpl:
[Jet Propulsion Laboratory]

6.17 Packages

6.17.1 Writing a New Package

Let us write a small utilities package called helpers including only one main and
one auxiliary function. The main function shall return the number of digits of an
integer.

Package procedures are usually stored to a table, so we first create a table called
helpers. After that, we assign the procedure ndigits and the auxiliary
aux.isInteger function to this table.

> create table helpers, helpers.aux;

> helpers.aux.isInteger := << x -> int(x) = x >>; # aux function

> helpers.ndigits := proc(n :: number) is
> if not helpers.aux.isInteger(n) then
> error('Error, argument is not an integer')
> fi;
> return if n = 0 then 1 else entier(ln(abs(n))/ln(10) + 1) fi
> end;

Now we can use our new package.

> helpers.ndigits(0):
1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):
Error, argument is not an integer

Stack traceback: in `error`
 stdin, at line 3, at line 1

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;

> ndigits(999):
3

Save the code listed above to a file called helpers.agn in a subfolder called
helpers in the Agena main directory. In order to use the package again after you

agena >> 183

have restarted Agena, use the run function and specify the full path.

> restart;

> run 'd:/agena/helpers/helpers.agn'

> helpers.ndigits(10):
2

You may print the contents of the package table at any time:

> helpers:
[aux ~ [isInteger ~ procedure(0044A6E0)], ndigits ~ procedure(0044A850)]

6.17.2 The initialise Function

The initialise function, besides loading the package in a convenient way,
automatically assigns short names to all package procedures so that you may use
the shortcuts instead of the fully written function names.

In order to do this, you must first prepend or append the location of the directory
containing your new package to the libname system variable, or execute Agena in
the directory containing your package. You may do this by adding the following line
to your personal Agena initialisation file (see Chapter A6), assuming that the
helpers.agn file has been stored to the folder d:/agena/helpers.

libname &:= ';d:/agena/helpers';

Alternatively, you may save the helpers.agn file into the lib folder of your Agena
distribution if you do not want to modify libname.

Now in the interactive level, type:

> restart;

libname and some few other system variables are not reset by the restart
statement because restart deliberately does not touch the contents of these
specific system variables.

> initialise 'helpers'
ndigits

> ndigits(1); # same as helpers.ndigits(1)

You may also want with to print a start-up notice at every package invocation by
assigning a string to the table field `packagename.initstring`. Put the following line
into the helpers.agn file after the create table statement, save the file and restart
Agena:

> helpers.initstring := 'helpers v1.0 as of June 11, 2013\n\n';

184 6 Programming

> restart;

> initialise 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

Since you may not want that short names are set for certain, especially auxiliary
functions, their procedure names should be defined as follows:
`packagename.aux.procedurename`, e.g. helpers.aux.isInteger.

The contents of the helpers.agn file should finally look like this:

create table helpers, table helpers.aux;

helpers.initstring := 'helpers v1.0 as of June 11, 2013\n\n';

helpers.aux.isInteger := << x -> int(x) = x >>; # aux function

helpers.ndigits := proc(n :: number) is
 if not helpers.aux.isInteger(n) then
 error('argument is not an integer')
 fi;
 if n = 0 then
 return 1
 else
 return entier(ln(abs(n))/ln(10) + 1);
 fi;
end;

Save the file again and restart Agena.

> restart;

> initialise 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

You can also define a package initialisation routine. It will automatically be run by
the initialise statement after the package has been found and initialised
successfully. The name of the initialisation routine must be of the form
`packagename.aux.init`, e.g.:

> helpers.aux.init := proc() is
> writeline('I am being run')
> end;

Of course, you must create a `packagename.aux` table before defining the
initialisation function.

Instead of using initialise to load a package, you may use the import/alias
statement - see Chapter 3.18 - so

> initialise 'helpers';

agena >> 185

is equivalent to

> import helpers alias;

6.18 Remember Tables

Agena features remember tables which store the results of previous calls to Agena
or C library procedures or contain a list of predefined results, or both. If a function is
called again with the same argument(s), then the corresponding result will be
returned from the table, and the procedure body is not executed, resulting in
significantly better execution times. Remember tables are called rtables or rotables
for short.

All functions to create, modify, query, and delete remember tables are available in
the rtable package.

There are two types of remember tables:

� Standard Remember Tables, called `rtables`, that can be automatically
updated by a call to the respective function; they may be initialised with a list of
precomputed results (but do not need to).

� Read-only Remember Tables, called `rotables`, that cannot be updated by a
call to the respective function. Rotables should be initialised with a list of
precomputed results.

6.18.1 Standard Remember Tables

A standard remember table is suited especially for recursively defined functions. It
may slow down functions, however, if they have remember tables but do not rely
much on previously computed results.

By default, no procedure contains a remember table. It must explicitly be created
either by including the feature reminisce statement as the very first line in a
procedure body, or by calling the rtable.init function right after the procedure has
been defined. A remember table may optionally be filled with default values with
the rtable.put function. Since those functions are very basic, a more convenient
facility is the rtable.remember function which will exclusively be used in this
chapter.

In order for an rtable to be automatically updated, the respective function must
return its result with the return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
return statement adds these arguments and the corresponding result or results to
the rtable.

186 6 Programming

Let us first try the feature reminisce variant, which may suffice in most cases. Just
add this statement right after the is token in a procedure that computes Fibonacci
numbers:

> fib := proc(n) is
> feature reminisce; # creates a read-write remember table
> if n = 0 or n = 1 then return n fi; # exit conditions
> return procname(n - 2) + procname(n - 1)
> end;

> fib(50):
20365011074

Now let us use the functions of the rtable package to administer remember tables.

Two examples: We want to define a function f(x) = x with f(0) = undefined.

First a new function is defined without using the feature reminisce phrase:

> f := proc(x) is return x end;

Only after the function has been created in such a way, the remember table can
be set up. The rtable.remember function can be used to initialise rtables, explicitly
set predefined values into them, and add further values later in a session.

> import rtable alias;

> remember(f, [0 ~ undefined]);

The rtable has now been created and a default entry add to it so that calling f with
argument 0 returns undefined and not 0.

> f(1):
1

> f(0):
undefined

If the function is redefined, its remember table is destroyed, so you may have to
initialise it again.

Fibonacci numbers, as already shown above, can be implemented recursively and
run with astonishing speed using rtables.

> fib := proc(n) is
> assume(n >= 0);
> return procname(n - 2) + procname(n - 1)
> end;

The call to assume assures that n is always non-negative and serves as an
`emergency brake` in case the remember table has not been set up properly.

agena >> 187

The rtable is being created with two default values:

> remember(fib, [0~0, 1~1]);

If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

> remember(fib):
[[22] ~ [28657], [39] ~ [102334155], [17] ~ [2584], [5] ~ [8], [27] ~
[317811], [50] ~ [20365011074], [3] ~ [3], [0] ~ [1], [46] ~ [2971215073],
[41] ~ [267914296], [1] ~ [1], etc.]

If a function has more than one parameter or has more than one return, remember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> f := proc(x, y) is
> return x, y
> end;

> remember(f, [[1, 2] ~ [0, 0]]);

> a, b := f(1, 2);

> a:
0

> b:
0

Please check Chapter 14.4 for more details on their use.

6.18.2 Read-Only Remember Tables

If you do not want a function updating its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
`rotable` for short. Rotables are initialised with a list of precomputed results.

The function itself cannot implicitly enter new entries to its remember table via the
return statement; it can only do so via a call to the rtable.put function or a utility
that is based on rtable.put, called rtable.defaults. This gives you full control on the
contents and the amount of data stored in a remember table - and thus on the
speed of your procedure.

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results for n < 11, but retrieves the results from an rotable instead.

188 6 Programming

A function might look like this:

> fact := proc(x :: number) is
> if x :: nonnegint then # is x an integer and non-negative ?
> return exp(lngamma(x + 1))
> else
> return undefined
> fi
> end;

The defaults function can set up the rotable and enter precomputed values into it.

> # set precompiled results for 0! to 10! to fact

> defaults(fact, [
> 0~1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
>]);

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
re-compute the results instead of just reading them.

Let us look into the remember table:

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800],
[0] ~ [1], [4] ~ [24], [5] ~ [120], [6] ~ [720], [3] ~ [6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the rtable.defaults
function:

> defaults(fact, [11 ~ 39916800]);

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800], [0]
~ [1], [11] ~ [39916800], [4] ~ [24], [7] ~ [5040], [6] ~ [720], [3] ~ [6],
[5] ~ [120]]

A read-only remember table can be deleted by passing null as a second
argument to defaults.

Please note that in a function featuring a remember table, the respective return
statements should not include calls to other functions than the function itself.
Instead, use auxiliary variables and use them in the return statements.

agena >> 189

6.18.3 Functions for Remember Table Administration

For completeness, here is a list of all the functions to administer remember tables:

Returns the string 'rtable' if a function f has a standard
remember table, 'rotable' if it has a read-only
remember table, and 'none' if it has no remember
table at all.

rtable.mode(f)

Deletes the remember table of function f entirely.
The function empties the remember table before
deleting it. It also enforces an immediate garbage
collection. If you want to use a new remember table
with the function, you have to initialise it with
rtable.init or rtable.roint again.

rtable.purge(f)

Adds function argument(s) and the corresponding
return(s) to the remember table of procedure f.

rtable.put(
 f, [arguments], [returns])

Initialises a read-only remember table for the function
f.

rtable.roinit(f)

Initialises a standard remember table for the function
f.

rtable.init(f)
Returns the remember table of function f.rtable.get(f)

Empties the remember table of function f but does
not delete the table so that it will continue collecting
results with the next call to f. Read-only remember
tables cannot be emptied. The memory previously
occupied by cached function arguments and results
can be reused for other purposes

rtable.forget(f)
DetailsProcedure

Table 18: Functions for administering remember tables

6.19 Overloading Operators with Metamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means to use existing operators to tables, sets, sequences, registers,
pairs, and userdata.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or abs with complex values and do not have to learn names of new functions16.
This method of defining additional functionality to existing operators is also known as
`overloading`.

Adding such functionality to existing operators is very easy. As an example, we will
define a constructor to produce complex values and three metamethods for
adding complex values with the + token, determining their absolute value with the
standard abs operator, and pretty printing them at the console.

190 6 Programming

16 For performance reasons, complex arithmetic has been built directly into the Agena kernel.

At first, let's store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, and the imaginary part as the second.

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);
> insert a, b into r;
> return r
> end;

To define a complex value, say z = 0 + i, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

The output is not that nice, so we would like Agena to print cmplx(0, 1) instead of
seq(0, 1). This can be easily done with the settype function:

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);
> insert a, b into r;
> settype(r, 'cmplx');
> return r
> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error in stdin, at line 1:
 attempt to perform arithmetic on a sequence value

Metamethods are defined using dictionaries, called `metatables`. Their keys, which
are always strings, denote the operators to be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), registers or pairs. See Appendix
A2 for a list of all available method names. To overload the plus operator use the
'__add' string.

Assign this metamethod to any name, cmplx_mt in this example.

> cmplx_mt := [
> '__add' ~ proc(a, b) is
> return cmplx(a[1]+b[1], a[2]+b[2])
> end
>]

Next, we must attach this metatable cmplx_mt to the sequence storing the real and
imaginary parts with the setmetatable function. We have to extend the constructor
by one line, the call to setmetatable:

agena >> 191

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);
> insert a, b into r;
> settype(r, 'cmplx');
> setmetatable(r, cmplx_mt);
> return r
> end;

Try it:

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method to calculate the absolute value of complex numbers by
overloading the abs operator.

> cmplx_mt.__abs := << (a) -> hypot(a[1], a[2]) >>;

The metatable now contains two methods.

> cmplx_mt:
[__add ~ procedure(004A64D0), __abs ~ procedure(004D2D30)]

> z := cmplx(1, 1);

> abs(z):

1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the '__tostring' method which
must return a string.

> cmplx_mt.__tostring := proc(z) is
> return if z[2]<0 then z[1]&z[2]&'i' else z[1]&'+'&z[2]&'i' fi
> end;
> z:
1+1i

To avoid using the cmplx constructor in calculations, we want to define the
imaginary unit I = 0+i and use it in subsequent operations. Before assigning the
imaginary unit, we have to add a metamethod for multiplying a number by a
complex number.

> cmplx_mt.__mul := proc(a, b) is
> if typeof(a) = 'cmplx' and typeof(b) = 'cmplx' then
> return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2]+a[2]*b[1])
> elif type(a) = number and typeof(b) = 'cmplx' then
> return cmplx(a*b[1], a*b[2])
> fi
> end;

and also extend the metamethod for complex addition.

192 6 Programming

> cmplx_mt.__add := proc(a, b) is
> if typeof(a) = 'cmplx' and typeof(b) = 'cmplx' then
> return cmplx(a[1]+b[1], a[2]+b[2])
> elif type(a) = number and typeof(b) = 'cmplx' then
> return cmplx(a+b[1], b[2])
> fi;
> end;

> i := cmplx(0, 1);

> a := 1+2*i:
1+2i

Until now, the real and imaginary parts can only be accessed using indexed
names, say z[1] for the real part and z[2] for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like z.re and z.im in
both read and write operations is provided by the '__index' and '__writeindex'
metamethods, respectively.

The __index metamethod for reading values from a structure obj works as follows:

� If the structure is a table, then Agena will automatically call the metamethod if
the lookup obj[key] results to null.

� If the structure is a set, then Agena will automatically call the metamethod if the
lookup obj[key] results to false.

� If the structure is a sequence or register, then the metamethod will be called if
the lookup obj[key] would result to an index-out-of-range error.

The '__writeindex' metamethod for writing values to a structure works as follows:

� If the structure is a table, sequence or pair, then the metamethod will always be
called.

� The metamethod is also supported by the insert statement.

The procedures assigned to the '__index' and '__writeindex' keys of a metatable
should not include calls to indexed names, for in some cases this would lead to
stack overflows due to recursion (the respective metamethod is called again and
again). Instead, use the rawget function to directly read values from a structure,
and the rawset function to add values into a structure.

Let us first define a global mapping table for symbolic names to integer keys:

> cmplx_indexing := [re ~ 1, im ~ 2];

Now let us define the two new metamethods. Both will accept expressions like a.re
and a[1]. In the following read procedure the argument x represents the complex
value, and the argument y is assigned either the string 're' or 'im'. Thus,
cmplx_indexing['re'] will evaluate to the index 1, and cmplx_indexing['im'] to
index 2.

agena >> 193

> cmplx_mt.__index := proc(x, y) is # read operation
> if type(y) = string then # for calls like `a.re` or `a.im`
> return rawget(x, cmplx_indexing[y])
> else
> return rawget(x, y) # for calls like `a[1]` or `a[2]`
> fi
> end;

In the write procedure, argument x will hold the complex value, y will be either 're'
or 'im', and z is assigned the component - a rational number -, i.e. x.re := z or
x.im := z.

> cmplx_mt.__writeindex := proc(x, y, z) is # write operation
> if type(y) = string then
> rawset(x, cmplx_indexing[y], z)
> else
> rawset(x, y, z) # for assignments like `a[1] := value`
> fi
> end;

You can now use the new methods.

> a:
1+2i

> a.re:
1

> a.im := 3;

> a:
1+3i

Note that while arithmetic metamethods can be applied on mixed types, for
example the above defined complex number and a simple Agena number,
relational operators cannot compare values of different types. Instead, Agena in
this case just returns false with the equality operators =, ==, and ~=; and issues an
error with relational operators that compare for order.

Using the '__writeindex' metamethod, it is quite easy to write-protect structures. In
the following example, we will create a procedure that accepts a table,
write-protects it and returns it. The metamethod:

> readonly_mt := [
> '__writeindex' ~
> proc(t, k, v) is error('Error, structure is read-only.') end
>]

A constructor that simplifies creating read-only structures:

> readonly := proc(t :: table) is
> setmetatable(t, readonly_mt);
> return t
> end;

> moons := readonly(['Phobos', 'Deimos']);

194 6 Programming

Adding further values to the table, or changing an existing one, now will not work.

> insert 'Mars' into moons;
Error, structure is read-only.

Stack traceback: in `error`

> moons:

[Phobos, Deimos]

Using one and the same global table to define metamethods for various variables
may be appropriate to save memory, but modification of the metatable itself may
have unwanted effects.

> readonly_mt.__writeindex := proc(t, k, v) is rawset(t, k, v) end;

> insert 'Mars' into moons;

> moons:
[1 ~ Phobos, 2 ~ Deimos, Mars ~ Mars]

Finally, to protect values already assigned to a table, we could define:

> readonly_mt := [
> __writeindex =
> proc(t, k, v) is
> if rawget(t, k) <> null then
> error('Error, structure is read-only.')
> else
> rawset(t, k, v)
> fi
> end
>]

> create table t;

> setmetatable(t, readonly_mt)

> t[1] := 0

> t[1] := 1
Error, structure is read-only.

To protect metatables from tampering, use the __metatable method and set it to
any value except null.

> readonly_mt := [
> __metatable = false,
> __writeindex =
> proc(t, k, v) is error('Error, table is read-only') end
>];

> readonly := proc(t :: table) is
> setmetatable(t, readonly_mt);
> return t
> end;

> moons := readonly(['Phobos', 'Deimos']);

agena >> 195

> setmetatable(moons, [
> __writeindex =
> proc(t, k, v) is error('Error, table is read-only') end
>]
>);
Error in `setmetatable`: cannot change a protected metatable.

Stack traceback: in `setmetatable`
 stdin, at line 1 in main chunk

A structure with a '__call' key in its metatable can also be called like a function.

> readonly := proc(t :: table) is
> setmetatable(t, [
> __call = proc(t) is
> for i, j in t do print(i, j) od
> end]);
> return t
> end;

> moons := readonly(['Phobos', 'Deimos']);

> moons();
1 Phobos
2 Deimos

To close this chapter, metamethods can also be used to automatically check the
contents of structure passed at function invocation, and also to extend the :: and :-
operators.

Let us assume we would like to write a procedure that sums up all numbers in a set:

> s := {1, 2, 3, 4, 5};

We create a metatable first,

> create table mt;

and then assign a proper evaluation procedure to the __oftype metamethod that
makes sure that the set consists of numbers only.

> mt.__oftype := proc(x) is
> if type x = set then
> for i in x do
> if i :- number then return false fi
> od;
> return true
> else
> return false
> fi
> end

We assign the metatable to the set,

> setmetatable(s, mt);

196 6 Programming

and first try out the extended :: and :- operators.

> s :: set:
true

If an invalid member is inserted into the set,

> insert 'a' into s;

the type check fails:

> s :: set:
false

> s :- set:
true

Now we use the type evaluator in a procedure call:

> sum := proc(x :: set) is
> local s := 0; for i in x do inc s, i od; return s
> end;

> sum(s):
In stdin:
 argument #1 does not satisfy type check metamethod

The '__oftype' metamethod works as follows: it first checks whether the structure (a
table, set, sequence, register, pair) or userdata at the left-hand side matches the
basic or user-defined type given at the right-hand side. If true, then Agena will
check whether the structure has an attached '__oftype' metamethod and then
will run it. The validator function must either return true if the criteria have all been
met, or false, fail or null otherwise.

Note that in the validator mt.__oftype definition given above, we use the type
operator instead of the :: operator in the first if statement since otherwise Agena
would issue a stack overflow error.

The __oftype metamethods also work if a return type has been specified.

In some packages, for example llist and numarray, metamethods are included in
the binary C library file and can be accessed through the so-called registry, via the
debug.getregistry function. You may want to use this function to add further
self-defined metamethods written in the Agena language.

For example, the __in metamethod of the numarray package is defined in the
Agena source file lib/numarray.agn, and not in the C library file.

> numarray.aux.mt := [
> __in = proc(x, a) is
> return numarray.whereis(x, a, 1, Eps) <> null
> end
>]

agena >> 197

The metatable stored to the registry can be read by a call to registry.get. Just insert
all of your own metamethod procedures by individually adding them, but do not
directly assign your metamethod table to the result of registry.get('numarray').

> scope
> # protect against sandboxing (prevent errors at initialisation)
> if registry.get :: procedure then
> # get the internal registry metatable for numarrays
> local _mt := registry.get('numarray');
> if _mt :: table then
> # include each metamethod function step-by-step
> for i, j in numarray.aux.mt do
> _mt[i] := j
> od
> fi
> fi
> epocs;

Never modify or delete existing metamethods, as this will lead to undefined
behaviour.

Note: The delete statement supports metamethods: it passes the data to be
deleted as its key and null as the value to the __writeindex metamethod. To protect
values stored to structures you might define:

> readonly_mt.__writeindex := proc(t, k, v) is
> if unassigned v or assigned rawget(t, k) then
> error('cannot delete or modify value')
> else
> rawset(t, k, v)
> fi
> end;

The pop, rotate, duplicate, and exchange statements issue an error if a given
structure features a __writeindex metamethod. This prevents read-only structures
from being modified.

6.20 Memory Management, Garbage Collection, and Weak Structures

Agena includes a garbage collector that sweeps all structures, procedures,
userdata, and threads (called `objects` in this subchapter) that no longer have
valid references in your programme - i.e. are inaccessible. Agena can then use the
space for new objects. Numbers, complex numbers, strings and booleans are
never collected.

Consider the following code: Let us assign a table to a name.

> s := []

Now s refers to a memory address so that Agena can access the table.

198 6 Programming

> environ.pointer(s):
008F0F38

If we reassign s, a different empty table is assigned to it.

> s := []

This newly created table is stored to another part of the memory.

> environ.pointer(s):
008A4188

Since the first table at memory position 008F0F38 can no longer be accessed, it
unnecessarily occupies space. The garbage collector regularly looks for
unreferenced objects and removes them.

Besides automatic garbage collection, the user can also invoke it manually, if
deemed necessary, or even stop and restart it by calling environ.gc.

Sometimes it may be necessary to immediately clear values occupying a large
amount of space. In this case assign null to it, so that the next automatic collection
cycle can free it. If necessary call environ.gc for immediate collection. As a
shortcut, you could also use the clear statement which conducts both nulling a
value and collecting it.

If a table, set, sequence, procedure, userdata or thread is included in another
table or sequence, the garbage collector does not collect it if its reference should
have become invalid.

> restart

> t := []

> v := [1]; insert v into t

> v := [2]; insert v into t

> environ.gc()

[1] is still part of the table.

> t:
[[1], [2]]

If you do not want this to happen, declare the table or sequence `weak` by using
the '__weak' metamethod. With tables, you can either declare its keys weak by
passing the string 'k', or its values weak with the string 'v', or both with 'kv'. With
sequences, simply use use the string 'v'.

If the collector meets a weak key that has become inaccessible, it removes the
key-value pair. If the collector meets a weak value that has become inaccessible, it
removes the key-value pair.

agena >> 199

> t := []

> setmetatable(t, ['__weak' ~ 'v'])

> v := [1]; insert v into t

> v := [2]; insert v into t

> environ.gc()

> t:
[2 ~ [2]]

Do not change the '__weak' field after it has been assigned to an object, as the
behaviour would be undefined. The insert and delete statements will reject
manipulation of weak tables and sequences.

6.21 Extending Built-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

Note that only Agena functions written in C or in the language itself can be
redefined, and that operators cannot.

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch to the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefined. An
example is:

> root(-2, 2):
undefined

On the interactive level enclose the new procedure definition with the scope and
epocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the statements thereafter.

The new function definition might be:

> scope
>
> # save the original function in a `hidden` variable
> local oldroot := root;
>

200 6 Programming

> # define the substitute
> root := proc(x, n) is # new definition
> local result := oldroot(x, n);
> if result = undefined then # switch to complex domain
> result := oldroot(x+0*I, n)
> fi;
> return result
> end;
>
> epocs;

The original function root is stored to the local oldroot variable so that the user can
no longer directly access it.

> root(-2, 2):
8.6592745707194e-017+1.4142135623731*I

If you wish to permanently use your redefined functions, just put them into the
initialisation file, located either in the lib folder of your Agena installation, or your
home directory. See Appendix 6 for further information.
Since files have their own `scope`, the scope and epocs keywords are no longer
needed (but can be left in the file).

6.22 Closures: Procedures that Remember their State

A procedure can remember its state. This state is represented by the function's local
variables which survive and retain their values even after the call to the procedure
has finished. Such procedures are also called `closures`.

So with successive calls, the procedure can access these values again and re-use
them.

Let us define an iterator function that returns an element of a table one after the
other:

> traverse := proc(o :: table) is
> local count := 0;
> return proc() is
> inc count;
> return o[count]
> end
> end;

The traverse procedure is called a `factory` as it creates and returns the closure
which we assign to the name iterator subsequently:

> tbl :=['a', 'b', 'c'];

> iterator := traverse(tbl);

The iterator function remembers its state and can be called like `normal`
functions:

agena >> 201

> iterator():
a

What happened ? The call to traverse with the table tbl = ['a', 'b', 'c'] as its
only argument initialised the variable count and assigned it to 0. The table you
passed is also stored to the closure's internal state since technically, parameters are
local variables. With the first call to iterate, count was incremented from 0 to 1, so
that the first element of the table, i.e. tbl[1], could be returned thereafter.

> iterator():
b

> iterator():
c

Since the table now has no more elements left (count = 4), the iterator now returns
null, since tbl[4] = null.

> iterator():

null

You can define more than one closure with a factory at the same time, each being
completely independent from the others:

> iterator2 := traverse(['a', 'b', 'c']);

> iterator2():
a

> iterator2():
b

> iterator3 := traverse(['a', 'b', 'c']);

> iterator3():
a

In Chapter 5, we have already introduced for/in loops that can iterate over
functions. There are various ways to accomplish this.

In general, one or two loop control variables are given to the left of the in keyword,
followed by the function and up to two further variables to its right.

Example 1: With function next, iterate table tbl and pass null as the initialiser to get
its first entry. The respective values in tbl are assigned to loop control variable i:

> tbl := [10, 20, 30, 'a' ~ 40];

> for i in next, tbl, null do # equivalent to `for i in tbl do`
> print(i)
> od;
10
20
30
40

202 6 Programming

Example 2: Same as Example 1 but with two control variables k, v storing the
respective table key and value, in this order.

> for k, v in next, tbl, null do
> print(k, v)
> od;
1 10
2 20
3 30
a 40

Example 3: Retrieve only the table keys.

> for keys k in next, tbl, null do
> print(k)
> od;
1
2
3
a

for/in loops iterate over factories, as well. Just some examples:

> gmatch := proc(s) is
> local c, p := 0, strings.gmatch(s, '%a+'); # p is assigned an iterator
> return proc() is
> local word := p();
> return when word = null with null;
> inc c;
> return c, word # return position and word
> end
> end;

> s := 'hello world from Agena';

> f := gmatch(s);

> for i in f do
> print(i)
> od;
hello
world
from
Agena

> f := gmatch(s);

> for k, v in f do
> print(k, v)
> od;
1 hello
2 world
3 from
4 Agena

> f := gmatch(s);

> for keys k in f do
> print(k)
> od;
1
2

agena >> 203

3
4

6.23 Self-defined Binary Operators

A procedure f of two arguments x, y

> plus := proc(x, y) is return x + y end;

can be called like a binary operator through the syntax x f y:

> 1 plus 2:
3

When using a function as a binary operator, it has always the highest precedence.

6.24 OOP-style Methods on Tables

Agena supports OOP-style methods. For a table object representing a bank
account,

> account := ['balance' ~ 0];

define the following method (please note the two @ tokens):

> proc account@@deposit(x) is
> inc self.balance, x;
> return self.balance
> end;

The name self always refers to the table object, here account. Call the method
using two @ characters:

> account@@deposit(100)

Query the object.

> account:
[balance ~ 100, deposit ~ procedure(016D6820)]

Let us define a method for withdrawing an amount of money. Instead of the proc
statement, we will now use the standard := assignment:

> account@@withdraw := proc(x) is
> if x < 0 then error('Error, value must be non-negative.') fi;
> dec self.balance, x;
> return self.balance
> end;

To set up new accounts that inherit the methods and characteristics associated with
the account object, assign the metatable of the account object to the freshly
created account using the setmetatable function, and force Agena to search for
the methods or its balance stored to account by proper indexing (i.e. self.__index

204 6 Programming

:= self). Thus, we use the account object as a prototype inherited by individual
accounts. To explore the metatable of an object, call getmetatable.

> proc account@@new(o) is
> o := o or []; # if not given, create object with its initial
> # balance taken from the current state of `account`
> setmetatable(o, self); # assign metatable of `account` object
> # (i.e. `self`) to new table
> self.__index := self; # inherit methods from `account` object
> return o
> end;

> a := account@@new();

> a.balance:
100

Set up a new account with its initial balance set to zero:

> b := account@@new(['balance' ~ 0]);

Pay into the bank 200 currency units.

> b@@deposit(200):
200

If you want to create a different class of accounts, e.g. accounts on credit that own
all the features of account but do not allow any overdraft, just assign an account
object to it by calling the new method (do not just assign account to creditaccount):

> creditaccount := account@@new();

and overwrite the withdraw method:

> proc creditaccount@@withdraw(x :: number) is
> if x < 0 then error('Error, value must be non-negative.') fi;
> if x > self.balance then error('Error, not enough credit.') fi;
> dec self.balance, x;
> return self.balance
> end;

> c := creditaccount@@new();

> c@@withdraw(1000):
Error, not enough credit.

Since b is an unlimited account, we can withdraw money as much as we want, as
its withdraw metamethod has not been replaced.

> b@@withdraw(1000):
-800

6.25 Assigning Tables to Procedures

As an alternative to storing values into the registry (see Chapter 6.31) or using
closures (Chapter 6.22), you can assign a table to a procedure with the store

agena >> 205

feature. The table will remain active during the entire Agena session and you can
read from or write values to it in subsequent calls to the function.

This feature is thrice as fast as interacting with the registry, but only half as fast as
closures. The table can be accessed through the store keyword which can also be
indexed:

> f := proc() is
> feature store;
> store[1] := Pi;
> store.count := (store.count or 0) + 1;
> return store, store[1], store.count
> end;

> f()

[3.1415926535898, 1] 3.1415926535898 1

To get access to the internal store, call debug.getstore which returns its reference.
You can both inspect this table as well as inject values into the store. In the following
example we define a sine function with precomputed coefficients:

> zxsine := proc(x :: number) is # ZX Spectrum SIN emulation
> feature store; # activate the internal store
> local w, z;
> x *:= 0.5/Pi;
> x -:= entier(x + 0.5);
> w := 4*x;
> if w > 1 then
> w := 2 - w
> elif w < -1 then
> w := -w - 2
> fi;
> z := 2*w*w - 1;
> return w*(store[1] + z*(store[2] + z*(store[3] + z*(store[4] +
> z*(store[5] + z*store[6])))))

> end;

> _coeffs := // 1.267162131 -0.284851843 0.18226552e-1 -0.546208e-3
> 0.9480e-5 -0.112e-6 \\;

To get a reference to the store, execute:

> _store := debug.getstore(zxsine);

Insert coefficients to the store,

> for i in _coeffs do
> insert i into _store
> od;

and do some cleanup thereafter:

> _store, _coeffs -> null;

Voila:

206 6 Programming

> zxsine(Pi/4):

0.70710678125

Of course, you can mix store tables with remember tables. For another example,
see Chapter 6.31.

6.26 Summary on Procedures

The following diagram tries to summarise all features of a procedure.

6.27 I/O

Agena features various functions to deal with files, to read lines and write values to
them. Keyboard interaction is supported, too, as is interaction with other
applications. Most of the functions have been taken from Lua. All the functions for
input/output are included in the io and the binio packages.

Read and write access to files usually is conducted through file handles. At first, a
file is opened for read or write operations with the io.open function. Then you apply
the respective read or write functions and finally close the file again by calling
io.close.

6.27.1 Reading Text Files

Open a file and store the file handle to the name fh:

> fh := io.open('d:/agena/src/change.log'):
file(7803A6F0)

agena >> 207

Input

No Parameters
Parameters
Variable Parameters

Procedure Types

Standard Agena Type
User-Defined Type

Remember Table

Read/Write Table
Read-Only Table

Domains

State (Closure)
Storage Table
Scope
Environment

Type Checks

Arguments
Return

Procedure

proc(v::type, ?) :: type is
 local r;
 global _Eps;
 r := v;
 for i in varargs do
 inc r, i + _Eps
 od;
 return r
end

Forms

Multi-Line Procedures
One-Line Functions

Output

No Return
One Return
Multiple Returns

Read the first ten characters:

> io.read(fh, 10):

Change Log

Read the next ten characters:

> io.read(fh, 10):
 for Agena

Close the file:

> io.close(fh):
true

Besides file handles, many I/O functions also accept file names. For example, the
io.lines procedure reads in a text file line by line. It is usually used in for loops. The
respective line read is stored to the loop key, the loop value is always null. The
function opens and closes the file automatically.

> for i, j in io.lines('d:/agena/lib/agena.ini') do
> print(i, j)
> od
execute := os.execute; null
getmeta := getmetatable; null
setmeta := setmetatable; null

6.27.2 Writing Text Files

To write numbers or strings into a file, we must first create the file with the io.open
function. The second argument 'w' tells Agena to open it in `write` mode.

> fh := io.open('d:/file.txt', 'w');

As mentioned above, io.open returns a file handle to be used in subsequent I/O
operations.

> io.write(fh, 'I am a text.');

If you would like to include a newline, pass the '\n' string,

> io.write(fh, 'Me ', 'too.', '\n');

or use the io.writeline function which automatically adds a newline to the end of
the input. The next statement writes the number to the file.✜

> io.writeline(fh, Pi);

After all values have been written, the file must be closed with io.close.

208 6 Programming

> io.close(fh);

The statements presented above produce the file contents:

I am a text.Me too.
3.1415926535898

We can append text to a file we have already created. In order to append - and
not to overwrite existing - text, use the 'a' switch in the call to io.open17. Using the
'w' switch would replace the text already existing with the new one. See Chapter
12.1 for further options accepted by io.open.

Tables, sets or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numbers, booleans or
strings - can be stored separately to the file thereafter. The same applies to pairs:
use the left and right operators to write their components.

The following statements write all keys and values of a table to a file. The keys and
values are separated by a pipe '|', and a newline is inserted right after each
key~value pair. Note that you can mix numbers and strings.

> a := [10, 20, 30];

> file := io.open('d:/table.text', 'w');

> for i, j in a do
> io.write(file, i, '|', j, '\n')
> od;

> io.close(file);

Hint: To create UNIX text files on DOS-like systems, such as DOS, OS/2, Windows, just
open the text file in binary mode, e.g. io.open('d:/table.text', 'wb'). This avoids
carriage return control codes to be added to the file with each line break.

See Chapter 12.1 for a description of all io package functions.

If you have trouble with character encoding, the converters strings.tolatin,
strings.toutf8, strings.diamap or the aconv package might help you.

6.27.3 Keyboard Interaction

The io.read function allows to enter values interactively via the keyboard when
called with no argument. Use the RETURN key to complete the input. The value
returned by io.read is a string. If you would like to enter and process numbers
thereafter, use the tonumber function to transform the string into a number.

> a := io.read();
10

agena >> 209

17 See Chapter 12.1 for further options accepted by io.open.

> a:
10

> type(a):
string

> tonumber(a)^2:
100

All available keyboard functions are:

If called with no arguments, reads one or more characters from the
keyboard until the RETURN key is being pressed. The return is a string.

io.read

Waits until a key is pressed and returns its ASCII value. This function is
not available on all platforms.

io.getkey

Checks whether a key has been pressed and returns true or false.io.anykey
DetailsProcedure

Table 19: Functions to read the keyboard

6.27.4 Default Input, Output, and Error Streams

Agena provides aliases to the standard input, output, and error channels known
from C:

� io.stdin, the standard input stream, used to input data, usually the keyboard,
� io.stdout, the standard output stream, used to output data, usually the console,
� io.stderr, the standard error stream, used for error messages and diagnostics,

usually the console.

Examples:

> io.writeline(io.stdout, 'Okay');
Okay

> io.writeline(io.stderr, 'Not okay');
not okay

6.27.5 Locking Files

Agena allows files to be locked so that only the current process can read or write
data to them. This feature prevents corruption to files during write operations or
reading invalid data when other programmes try to access them. See io.lock and
io.unlock in Chapter 12.1 for further information.

6.27.6 Interaction with Applications

You can call another application, pass data to it and receive data from the
application with the io.popen function. The function returns a file handle, so that
you can receive the information returned (from the stdout channel of the called
programme) for further processing.

210 6 Programming

To get a listing of all files in the current directory, enter:

> p := io.popen('ls'):
file(77602960)

> io.readlines(p):
[ads.c, agena.c, etc.]

Finally, close the connection.

> io.close(p)

If you pass the 'w' option to io.popen as a second argument, you can send further
data to the external programme:

> p := io.popen('cat', 'w')

> io.write(p, 'Hello ')

> io.write(p, 'World\n')

> io.close(p)
Hello World

If you want to receive data from the stderr channel, or suppress output at the
Agena console, include the respective redirection instruction, which may vary
among operating systems, in the first argument to io.popen.

6.26.7 CSV Files

Comma-separated value files can be read and written conveniently by
utils.readcsv and utils.writecsv. This function provides various options to further
process the data being read. See Chapter 16.1 for further details.

6.27.8 XML Files & JSON Objects

XML files are imported and converted to Agena data structures with utils.readxml or
xml.readxml. XML files can be created with utils.encodexml and io.write. Chapter
16.1 and 12.5 offers further information on how to do this.

JSON objects represented by strings can converted to Agena tables using
json.decode and written from a table to a 'JSON string' with json.encode.

6.27.9 dBASE III/IV Files

The xbase package can read and write dBASE III/IV-compatible files. See Chapter
12.3 for details.

6.27.10 INI Files

The utils.readini and utils.writeini functions deal with traditional INI initialisation files.

agena >> 211

6.28 Linked Lists

With large tables, sometimes it may be very costly to insert or delete an element
with the put and purge functions because all elements after the insert or deletion
position must either be shifted up- or downwards. This is also true with sequences
and registers.

In addition, iterating a table with the for/in statement does not ensure that the keys
are traversed in ascending order18.

In these cases you may use the llist package implementing linked lists which store
elements in a sequential order and where each value also links to its successor (and
predecessor). Just take a look at the examples at the end of this subchapter.

The benefit of using linked list in these situations is a speed increase of at least 600
%, but may be very much larger.

To see how a linked list works, let us create one manually. First, establish a root
which indicates the end of the list.

> list := null;

Now we insert the numbers -2, -1 and 0 into this list, so that it contains the elements
0, -1, -2, in this order.

> list := ['data' ~ -2, 'next' ~ list];

> list := ['data' ~ -1, 'next' ~ list];

> list := ['data' ~ 0, 'next' ~ list];

To traverse the list, we use a new reference so that the original list is not changed:

> l := list;

> while l do
> print(l.data)
> l := l.next
> od;
0
-1
-2

To insert an element somewhere in the list, we enter:

> l := list;

> while l do
> if l.data = -1 then
> l.next := ['data' ~ -1.5, 'next' ~ l.next];
> break
> fi;
> l := l.next
> od;

212 6 Programming

18 See skycrane.iterate.

> l := list;

> while l do
> print(l.data)
> l := l.next
> od;

0
-1
-1.5
-2

It may often be useful to add further information to a linked list to save unnecessary
traversal, e.g. the position of the element or the predecessor.

Instead of implementing singly- or doubly-linked lists yourself, use the llist package.

Create an empty list.

> L := llist.list():
llist()

Now add 0 to it

> llist.append(L, 0);

and also put -2 to its beginning.

> llist.prepend(L, -2);

> L:
llist(-2, 0)

Insert -1 at position 2. As you see, the original element at this position is not deleted
but shifted to open space.

> llist.put(L, 2, -1):

> L:
llist(-2, -1, 0)

To delete an element at a position, enter:

> llist.purge(L, 2):

> L:
llist(-2, 0)

The size operator determines the number of all elements in a linked list.

> size L:
2

To determine a specific element, index it as usual:

agena >> 213

> L[1]
-2

Passing an index that does not exist, simply results to null.

Finally, to replace an element, use a usual assignment statement.

> L[2] := -1

> L:
llist(-2, -1)

You may have a look at unrolled singly-linked lists, which are also provided by the
llist package for high-speed processing. The ulist functions have the same name as
those for llists, and almost the same syntax, so here is just a small example:

> a := ulist.list(64) # 64 slots per node

> for i to 11 do ulist.append(a, i) od # fill ulist with numbers 1 to 11

> ulist.put(a, 5, 100); # insert 100 at position 5

> a := ulist.dump(a); # convert ulist into a sequence and dump it
> # from memory

> print(a)
seq(1, 2, 3, 4, 100, 6, 7, 8, 9, 10, 11)

Finally, functions to work on doubly-linked lists are available in table dlist. Read and
write access to elements in doubly-linked lists is around twice as fast as for
singly-linked lists:

> l := dlist.list('Algol 68', 'Maple', 'Lua', 'SQL');

> dlist.append(l, 'Agena'); # add new entry to the end of the list

> l[-1]:
Agena

> dlist.prepend(l, 'Agena'); # add new entry to the start of the list

> l[1]:
Agena

> dlist.purge(l, 1); # delete first entry

> l[1]:
Algol 68

> dlist.purge(l, -1); # delete last entry

> l[-1]:
SQL

> # insert a new value into the middle of the list, shifting elements into
> # open space
> dlist.put(l, 3, 'Agena');

214 6 Programming

> dlist.toseq(l):
seq(Algol 68, Maple, Agena, Lua, SQL)

> f := dlist.iterate(l); # iterate through the list

> f():
Algol 68

(etc.)

6.29 Numeric C Arrays

Agena numbers can alternatively be processed using numeric C arrays. The
numarray package supports C doubles, signed 4-byte integers (int32_t), and
unsigned chars. See Chapter 10.6 for further details.

While C numeric arrays consume less memory than Agena's built-in structures,
operations are slower.

6.30 Userdata and Ligthuserdata

Some Agena packages such as linked lists and numarrays implement data
structures by so-called userdata, i.e. C structures that are garbage-collected by the
interpreter provided that a '__gc' metamethod exists.

Likewise, lightuserdata are pointers to any C objects but programmers writing C
libraries have to implement their own garbage collection procedures.

To the ordinary programmer writing code exclusively in the Agena language,
userdata and lightuserdata are irrelevant as this kind of data can only be accessed
through functions written in C.

6.31 The Registry

The registry is an interface between Agena and its C virtual machine which mainly
stores values needed by userdata, metatables of libraries written in C, open files,
and loaded libraries. It can also be used to exchange data between the C
environment and Agena, or between Agena functions in general. See Chapter 6.25
for a faster alternative if you know that a function does not need to exchange data
with other functions.

debug.getregistry gives full access to the registry but should be used carefully. It is
recommended to revert to the functions of the registry package to read, add or
delete registry data or to modify C library metatables, and to exclude the debug
library from sandboxes (see Chapters 6.15, 7.40 and 7.53).

agena >> 215

Registry entries indexed by integral keys refer to data occupied by userdata objects,
which for example are used by the llist and numarray libraries. The registry library,
however, does not expose these values to Agena.

Following is an example how you can use this feature:

> watch := proc(x) is
> local id, t, val;
> t := time();
> # create light userdata as registry key
> id := 'baselib_watch';
> unassigned registry.get(id) ? registry.anchor(id, 0);
> if x then # any argument given ? -> initialise / reset the clock
> registry.anchor(id, 0);
> return
> fi;
> val := registry.get(id); # get old time (in seconds)
> if val = 0 then # start clock
> registry.anchor(id, t); # assign a new value to registry
> t := 0
> else # return elapsed time and set clock to current time
> t -:= val;
> registry.anchor(id, time())
> fi;
> return t
> end;

In comparison, an implementation using an internal store table would be:

> watch := proc(x) is
> feature store;
> local id, t, val;
> val := store[1]; # get old time (in seconds)
> unassigned val ? store[1] := 0; # initialise with the first call
> t := time();
> if x then # reset the clock but do not turn it on again
> store[1] := 0;
> return
> fi;
> if val = 0 then # start clock
> store[1] := t;
> t := 0
> else # return elapsed time and set clock to current time
> t -:= val;
> store[1] := time()
> fi;
> return t
> end;

216 6 Programming

Part Two

Reference

agena >> 217

218 7 The Libraries

Chapter Seven

The Libraries

agena >> 219

220 7 The Libraries

7 The Libraries

The standard libraries taken from the Lua 5.1distribution provide useful functions that
are implemented directly through the C API. Some of these functions provide
essential services to the language (e.g., next and getmetatable; others provide
access to `outside` services (e.g., I/O); and others could be implemented in
Agena itself, but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., sort).

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also will apply to Agena.

All libraries are implemented through the official C API and are provided as
separate C modules. Currently, Agena has the following standard libraries:

• the basic library,
• package library,
• string library,
• table library,
• mathematical library,
• two input and output libraries,
• operating system library,
• environmental libraries,
• debug facilities.

Except for the basic and the package libraries, each library provides all its functions
as fields of a global table or as methods of its objects. Agena operators have been
built into the kernel (the Virtual Machine), so they are not part of any library.

agena >> 221

222 8 Basic Functions

Chapter Eight

Basics

agena >> 223

224 8 Basic Functions

8 Basics

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

For logical operators, please see Chapter 4.8.

Summary of functions:

Checks

$$, abs, alternate, assigned, assume, binsearch, filled, has, isequal,
member, rawequal, recurse, satisfy, whereis.

Extraction

$, bottom, columns, descend, duplicates, getentry, left, max, min, next,
ops, rawget, right, top, unique, unity, unpack, values.

Types

checkoptions, checktype, float, gettype, isboolean, iscomplex, isint,
isnegative, isnegint, isnonnegint, isnonposint, isnumber, isnumeric, ispair,
isposint, ispositive, isseq, isstring, isstructure, istable, nan, nonneg,
optboolean, optcomplex, optint, optnonnegative, optnonnegint,
optnumber, optposint, optpositive, optstring, settype, type, typeof.

Counting

countitems, size, tables.numintersect, tables.numminus, tables.numunion.

Data Manipulation

@, append, augment, getbit, include, map, move, prepend, purge, put,
rawset, reduce, remove, select, selectremove, setbit, sort, sorted, subs,
subsop, toreg, toseq, toset, totable, zip.

Data Generation

iterate, tables.new, sequences.new, registers.new.

Error Handling

argerror, error, protect, xpcall.

agena >> 225

Libraries

readlib, with.

Files

read, save.

Output

print, printf, write, writeline.

Parsing

load, loadfile, loadstring.

Cantor Operations

bintersect, bisequal, bminus.

Metatables

getmetatable, setmetatable.

Miscellaneous

bye, clear, restart, time.

f @ obj

f @ g

In the first form, the operator maps a function f to all the values in table, set,
sequence, register, string or pair obj. f should be a univariate function and return
only one value. The type of return is the same as of obj. If obj has metamethods or
user-defined types, the return will also have them.

If obj is a string, f is applied on all of its characters from the left to right. The return is
a sequence of function values.

Examples:

> << x -> x^2 >> @ [1, 2, 3]:
[1, 4, 9]

> << x -> x > 1 >> @ [1, 2, 3]:
[false, true, true]

226 8 Basic Functions

In the second form, the function creates the composition of two functions f @ g =
f(g(x)) and returns it is a new function (f @ g)(x). f and g may be univariate or
multivariate and also return multiple results.

Example:

> # first take root, then negate

> h := << x -> -x >> @ << x -> sqrt x >>

> h(2):

-1.4142135623731

The operator actually calls function map.

See also: @ and $$ operators, map, reduce, remove, select, subs, subsop, times,
zip.

f $ obj

Returns all values in table, set, sequence or register obj that satisfy a condition
determined by function f. f should be a univariate function and return at least one
value. In the multivariate case, all results but the first are ignored.

> << x -> x > 1 >> $ [1, 2, 3]:
[2, 3]

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

Please note that if obj is a table, the return might include holes. With obj a register,
all values up to the current top pointer are evaluated, and the size of the returned
register is equal to the number of the elements in the return.

The operator actually calls function select.

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
unique, values, zip.

f $$ obj

Checks whether at least one element in table, set, sequence or register obj satisfies
the condition defined by function f and returns true or false. f should be a
univariate function and return at least one value. In the multivariate case, all results
but the first are ignored.

> << x -> x < 1 >> $$ [1, 2, 3]:
false

agena >> 227

Please note that if obj is a table, the return might include holes. With obj a register,
all values up to the current top pointer are evaluated.

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
subsop, unique, values, zip.

abs (x)

If x is a number, the abs operator will return the absolute value of x. With complex
numbers, the magnitude is evaluated (see also: cabs).real(x)2 + imag(x)2

If x is a Boolean, it will return 1 for true, 0 for false, and -1 for fail.

If x is null, abs will return -2.

If x is a string of only one character, abs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function returns fail.

addup (obj)

addup (obj, n)

addup (obj, n, p, xm)

addup (f, obj [, ···])

Sums up all numeric values in table, sequence, register or userdata obj. The return is
a number. If obj is empty or consists entirely of non-numbers, the operator returns
fail. If the structure contains numbers and other objects, only the numbers are
added. Numeric entries with non-numeric keys are processed, as well. The
operator uses Kahan-Babuška Summation. To improve accuracy, you may sort obj
before.

In the first form, all the elements in obj a summed up. In the second form, each
element in obj is divided by n before being added to the sum. If n is 0 or
undefined, all the elements are divided by the size of obj.

In the third form, computes the moment p - an integer - of the given table,
sequence, register or numarray obj about any origin xm for a full population and
returns a number. As with the second form, if n is undefined or 0, the size of the
distribution is determined automatically. In summary, all this is equivalent to:

 /n✟
i=1

n

obj i − xm
p

In the fourth form, a function f is applied on each element in obj before adding it
to the sum, with the second, etc. arguments to be put right after obj.

228 8 Basic Functions

See also: foreach, mulup, qsumup, calc.fsum, sort, sorted, stats.cumsum,
stats.issorted, stats.sumdata, sumup, stats.moment.

alternate (x, y)

Returns x if y evaluates to null, else returns y. This is equivalent to if y = null then x
else y fi, which is not equal to y or x.

See also: or operator.

append (x, obj)

Appends an element x at the beginning of structure obj, in-place. The function
returns the modified structure.

With a table, its hash part is not modified.

With a register, the function automatically increases its size by one. If obj is a pair,
returns obj:x.

See also: include, prepend, put.

argerror (x, procname, message)

Receives any value x, the name of procedure procname (a string) where x did not
satisfy anything, the error message text message, and appends the user-defined
type or if not defined the basic type of x. Thus it returns the error message: 'Error in
procname: message, got <type of x>.'.

The function is written in Agena and included in the lib/library.agn file.

See also: error.

assigned (obj)

This Boolean operator checks whether any value different from null is assigned to
the expression obj. If obj is already a constant, i.e. a number, boolean including
fail, or a string, the operator always returns true. If obj evaluates to a constant, the
operator also returns true. See also: unassigned.

assume (obj [, message])

Issues an error when the value of its argument obj is false (i.e., null or false);
otherwise, returns all its arguments. message is an error message; when absent, it
defaults to 'assumption failed'.

agena >> 229

augment (obj1, obj2 [, ···])

Joins two or more tables, sequences or registers obj1, obj2 etc. together
horizontally. The arguments must either be tables, sequences or registers only. All
structures must be of the same size and have the same keys. The type of return is
determined my the type of the arguments.

The function is written in Agena and included in the lib/library.agn file.

See also: columns, linalg.augment.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return
may be a number or complex value, even if x and y are numbers. The Beta

function is defined as: Beta(x, y) = , with special treatment if x and y are
✄x&✄y
✄(x+y)

integers or are equal. See also: math.beta, math.gammasign.

binsearch (o, x [m [, l [, r]]])

Performs a binary search for x in the sorted table, sequence or register o. You may
optionally specify the left border l and the right border r in o where to search for x,
by default l is 1 and r is size o. The very first element in o to be checked is given by
m which by default is (l + r) \ 2.

The function returns true on success or false otherwise. The second return is the
index position of the last element checked before the function returns.

You may have to sort o before invoking the function, otherwise the result would be
incorrect.

See also: in operator.

bintersect (obj1, obj2 [, option])

Returns all values of table, sequence or register obj1 that are also values in table or
sequence obj2. obj1 and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in obj1. If no option is given, obj2 is sorted
before starting the search. If you pass an option of any value then obj2 should
already have been sorted, for no correct results would be returned otherwise.

With larger structures, this function is much faster than the intersect operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bisequal, bminus.

230 8 Basic Functions

bisequal (obj1, obj2 [, option])

Determines whether the tables, sequences or registers obj1 and obj2 contain the
same values. The function performs a binary search. If no option is given (any
value), obj1 and obj2 are sorted before starting the search. If you pass an option of
any type then obj1 and obj2 should already have been sorted, for no correct
results would be returned otherwise.

With larger structures, this function is much faster than the = operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bminus.

bminus (obj1, obj2 [, option])

Returns all values of table, sequence or register obj1 that are not values in table,
sequence or register obj2. obj1 and obj2 must be of the same type. The function
performs a binary search in obj2 for each value in obj1. If no option is given, obj2
is sorted before starting the search. If you pass the option then obj2 should already
have been sorted, for no correct results would be returned otherwise.

With larger structures, this function is much faster than the minus operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bisequal.

bottom (obj)

With the table array, sequence or register obj, the operator returns the element at
index 1. If obj is empty, it returns null.

See also: top.

bye

Quits the Agena session. No arguments or brackets are needed. If a procedure has
been assigned to the name environ.onexit, then this procedure will automatically
be run before exiting the interpreter. The function also conducts a final garbage
collection fully closes the state of the interpreter before leaving. An example:

> environ.onexit := proc() is print('Tschüß !') end

> bye
Tschüß !

agena >> 231

checkoptions (procname, obj, option [, ···] [, true])

Checks options passed to a given procedure, saving many lines of code in
procedures.

Since an option such like delimiter=';' in a function call is actually passed as the
pair 'delimiter':';' you have to make sure that `real` pairs containing data (but
not options) are not included in the call to checkoptions. See Chapter 6.6.
Its first argument procname - a string, not the function reference - is the name of the
procedure in which the check takes place.

Its second argument obj - a table - represents the arguments to be checked.

The third to last arguments are pairs. The respective left operand (a string) will be
checked whether one of the right operands of the pairs in obj is of the type passed
as the right operand (a string, a basic or a pseudo-type). See examples below.

The evaluation of obj works as follows: If an entry in obj is not a pair, it is not
evaluated, ignored and not returned in the resulting table. But if the entry is a pair, it
checks whether the left-hand side is a string, i.e. the name of an option. It then
checks whether its right hand side is of the given type in anything passed to option
or further options of type pair. By default, If an option in obj cannot be found in
option or further options of type pair, an error will be issued. But if the very last
argument is the Boolean value true, no error will be issued and the `unknown`
option is part of the resulting table.

If successful, the return is a table where the respective left-hand side in obj is the
key and the respective right-hand side in obj is the respective entry. Please play
around with this new function, or have a look at the lib/skycrane.agn file in your local
Agena installation, function skycrane.scribe. User-defined types are properly
handled.

Pseudo-numeric types are: integer, posint, nonnegint, negative, nonnegative,
positive. Further pseudo-types are: basic, listing and anything, see Chapter 6.8.2.

Thus:

> checkoptions('myproc', [1, 'neil':'armstrong'], neil=string):
> # 'neil' must be a string, number 1 will be skipped as not being a pair
[neil ~ armstrong]

> checkoptions('myproc', ['neil':'armstrong'], neil=boolean):
Error in `myproc`: boolean expected for neil option, got string.

> checkoptions('myproc', ['neil':'armstrong', 'james':'lovell'],
> neil=string, true):
[james ~ lovell, neil ~ armstrong]

232 8 Basic Functions

checktype (obj, main, sub)

Checks whether the structure obj is a table, set, pair, sequence or register, and
whether it is of the type given by main (a string), and whether all its elements are of
type sub (a string). It returns true or false. User-defined types are supported.

The function is written in Agena and included in the lib/library.agn file.

See also: type.

cleanse (t)

Empties a table, set, sequence or register and returns the emptied structure. With a
register, sets all its places to null and returns the modified register. With tables, sets
and sequences, the memory previously occupied can be reused by the interpreter.

clear v1 [, v2, ···]

Deletes the values in variables v1, v2, ···, and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

columns (obj, p [, ···] [, 'structure'])

Extracts the given columns p (etc.) from the two-dimensional table, sequence or
register obj. The type of return is determined by the type of obj and is either a
structure of structures if the option 'structure' is given, or a multiple return of
structures.

The function is written in Agena and included in the lib/library.agn file.

See also: ops, select, unpack, values, linalg.column, utils.readscv.

copy (obj [, option])

The operator copies the entire contents of a table, set, pair or sequence obj into a
new structure. If obj contains structures itself, those structures are also copied (by a
`deep copying` method). Structures included more than once are properly
aggregated to one single reference to save memory space. Metatables and
user-defined types are copied, too.

With tables, if the 'array' option is given, then the operator will return just the array
part of obj. Likewise, the 'hash' option only extracts the hash part of obj.

If the option is 'nometa', then metatables and user-defined types will not be copied
regardless of the data type of obj.

The type of return is determined by the type of obj.

agena >> 233

The operator also treats cycles (structures that directly or indirectly reference to
themselves), correctly.

See also: copyadd.

copyadd (obj [, ···])

Copies all elements in table, set, sequence or register obj and any further optional
arguments into a new structure and returns it. The result is of the same type as obj.

With tables, the array and hash parts are copied 1:1, that is all the keys and entries
in the array part of obj are copied to the array part of the new table, and the
elements in the hash part of obj are copied to the hash part of the new table, with
the same keys, too.

For performance reasons, substructures are not deep-copied.

The function may be used when in an expression there is a call to unpack or any
other function returning multiple values, which is followed by one or more
subsequent values, as in this situation multiple values returned by any function get
truncated to the first value if it's not the last trailing expression.

Compare for example:

> f := proc(x, y) is
> return math.sincos(x), y
> end;

> f(0, E):
0 2.718281828459

versus

> f := proc(x, y) is
> return unpack(copyadd([math.sincos(x)], y))
> end;

> f(0, E):
0 1 2.718281828459

See also: append, copy, include, prepend, put, tables.include, insert statement.

countitems (item, obj)

countitems (f, obj [, ···])

In the first form, counts the number of occurrences of an item in the structure (table,
set, sequence or register) obj.

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure obj that satisfy the given relation are

234 8 Basic Functions

counted. If the function has more than one argument, then all arguments except
the first will be passed right after the name of the object obj.

The return is a number. The function may invoke metamethods.

See also: select, bags package.

descend (f, obj, [, ···] [, option])

Returns all elements in the structure obj (a table, set, sequence or register) that
satisfy a given Boolean condition expressed by function f. The function can be
multivariate and must return either true or false. The optional second and all further
arguments of f may be passed as the third, etc. argument.

With tables, all the keys and entries are scanned.

With sequences and registers, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sets, registers or
sequences in obj so that it can find elements in deeply nested structures. Pairs,
however, are ignored.

If obj is a table and the option skiphash=true has been passed, then the function
will ignore all non-numeric keys and their corresponding values, i.e. ignore the hash
part of a table.

The function returns a structure with its type depending on the type of obj with all the
hits in no more than two levels, an example:

> s := seq(1, 2, 3, [1, 2, 3], seq(1, 2, 2, 4, {2, 4, 5}));

> descend(<< x -> x = 2 >>, s):
seq(2, [2], seq(2, 2), {2})

> # return all elements greater or equal 3

> ge := proc(x, y) is # x greater or equal y ?
> try
> return x >= y
> catch # avoid comparisons of numbers with other data types
> return false
> yrt
> end;

> descend(ge, s, 3):
seq(3, [3], seq(4), {4, 5})

descend issues an error if obj is unassigned.

See also: has, recurse, satisfy, select.

agena >> 235

duplicates (obj [, option])

Returns all the values that are stored more than once to the given table, sequence
or register obj, and returns them in a new table, sequence or register. Each
duplicate will be returned only once. If option is not given, the structure is sorted
before evaluation since this is needed to determine all duplicates. The original
structure is left untouched, however.

If a value of any type is given for option, the function assumes that the structure has
been already sorted. The values in obj should either be strings or numbers if no
option is given, otherwise the function will fail.

The function is written in Agena and included in the lib/library.agn file.

empty (obj)

This Boolean operator checks whether a table, set, register, sequence or string obj
does not contain any item and returns true if so; otherwise it returns false.

See also: filled.

error (message [, level])

Terminates the last protected function called and returns message as the error
message. error never returns.

Usually, error adds some information about the error position at the beginning of
the message. The level argument specifies how to get the error position. With level
1 (the default), the error position is where the error function was called. Level 2
points the error to where the function that called error was called; and so on.
Passing a level 0 avoids the addition of error position information to the message.
See also: argerror.

eval (···)

Just returns the value represented by its arguments. If the argument is a function
call that returns nothing, the function opposed to the unity operator returns nothing.
The function actually is an alias to identity. See also: unity operator.

everyth (n, k)

everyth (obj, k)

In the first form, returns the Agena equivalent n % k = 0, a Boolean.

In the second form, returns every given k-th element in the table, sequence or
register obj in a new structure. The type of return is determined by the type of the
first argument. With tables, only the array part is traversed.

236 8 Basic Functions

_G

A global variable (not a function) that holds the global environment (that is, _G._G =
_G). Agena itself does not use this variable; changing its value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

filled (obj)

This Boolean operator checks whether a table, set, register, sequence or string obj
contains at least one item and returns true if so; otherwise it returns false.

See also: empty.

fold (f, obj [, options])

Applies a function f on each item of a structure or string obj and returns an
accumulated result. It works like reduce with the fold=true option, i.e. the initialiser
is always given by the first value or character in obj. fold supports the options
available in reduce.

If you need to save memory, the foreach operator may be an alternative. See
also: @ operator, addup, map, mulup, qmdev, qsumup, sumup.

foreach (start, stop [, step], f [, s])

foreach (start, stop [, step], f, n)

foreach (true, start, stop [, step], f, a)

In the first form, the operator traverses a numeric range, starting with start (a
number) and stopping at stop (a number) with step size step, applies a univariate
function f on each intermediate value and puts the result into a given table or
sequence s. The operator allows to omit the step size - defaulting to one - or the
structure s, in this case returning a table of function values.

For example,

> foreach(1, 5, 0.5, << x -> 2*x >>, seq()):
seq(2, 3, 4, 5, 6, 7, 8, 9, 10)

is equivalent to

> s, f := seq(),<< x -> 2*x >>;
> for i from 1 to 5 by 0.5 do
> insert f(i) into s
> end;

If the given structure s already includes elements, they are not overwritten, and the
function values are appended instead.

agena >> 237

In the second form, if you pass a number, as the last argument, the operator
computes the sum of all function values, with the sum initialised to n:

> # Pi approximation by Indian mathematician and astronomer
> # Madhava of Sangamagrama, 14th century AD:

> sqrt(12)*foreach(0, 25, << k -> (-3)^(-k)/(2*k + 1) >>, 0):
3.1415926535898

The third flavour resembles the reduce function and thus makes the operator more
generic and versatile: By passing an interval [start, stop] with an optional step size
defaulting to 1, a two-parameter accumulator function f and an initialiser a of any
type, you can create short one-liners that do not consume a lot of memory as there
are no structures to be iterated.

Two examples: To compute the tenth factorial 10! = fact(10) issue

> foreach(true, 1, 10, 1, << x, a -> a*x >>, 1):

3628800

In this example, the operator receives the range [1, 10] and optional step size 1.
The accumulator function with its first argument x receives the respective iteration
value and with its second argument a the accumulator which is initialised to 1, the
last argument. The function returns and must return the updated accumulator as its
only result, otherwise an error is thrown. (The value true as the first argument to
foreach is just a flag that switches foreach into this mode.)

To compute a list of the first ten factorials, enter:

> foreach(true, 1, 10,
> proc(x, a) is insert a[size a]*x into a; return a end,
> [1]):

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

The first value in the return is the initialiser - you can provide a more sophisticated
function that omits it from the result. Compared to reduce and fold, the third form is
great to save a lot of memory for you pass only a left and right border and a step
size and not a structure of - often many - individual values.

Generally, in all forms the function uses Kahan-Babuška summation only if the start
value and/or the step size are fractional.

See also: addup, fold, reduce, sumup, times, calc.fsum, stats.sumdata.

getbit (x, pos)

Checks for the bit at position pos [1, 32] in the integer x, and either returns true orc

false.

238 8 Basic Functions

See also: getbits, getnbits, setbit, setbits, setnbits, bytes.tobytes, numarray.getbit.

getbits (x [, any])

Returns all 32 bits in the integer x, and returns a register of size 32 with values true or
false. If any second argument is given, the register is filled with zeroes or ones
instead of booleans.

See also: getbit, getnbits, setbit, setbits, setnbits, numarray.getbit.

getnbits (x, pos, nbits)

From the 32-bit integer x, starting from bit position pos from the right, retrieves nbits
bits and returns a decimal value. pos should be in [1, 32].

getentry (obj [, k1, ···, kn])

Returns the entry obj[k1, ···, kn] from the table, sequence or register obj without
issuing an error if one of the given indices ki (second to last argument) does not
exist. It conducts a raw access and thus does not invoke any metamethods.
If obj[k1, ···, kn] does not exist, null will be returned. If only obj is given, it is simply
returned.

See also: .. operator, {} indexing (Chapter 4.9.1), getorset.

getmetatable (obj)

If obj does not have a metatable, returns null. Otherwise, if the obj's metatable has
a '__metatable' field, returns the associated value. Otherwise, returns the
metatable of the given obj, a table, set, pair, sequence, register or procedure.

See also: setmetatable.

getorset (obj, k1, ···, kn, v)

Returns the non-null element at index obj[k1, k2, ..., kn], where obj is a table,
sequence or register. If any index position is invalid, the function returns null.

If obj[k1, k2, ..., kn] = null, then the function will assign obj[k1, k2, ..., kn] := v and
return v.

See also: getentry.

agena >> 239

gettype (obj)

Returns the type - set with settype - of a function, sequence, set, pair or userdata
obj as a string. If no user-defined type has been set, or any other data type has
been passed, null will be returned.

See also: settype, typeof.

has (obj, x)

Checks whether the structure obj (a table, set, sequence, register or pair) contains
element x. If obj and x are strings, checks whether at least one character in obj
matches one of the characters in x.

With tables, all the entries are scanned. If x is not a number then the indices of the
table are searched, too.

With sequences and registers, only the entries (not the keys) are scanned. With pairs,
both the left and the right item is scanned. The function performs a deep scan so
that it can find elements in deeply nested structures.

The function return true if x could be found in obj, and false otherwise. If obj <> x
and if obj is a number, boolean, complex number, string, procedure, thread,
userdata or lightuserdata, has returns fail.

See also: descend, in, member, recurse, satisfy, whereis.

identity (···)

Returns its arguments. If the argument is a function call that returns nothing, the
function opposed to the unity operator returns nothing, as well. See also: unity
operator, unpack.

include (obj, x [, ···])

Inserts one or more values x, ··· to the end of structure obj, not discarding multiple
returns if its last argument is a function call. Note that the insert statement ignores all
but the first return when given a function call:

> a := []; f := << () -> 1, 2, 3 >>;

> insert f() into a;

> a:
[1]

240 8 Basic Functions

Include does not.

> a := [];

> include(a, f()):
[1, 2, 3]

See also: copyadd, append, prepend, put, insert statement.

initialise (packagename [, false])

initialise (packagename, key1, key2, ··· [, false])

Assigns short names to package procedures such that:

 name := packagename.name

The function works as follows:

• In both forms, initialise first tries to load and run the respective Agena
package. The package may reside in a text file with file suffix .agn, or in a C
dynamic link library with file suffix .so in UNIX and .dll in Windows, or both in
a text file and in a dynamic link library. The function first tries to find the
package in the current working directory and if it failed, in the path pointed
to by mainlibname; if this fails, too, it traverses all paths in libname from left
to right until it finds at least the C DLL or the Agena text file, or both. If a
package consists of both the C DLL and an Agena text file, then they both
must reside in the same folder.

• If the function does not find the package, an error will be returned.

• Next, initialise tries to find a package initialisation procedure. If a procedure
named `packagename.init` is present in your package then it is executed if the
package has been found successfully.

• In the first form, if only the string packagename is given, short names to all
functions residing in the global table packagename are created.

If you do not want initialise to assign short names for certain functions, their
names should be in the format packagename.aux.procedurename, e.g.
math.aux.errormessage.

• Note that if packagename.name is not of type procedure, a short name is not
created for this object.

• If you would like to display a welcome message, put it into the string
packagename.initstring. It is displayed with an empty line before and after the
text. An example:

agena >> 241

agenapackage.initstring := 'agenapackage v0.1 for Agena as of \

May 23, 1949\n';

• In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary to the
first form, short names are also created for tables stored to table
packagename.

As opposed to the first version, initialise does not print any short names or
welcome messages on screen.

• Further information regarding both forms:

The function returns a table of all short names assigned.

If the global environment variable environ.withverbose is set to false, no
messages are displayed on screen except in case of errors. If it is set to any
other value or null, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a warning message is printed. If
a short name is protected (see table environ.withprotected), it cannot be
overwritten by initialise and a proper message is displayed on screen. You
can control which names are protected by modifying the contents of
environ.withprotected.

For information on which folders are checked and how to add new
directories to be searched by initialise, see readlib.

Note that initialise executes any statements (and thus also any assignment)
included in the file packagename.agn.

The function is written in Agena and included in the lib/library.agn file.

If the last argument is the Boolean false, initialise does not print the assigned
shortcuts at the console.

Note: the import/alias statement is an interface to the initialise function but does
not require package names to be put into quotes. For example,

> initialise 'regex';

is equivalent to

> import regex alias;

See also: readlib, run, register, and import/alias statement.

242 8 Basic Functions

ipairs (obj)

Returns three values: an iterator function, the table, sequence, register, string or
userdata obj, and 0, so that the construction

 for i, v in ipairs(obj) do body od

will iterate over the pairs (1, obj[1]), (2, obj[2]), ···, up to the first integer key absent
from the data structure.

If you pass userdata, for example a numarray, it must feature a metatable with an
'__index' metamethod. Otherwise an error will be issued.

If there is nothing more to iterate, the iterator returns nulls.

See next for the caveats of modifying the table during its traversal; and also: pairs,
factory.iterate, skycrane.iterate.

Example:

> d := numarray.double(3)

> d[1] := Pi; d[2] := 2*Pi; d[3] := 3 *Pi;

> f := ipairs(d):
procedure(00410A30)

> idx, val := f(d, 0): # pass 0 to start the iteration
1 3.1415926535898

> idx, val := f(d, idx):
2 6.2831853071796

> idx, val := f(d, idx):
3 9.4247779607694

> idx, val := f(d, idx): # nothing left

null null

isboolean (···)

ArithChecks whether the given arguments are all of type boolean and returns true
or false.

iscomplex (···)

Checks whether the given arguments are all of type complex and returns true or
false.

isequal (obj1, obj2)

Equivalent to obj1 = obj2 and returns true or false.

agena >> 243

The function is written in Agena and included in the lib/library.agn file.

isint (···)

Checks whether all of the given arguments are integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: finite, float.

isnegative (···)

Checks whether all of its arguments are negative numbers and returns true or false.
If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnonneg, ispositive.

isnegint (···)

Checks whether all of the given arguments are negative integers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

isnonneg (···)

Checks whether all of its arguments are zero or positive numbers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive.

isnonnegint (···)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function returns
fail.

isnonposint (···)

Checks whether all of the given arguments are zeros or negative integers and
returns true or false. If at least one of its arguments is not a number, the function
returns fail.

isnumber (···)

Checks whether the given arguments are all of type number and returns true or
false.

isnumeric (···)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

244 8 Basic Functions

ispair (···)

Checks whether the given arguments are all type pair and returns true or false.

isposint (···)

Checks whether all of its arguments are positive integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isnonposint.

ispositive (···)

Checks whether all of its arguments are positive numbers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isnonposint, isposint, isnegative, isnonneg.

isreg (···)

Checks whether all of its arguments are of type register and returns true or false.

isseq (···)

Checks whether all of its arguments are of type sequence and returns true or false.

isstring (···)

Checks whether all of its arguments are of type string and returns true or false.

isstructure (···)

Checks whether all of its arguments are of type table, set, sequence or pair and
returns true or false.

istable (···)

Checks whether all of its arguments are of type table and returns true or false.

left (obj)

With the pair obj, the operator returns its left operand. This is equals to obj[1].

See also: right.

agena >> 245

load (f [, chunkname])

Loads a chunk using function f to get its pieces. Each call to f must return a string
that concatenates with previous results. A return of null (or no value) signals the end
of the chunk.

If there are no errors, returns the compiled chunk as a function; otherwise, returns
null plus the error message. The environment of the returned function is the global
environment.

chunkname is used as the chunk name for error messages and debug information.

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from standard input, if no
file name is given.

loadstring (s [, chunkname])

Similar to load, but gets the chunk from the given string s. To load and run a given
string, use the idiom

 assume(loadstring(s))(···)

Examples:

> f := loadstring('a := exp(1)');

> f():

> a:
2.718281828459

> f := loadstring('local x := exp(1); return x')();

> f:
2.718281828459

> f := loadstring('return exp(1)')():
2.718281828459

See also: strings.dump.

map (f, obj [, ···] [, true])

map (f, g)

In the first form, the map function maps a function f to all the values in table, set,
sequence, register, string or pair obj. f usually should return only one value (but see
below). The type of return is the same as of obj. If obj has metamethods or
user-defined types, the return will also have them.

246 8 Basic Functions

If obj is a string, f is applied on all of its characters from the left to right. The return is
a sequence of function values.

If function f has only one argument, then only the function and the structure obj will
be passed to map. If the function has more than one argument, then all
arguments except the first will be passed right after obj.

Examples:

> map(<< x -> x^2 >>, [1, 2, 3]):
[1, 4, 9]

> map(<< (x, y) -> x > y >>, [-1, 0, 1], 0): # 0 for y
[false, false, true]

If the very last argument is the Boolean true, or the option inplace=true, then the
operation will be done in-place, modifying the original structure, but saving
memory. After completion, the function will return the modified structure.

If you pass a function that does not return anything, the return is an empty structure.
If you pass a function that returns multiple values, then by default all but the first
result will be ignored. You can override this behaviour by passing the multret=true
option. In this case - with tables, sequences, registers and strings only - each
element in obj is replaced by all the return values. In case of tables, all the values
are put into a table array with positive integral keys starting from 1; compare:

> map(<< x -> 2*x, 0 >>, [1, 2, 3]):
[2, 4, 6]

> map(<< x -> 2*x, 0 >>, [1, 2, 3], multret=true):
[2, 0, 4, 0, 6, 0]

With tables only, you can also pass the reshuffle=true option. In this case, all holes
will be removed from the result before returning it. Just an example:

> a[3] := null; # we create a hole

> a:
[1 ~ 1, 2 ~ 2, 4 ~ 4, 5 ~ 5]

With the following statement, there will be no reordering and index 3 is still not
assigned a value:

> map(<< x -> 2*x >>, a):
[1 ~ 2, 2 ~ 4, 4 ~ 8, 5 ~ 10]

With the reshuffle option, all holes will be removed and the return is a concise
table array with consecutive positive integral indices:

> map(<< x -> 2*x >>, a, reshuffle=true):

[2, 4, 8, 10]

agena >> 247

With (deeply) nested tables, sequences, registers, sets and pairs, map can
recursively descent into the entire structure and map a function with only just one
call, with the descend=true option:

> map(<< x -> 2*x >>, [1, 2, 3, [4, 5, [6]]], descend=true):
[2, 4, 6, [8, 10, [12]]]

With this option, only the first return of f will be processed.

In the second form, the function creates the composition of two functions f @ g =
f(g(x)) and returns it is a new function (f @ g)(x). f and g may be univariate or
multivariate and also return multiple results.

Example:

> # first take root, then negate

> h := map(<< x -> -x >>, << x -> sqrt x >>) # which is equivalent to:

> h := << x -> -x >> @ << x -> sqrt x >> # which results to:

> h(2):

-1.4142135623731

See also: @ operator, iterate, sequences.new, registers.new, pipeline, reduce,
remove, select, subs, subsop, times, zip.

max (obj [, 'sorted'])

max (x, y)

In the first form, returns the maximum of all numeric values in table, set, sequence
or register obj. If the option 'sorted' is passed than the function assumes that all
values in obj are sorted in ascending order and returns the last entry. The function in
general returns null if it receives an empty table or sequence.

In the second form, the function returns the largest of the two numbers x and y.

See also: min, math.max, stats.minmax.

member (x, obj)

Searches x in the table, sequence or register obj and if successful returns the index
of the first hit, otherwise returns null. The function is much faster than whereis if you
need the index of the first hit only. Note that with respect to whereis, the parameters
are in reverse order.

See also: has, whereis, tables.entries, tables.indices.

248 8 Basic Functions

min (obj [, 'sorted'])

min (x, y)

In the first form, returns the minimum of all numeric values in table, set, sequence or
register obj. If the option 'sorted' is passed than the function assumes that all
values in obj are sorted in ascending order and returns the first entry. The function in
general returns null if it receives an empty table or sequence.

In the second form, the function returns the smallest of the two numbers x and y.

See also: max, math.min, stats.minmax.

move (obj1, start, stop, newidx [, obj2])

Copies elements from the table, sequence, register or userdata obj1 to table,
sequence, register or userdata obj2, performing the equivalent to the following
multiple assignment: obj2[newidx], ··· = obj1[start], ···, obj1[stop]. The default for
obj2 is obj1, i.e. elements are shifted in the same structure. The destination range
can overlap with the source range. obj1 and obj2 must be of the same type.
Returns the destination structure obj2.

Example: The following statement copies four elements in table a from position 3
up to and including 6 to a new table b, starting with index 1:

> a := seq('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h');

> b := move(a, 3, 6, 1, seq());

> b:
seq(c, d, e, f)

The next statement copies four elements in a to its beginning:

> move(a, 3, 6, 1);

> a:
seq(c, d, e, f, e, f, g, h)

The function is implemented in the Agena language and is included in the
lib/library.agn file.

See also: purge, shift, swap, tables.move.

agena >> 249

mulup (obj)

The operator multiplies all numeric values in table, sequence, register or userdata
obj, using round-off error correction. The return is a number. If obj is empty or
consists entirely of non-numbers, null will be returned. If the structure contains
numbers and other objects, only the numbers are multiplied. In tables, numeric
entries with non-numeric keys are processed, as well.

See also: addup, foreach, sumup, calc.fprod.

next (obj [, index [, sentinel]])

Allows a programme to traverse all fields of a table or all items of a set, sequence
or register obj. With strings, it iterates all its characters. Its first argument is a table,
set, string or sequence and its second argument is an index in the structure.

With tables, sequences or registers, next returns the next index of the structure and
its associated value. When called with null as its second argument, next returns an
initial index and its associated value. When called with the last index, or with null in
an empty structure, next returns null.

With sets, next returns the next item of the set twice. When called with null as its
second argument, next returns the initial item twice. When called with the last index,
or with null in an empty set, next returns null.

With strings, next returns the position of the respective character (a positive integer)
and the character. When called with null as its second argument, next returns the
first character. When called with the last index, next returns null.

If the second argument is absent, then it will be interpreted as null. In particular, you
can use next(t) to check whether a table or set is empty. However, it is
recommended to use the filled operator for this purpose.

If the third optional argument sentinel is given, and if next during traversal
encounters an element that equals this sentinel, the function just returns null, and
you may start iterating the structure again from its beginning.

With tables, the order in which the indices are enumerated is not specified, even for
numeric indices. The same applies to set items.

The behaviour of next is undefined if, during the traversal, you assign any value to a
nonexistent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

See also: factory.iterate, factory.cycle, skycrane.iterate.

250 8 Basic Functions

ops (index, ···)

ops (s, ···)

In the first form, if index is a number, returns all arguments after argument number
index. Otherwise, index must be the string '#', and ops returns the total number of
extra arguments it received. The function is useful for accessing multiple returns (e.g.
ops(n, ?)).

In the second form, the index positions (integers) in sequence s specify the values
to be returned after the first argument to ops.

Example:

> f := << () -> 10, 20, 30, 40 >>

> ops(2, f()):
20 30 40

If you want to obtain only the element at index, put the call to ops in brackets.

> (ops(2, f())):
20

> ops(seq(2, 4), f()):
20 40

See also: columns, identity, ops, unity, unpack, values.

optboolean (x, y [, idx [, procname]])

The function checks whether x is a Boolean and in this case returns x. If x is null, it
returns the Boolean y, otherwise the function issues an error. If the third argument
idx, a number, is given, then the position idx will be returned in error messages. If
the fourth argument procname is given, this name is printed as the function issuing
the error.

optcomplex (x, y [, idx [, procname]])

The function checks whether x is a number or complex number and in this case
returns x. If x is null it returns the number or complex number y, otherwise the
function issues an error. If the third argument idx, a number, is given, then the
position idx will be returned in error messages. If the fourth argument procname is
given, this name is printed as the function issuing the error.

agena >> 251

optint (x, y [, idx [, procname]])

The function checks whether x is an integer and in this case returns x. If x is null it
returns the integer y, otherwise the function issues an error. If the third argument idx,
a number, is given, then the position idx will be returned in error messages. If the
fourth argument procname is given, this name is printed as the function issuing the
error.

optnonnegative (x, y [, idx [, procname]])

The function checks whether x is a non-negative number and in this case returns x.
If x is null it returns the non-negative number y, otherwise the function issues an
error. If the third argument idx, a number, is given, then the position idx will be
returned in error messages. If the fourth argument procname is given, this name is
printed as the function issuing the error.

See also: optpositive, optnumber.

optnonnegint (x, y [, procname])

The function checks whether x is a non-negative integer and in this case returns x. If
x is null it returns the non-negative integer y, otherwise the function issues an error. If
the third argument idx, a number, is given, then the position idx will be returned in
error messages. If the fourth argument procname is given, this name will be printed
as the function issuing the error.

See also: optint, optposint.

optnumber (x, y [, idx [, procname]])

The function checks whether x is a number and in this case returns x. If x is null it
returns the number y, otherwise the function issues an error. If the third argument
idx, a number, is given, then the position idx will be returned in error messages. If
the fourth argument procname is given, this name will be printed as the function
issuing the error.

See also: optpositive, optnonnegative.

optposint (x, y [, idx [, procname]])

The function checks whether x is a positive integer and in this case returns x. If x is
null it returns the positive integer y, otherwise the function issues an error. If the third
argument idx, a number, is given, then the position idx will be returned in error
messages. If the fourth argument procname is given, this name will be printed as the
function issuing the error.

See also: optint, optnonnegint.

252 8 Basic Functions

optpositive (x, y [, idx [, procname]])

The function checks whether x is a positive number and in this case returns x. If x is
null it returns the positive number y, otherwise the function issues an error. If the third
argument idx, a number, is given, then the position idx will be returned in error
messages. If the fourth argument procname is given, this name will be printed as the
function issuing the error.

See also: optnonnegative, optnumber.

optstring (x, y [, idx [, procname]])

The function checks whether x is a string and in this case returns x. If x is null it returns
the string y, otherwise the function issues an error. If the third argument idx, a
number, is given, then the position idx will be returned in error messages. If the
fourth argument procname is given, this name will be printed as the function issuing
the error.

pairs (obj)

Returns three values: the next function, the table obj, and null, so that the
construction

 for k, v in pairs(obj) do body od

will iterate over all key~value pairs or values of table obj.

See next for the caveats of modifying the table during its traversal; and also: ipairs,
factory.iterate, skycrane.iterate.

pipeline (f [, ···], obj [, ···])

Maps one or more functions f, etc. on a table, set, sequence, register or userdata
obj, avoiding multiple internal copies of the structure if possible.

If given a userdata obj, the function will change its values in-place, whereas with
tables, sets, sequences and registers, the original structure obj will not be modified.

The return is a new structure, depending on the type of obj. If the function has more
than one argument, then all arguments except the first will be passed right after the
name of object obj.

See also: map, @ operator.

agena >> 253

prepend (x, obj)

Prepends x to the beginning of structure obj, in-place. The function returns the
modified structure.

The new object can always be found at index 1, all other elements have been
shifted up one index into open space. With a table, its hash part is not modified.

With a register, the function automatically increases its size by one. If obj is a pair,
returns x : obj.

See also: append, include, put, insert statement.

print (··· [, options])

Receives any number of arguments, and prints their values to the console, using
the tostring function to convert them to strings. print is not intended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.format.

In Agena, print also prints the contents of tables and nested tables to stdout if no
__tostring metamethods are assigned to them. The same applies to sets and
sequences.

If the option 'delim':<string> is given as the last argument, then print will separate
multiple values with the given <string> delimiter, otherwise '\t' is used. If the
option 'nonewline':true is passed, then Agena will not print a final newline when
finishing output. The 'enclose':<string> option will enclose the values in a given
substring. All other types will not be enclosed. All options can be combined.

If the kernel setting environ.kernel('longtable') is set to true, then each
key~value pair will be printed on a separate line, and Agena halts after
environ.more number of lines for the user to press any key for further output. Press
'q', 'Q' or the Escape key to quit. The default for environ.more is 40 lines, but you
may change this value in the Agena session or in the Agena initialisation file.

You may change the way print formats objects by changing the respective
environ.aux.print* functions in the lib/library.agn file. See Appendix A5 for further
details.

See also: printf, io.write, io.writeline, skycrane.scribe, skycrane.tee.

254 8 Basic Functions

printf ([fh,] template, ···)

If the first argument fh is not given, prints the optional arguments under the control
of the template string template to stdout, else it writes to the open file denoted by its
file handle fh. See strings.format for information on how to create the template
string.

Example:

> printf('%-10s %3d %10.2f\n', 'Carbon', 6, 12.0107);
Carbon 6 12.01

> fh := io.open('file.txt', 'w');

> printf(fh, '%-10s %3d %10.2f\n', 'Carbon', 6, 12.0107);

> close(fh);

See also: print, io.write, io.writeline, skycrane.scribe, skycrane.tee.

protect (f, arg1, ···)

Calls function f with the given arguments in protected mode. This means that any
error inside f is not propagated; instead, protect simply catches the error. Note that
protect does not work with operators.

The function either returns all results from the call in case there have been no errors,
or returns the error message as a string as the only return. In case of an error, the
error message is set to the global variable lasterror, otherwise lasterror is set to null.

lasterror is useful for checking the results of a call to protect as in the following:

 if protect(···) = lasterror then ··· fi

See also: xpcall, try/catch statement.

purge (obj [, pos])

purge (obj, a, b)

In the first form, the function removes from table, sequence or register obj the
element at position pos, shifting down other elements to close the space, if
necessary. It returns the value of the removed element. The default value for pos is
n, where n is the length of the table, sequence or register, so that a call purge(obj)
removes the last element of obj.

In the second form, removes all elements starting from index a to index b (inclusive),
moving excess elements down to close the space; the function automatically
performs a garbage collection after shifting. In the 2nd form, nothing will be
returned.

agena >> 255

Use the delete element from structure statement if you want to remove any
occurrence of the table value element from a table or sequence. You might also
consider using a linked list, a data structure which supports much faster operations
when inserting or deleting elements, see llist package in Chapter 10.7.

Note that with tables, the function only works if the table is an array, i.e. if it has
positive integral and consecutive keys only. With registers, the top pointer is reduced
by the number of elements removed.

See also: append, move, prepend, put, llist.purge, ulist.purge.

put (obj, [pos,] value)

Inserts element value at position pos in table, sequence or register obj, shifting up
other elements to open space, if necessary. The default value for pos is n+1, where
n is the current length of the structure, so that a call put(obj, value) inserts value at
the end of obj.

Use the insert element into structure statement if you want to add an element at
the current end of a structure, for it is much faster. You might also consider using a
linked list, a data structure which supports much faster operations when inserting or
deleting elements, see llist package in Chapter 10.7.

The function returns the modified structure.

See also: append, prepend, purge, llist.put, ulist.put.

qsumup (obj)

Raises all numeric values in table, sequence, register or userdata obj to the power
of 2 and sums up these powers, using a precision-saving method. The return is a
number. If obj is empty or consists entirely of non-numbers, the operator returns fail.
If the structure contains numbers and other objects, only the powers of the numbers
are added. Numeric entries with non-numeric keys are processed, as well.

The operator uses a combination of fused multiply-add and Kahan-Babuška
Summation. To improve accuracy, you may sort obj before.

See also: addup, foreach, qmdev, reduce, sort, sorted, sumup, stats.issorted.

rawequal (obj1, obj2)

Checks whether obj1 is equal to obj2, without invoking any metamethod. Returns a
Boolean.

256 8 Basic Functions

rawget (obj, index)

Gets the real value of obj[index], without invoking any metamethod. obj must be
a table, set, sequence or pair; index may be any value.

See also: getentry, rawset.

rawset (obj, index, value)

rawset (obj, value)

In the first form, sets the real value of obj[index] to value, without invoking any
metamethod. obj must be a table, set, register, sequence or pair, index any value
different from null, and value any value. To delete a value from any structure, pass
null for value.

In the second form, the function inserts value into the next free position in the given
structure obj. obj can be a table, set, sequence or register.

This function returns obj.

See also: rawget.

read (filename)

Reads an object stored in the binary file denoted by file name filename and returns
it. The function is written in Agena and included in the lib/library.agn file.

See also: save.

readlib (packagename [, packagename2, ···] [, true])

Loads and runs packages stored to agn text files (with filename packagename.agn) or
binary C libraries (packagename.so in UNIX, packagename.dll in Windows), or to both.

If true is given as the last argument, the function prints the search path(s), and also
quits and prints some diagnostics if a corrupt C library has been found.

The function first tries to find the libraries in the current working directory, and
thereafter in the path in mainlibname. If it fails, it traverses all paths in libname until
it finds them. If it finds a library and the current user has at least read permissions for
it, it is initialised. On successful initialisation, the name of the package is entered into
the package.readlibbed set.

Note that if a package consists both of a C DLL and an Agena text file, they should
both be located in the very same folder as readlib does not search for them across
multiple paths and may thus initialise a package only partially.

agena >> 257

Make sure that on the operating system level the environment variable AGENAPATH
has been set, that the individual paths are separated by semicolons and that they
do not end in slashes. In UNIX, if AGENAPATH has not been set, readlib by default
searches in /usr/agena/lib.

In OS/2 and Windows, the Agena installation programme automatically sets
AGENAPATH. If it failed, or you want to modify its contents, you may manually set the
variable like in the following examples, assuming that the Agena libraries are
located in the d:\agena\lib folder and optionally in the d:\agena\mypackage folder.

 SET AGENAPATH=d:/agena/lib or
 SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

In UNIX, you may execute one of the following statements in your shell, assuming
that the Agena libraries are located in the /home/usr/agena/lib folder and
optionally in the /home/usr/agena/mypackage folder.

 SET AGENAPATH=/home/usr/agena/lib or
 SET AGENAPATH=/home/usr/agena/lib;/home/usr/agena/mypackage

In DOS, you have to set AGENAPATH in the autoexec.bat file:

 SET AGENAPATH=d:/agena/lib or
 SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

Of course, packages may reside in other directories as well. Just enter further paths
to libname as you need them.

The function returns true if all the packages have been successfully loaded and
executed, or fail if an error occurred.

Hint: the import statement is an interface to readlib (and initialise), but does not
require to put the package names into quotes. For example,

> readlib('regex');

is equivalent to

> import regex;

See also: run, initialise, import statement.

258 8 Basic Functions

recurse (f, obj [, ···][, option])

Checks each element of the structure obj (a table, set, pair, sequence or register)
by applying a function f on each of its elements. f can be a multivariate function
and must return either true or false. The optional second and all further arguments
of f may be passed as the third, etc. argument.

With tables, all the entries and keys are scanned.

With sequences and registers, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sets, pairs, registers or
sequences in obj so that it can find elements in deeply nested structures.

If obj is a table and the option skiphash=true has been passed, then the function
will ignore all non-numeric keys and their corresponding values.

The function immediately returns true if the function call to any element in obj
evaluates to true, and false otherwise. If obj is a number, boolean, complex
number, string, null, procedure, thread, userdata or lightuserdata, recurse returns
fail. It issues an error if obj is unassigned. To check whether all elements satisfy a
condition, use satisfy.

See also: descend, has, satisfy.

reduce (f, obj [, init [, ··· [, options]]])

reduce (f, obj [, ··· [[, option], fold=true]])

Applies function f on each item of a structure or string obj and returns an
accumulated result.

f must have two or more parameters, but at least parameters x, a, where x will
represent the respective item in obj, and a the accumulator to be updated. If init
is given, then the accumulator will be initialised with it, otherwise the accumulator
will be set to zero at first.

After traversal of obj, the accumulator will be returned. The function is equivalent to:

> reduce := proc(f, s, init, ?) is
> local accumulator := init or 0;
> for item in s do
> accumulator := f(item, accumulator, unpack(?))
> od;
> return accumulator
> end;

For example, reduce(<< x, a -> x + a >>, [1, 2, 3, 4]) computes the sum of
the numbers in a table, i.e. 10; and reduce(<< x, a -> a & x & '|' >>, '1234',
'') appends a pipe to each character, i.e. returns '1|2|3|4|'.

agena >> 259

You can pass further arguments to the given accumulator function by just passing
them as the fourth and following argument(s) to reduce. Example to compute the
arithmetic mean of all the numbers in table [10, 20, 30]:

> tbl := [10, 20, 30];

> f := << x, a, len -> a + x/len >>

> a := reduce(f, tbl, 0, size tbl):
20

for:

> a, len := 0, size tbl;
> for x in tbl do
> inc a, x/len
> od;

A counter can also be used: it can be accessed within the accumulator function
by the name _c when passing the _c = true option - with _c starting from 1. The
performance penalty, however, may be quite significant:

> tbl := seq(3, 3, 3);

> a := reduce(<< x, a -> a + x * 10^(_c - 1) >>, tbl, 0, _c=true):
333

may be up to four time slower than

> a := 0;

> for _c from 1 to size tbl do
> inc a, tbl[_c] * 10^(_c - 1)
> od;

An alternative is to pass the counter=true option: It will assign the value of an
internal counter, starting from 1 with step size 1, to the last argument of f; it is at
least 20 % faster than the _c option. In the following example, c is assigned the
internal counter value:

> reduce(<< x, a, c -> a + x * 10^(c - 1) >>, tbl, 0, counter=true):

333

The function also supports folding with the fold=true option: in this case the first
value in a structure or string is taken as the initialiser and you do not need to - and
should not - pass an initialiser explicitly as the third argument. Examples:

> reduce(<< x, a, c -> a + x * 10^(c - 1) >>, seq(0, 3, 3, 3),
> counter = true, fold = true):
333

260 8 Basic Functions

The fold function is a short-cut:

> fold(<< x, a, c -> a + x * 10^(c - 1) >>, seq(0, 3, 3, 3),
> counter = true):
333

With strings, you might place an embedded zero, represented by '\000', at its start:

> reduce(<< x, a -> a & x & '|' >>, '\0001234', fold=true):

1|2|3|4|

If you need to save memory, the foreach operator may be an alternative. See
also: @ operator, addup, fold, map, mulup, qmdev, qsumup, sumup.

_RELEASE

A global variable that holds a string containing the language name, the current
interpreter main version, the subversion, and the patch level. The format of this
variable is: 'AGENA >> <version>.<subversion>.<patchlevel>'.

See also: global environment variable environ.release, environ.version.

remove (f, obj [, ··· [, reshuffle=true]] [, inplace=true])

Returns all values in table, set, sequence or register obj that do not satisfy a
condition determined by function f, as a new table, set, sequence or register. The
type of return is determined by the type of second argument, depending on the
type of obj.

If the function has only one argument, then only the function and the
table/set/register/sequence will be passed to remove.

> remove(<< x -> x > 1 >>, [1, 2, 3]):
[1]

If the function has more than one argument, then all arguments except the first will
be passed right after the name of the table or set obj.

> remove(<< x, y -> x > y >>, [1, 2, 3], 1): # 1 for y
[1]

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
reshuffle=true option as the last argument, however, the result will be returned in a
table array with consecutive positive integral keys, not preserving the original keys of
the respective values determined, and not having holes; for example:

agena >> 261

> remove(<< x -> x < 2 >>, [1, 2, 3]):
[2 ~ 2, 3 ~ 3]

> remove(<< x -> x < 2 >>, [1, 2, 3], reshuffle = true):
[2, 3]

With a register, all values up to the current top pointer are evaluated, and the size of
the returned register is equal to the number of the elements in the return.

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original structure, but saving
memory. After completion, the function will return the modified structure. (You can
combine the reshuffle and inplace options).

See also: cleanse, countitems, map, select, selectremove, subs, subsop, unique,
zip.

restart

Restarts an Agena session. No argument is needed.

If a procedure has been assigned to the name environ.onexit, then this procedure
will automatically be run before re-initialising the interpreter. An example:

> environ.onexit := proc() is print('Tschüß !') end

> restart
Tschüß !

During start-up, Agena stores all initial values, e.g. assigned package tables, in a
global variable called _origG. Tables are copied, too, so their contents cannot be
altered in a session.

When the Agena session is reset, all values in the Agena environment are
unassigned including the environment variable _G. The seeds used by
math.random/math.randomseed are reset, too.

The system variables _origG, libname, mainlibname environ.onexit, the current
working directory are not reset. mainlibname and libname, however, are reset to
their original values if you issued the statement environ.kernel(libnamereset =
true) before.

Then all entries in _origG are re-read and assigned to the new environment.

After this, the library base file library.agn and thereafter the initialisation file
agena.ini or .agenainit - if present - are read and executed. Finally, restart runs a
garbage collection.

262 8 Basic Functions

reverse (obj)

Reverses the order of all elements in sequence or register obj in-place. With tables,
it reverses the elements in the array part, only. The function returns the modified
structure.

See also: strings.reverse, stack.reversed.

right (obj)

With the pair obj, the operator returns its right operand. This is equals to obj[2]. See
also: left.

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, run executes the contents of the standard input (stdin). Returns all
values returned by the chunk. In case of errors, run propagates the error to its caller
(that is, run does not run in protected mode).

See also: readlib, with.

satisfy (f, x [, ···] [, option])

satisfy (f, obj [, ···] [, option])

In the first form, with x a number, complex number, string, boolean, null or userdata,
calls the function f which should return true or false. The result is the return of this
call. You may also specify optional arguments to f.

With obj a structure (second form), checks each element in obj by calling function
f which also should return true or false. If at least one element in obj does not
satisfy the condition checked by f, the result is false, and otherwise true - that is, in
other words, the function returns true if every element satisfies the condition.

The function performs a recursive descent if it detects tables, sets, pairs, registers or
sequences in obj so that it can find elements in deeply nested structures. If obj is a
table and the option skiphash=true has been passed, then the function will ignore
all non-numeric keys and their corresponding values. To check whether at least one
element satisfies a condition, use recurse.

See also: has, recurse, descend, tables.isall, sequences.isall, registers.isall,
sets.isall.

save (obj, filename)

Saves an object obj of any type into a binary file denoted by file name filename.

save returns an error if an object that cannot be stored to a file has been passed:
threads, userdata, for example. It also returns an error if the object to be written is

agena >> 263

self-referencing (e.g. _G). If obj contains one and the same structure multiple times,
say n times, then save will store it n times.

The function locks the file when writing, avoiding file corruption if another application
tries to gain access to it.

Note that save overwrites existing files without warning. Whereas numbers, strings,
and Booleans are stored in a portable fashion so that the data can be read both
on Big Endian (e.g SPARCs, PPCs) and Little Endian systems, procedures cannot.

The function is written in Agena and included in the lib/library.agn file.

See also: read, io.writefile.

select (f, obj [, ··· [, reshuffle=true] [, inplace=true]])

Returns all values in table, set, sequence or register obj that satisfy a condition
determined by function f. The type of return is determined by the type of the
second argument.

If f has only one argument, then only the function and the object will be passed to
select.

> select(<< x -> x > 1 >>, [1, 2, 3]):
[2, 3]

If the function has more than one argument, then all arguments except the first will
be passed right after the name of the object obj.

> select(<< x, y -> x > y >>, {1, 2, 3}, 1): # 1 for y
{3, 2}

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
reshuffle=true option as the last argument, however, the result will be returned in a
table array with consecutive positive integral keys, not preserving the original keys of
the respective values determined, and not having holes. Thus,

> select(<< x -> x :: number >>, ['a', 10, 20, 30, 'z'], reshuffle=true);

returns

[10, 20, 30]

instead of

[2 ~ 10, 3 ~ 20, 4 ~ 30]

264 8 Basic Functions

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original structure, but saving
memory. After completion, the function will return the modified structure. (You can
combine the reshuffle and inplace options).

With a register, all values up to the current top pointer are evaluated, and the size of
the returned register is equal to the number of the elements in the return.

See also: $, cleanse, countitems, descend, map, remove, selectremove, subs,
subsop, unique, values, zip.

selectremove (f, obj [, ··· [, reshuffle=true]])

Combines the functionality of select with the one of remove: The first result contains
all the elements of a structure obj (a table, set, sequence or register) that satisfy a
given condition, the second result contains the elements of a structure not satisfying
the condition. This may speed up computations where you need both results,
maybe for post-processing, by around 33 %.

If obj is a table, the return might include holes. If you pass the reshuffle=true option
as the last argument, however, the result will be returned in table arrays with
consecutive positive integral keys, not preserving the original keys of the respective
values determined, and not having holes. Examples,

> a := ['a', 10, 20, 30, 'z'];

> selectremove(<< x -> x :: number >>, a):
[2 ~ 10, 3 ~ 20, 4 ~ 30] [1 ~ a, 5 ~ z];

> selectremove(<< x -> x :: number >>, a, reshuffle=true):
[10, 20, 30] [a, z]

See also: remove, select.

setbit (x, pos, bit)

Sets or unsets a bit in an integer x at the given bit position pos.

Internally, x is first converted into its binary representation. Then bit is set to the
pos-th position from the right of this binary representation of x. bit may be either
true or false, or the numbers 0 or 1. E.g. if x is 2 = 0b0010, pos is 1, and bit is true,
then the result will be 3 = 0b0011.

pos should be an integer in the range |pos| [1 .. 32].c

See also: getbit, getbits, setbits, setnbits, numarray.setbit.

agena >> 265

setbits (x, r)

Sets or unsets all 32 bits of an integer x with the bits given in register r. The register
must contain a minimum of one, and a maximum of 32 values, either the Booleans
true or false, or the integers 0 and 1. If the register contains less than 32 elements,
and has length n, the first 32 - n bits `to the left` are not set.
Example:

> setbits(8, reg(1, 0, 0)):
12

See also: getbit, getbits, setbit, setnbits, numarray.setbit.

setmetatable (obj, metatable)

Sets the metatable for the given table, set, sequence, pair or Agena function obj.
(You cannot change the metatable of other types from Agena, only from C.) If
metatable is null, removes the metatable of the given table. If the original
metatable has a '__metatable' field, raises an error. The function cannot assign
metatables to C library functions.

This function returns obj.

See also: getmetatable.

setnbits (x, y [, pos [, nbits [, 'or']]])

Sets nbits bits in 32-bit integer y into position pos of 32-bit integer x, and returns the
modified value of x. pos and nbits should be in [1, 32]. If pos is not given, it is 1 by
default (the right-most bit in x).

If nbits is not given, it is math.mostsigbit(y) by default.

By default, the bits in x are overwritten by the bits in y. If the fifth argument 'or' (the
string) is given, the bits are Boolean-OR'ed.

See also: getbit, getbits, getnbits, setbit, setbits.

settype (obj [, ···], str)

settype (obj [, ···], null)

In the first form the function sets the type of one or more procedures, sequences,
tables, sets, pairs, or userdata obj to the name denoted by string str. gettype and
typeof will then return this string when called with obj.

In the second form, by passing the null constant, the user-defined type is deleted,
and gettype thus will return null whereas typeof will return the basic type of obj.

266 8 Basic Functions

If obj has no __tostring metamethod, then Agena's pretty printer will output the
object in the form str & '(' & <elements> & ')' instead of the standard 'seq(' &
<elements> & ')' or '<element>:<element>' string.

If given just two arguments, i.e. an object and a string or an object and null, the
function returns the modified object. In all other cases, the function returns null.

See also: gettype.

shift (obj, a, b)

Moves an element in table, sequence or register obj from position old to new, with
old, new integers, shifting all the other elements accordingly - which might also
cause a rotation. The function returns nothing.

See also: move, purge, swap.

size (obj)

With tables, the operator returns the number of key~value pairs in table obj.

With sets, pairs, and sequences, the operator returns the number of items in obj.

With registers, the operator returns the number of elements up to the current top
pointer, but not the total number of elements in the registers.

With strings, the operator returns the number of characters in string obj, i.e. the
length of obj.

See also: environ.attrib, strings.strlen, strings.utf8size, tables.getsize.

sort (obj [l [, u]] [, f] [, 'number'])

Sorts table, sequence or register elements in a given order, in-place, from obj[l] to
obj[u], where by default l is 1 and u is the length of the structure. If f is given, then
it must be a function that receives two structure elements, and will return true when
the first is less than the second (so that not f(obj[i+1], obj[i]) will be true after
the sort). If f is not given, then the standard operator < (less than) will be used
instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort. Also, the function
cannot sort structures featuring values of different types (see skycrane.sorted for an
alternative). The return is the sorted structure.

If the last argument 'number' is given, it is assumed that obj contains numbers only
and the sorting will be four times faster. Note that when given, you need twice the

agena >> 267

amount of memory as the data is duplicated internally and you cannot provide a
sorting function as this mode supports sorting in ascending order only.

See also: sorted, skycrane.sorted, stats.issorted, stats.sorted, strings.strverscmp.

Example:

> s := [1, 2, 3]

> sort(s, << x, y -> x > y >>):
[3, 2, 1]

> s := seq(1:'a', 1.1:'b', 1.2:'c');

> sort(s, << x, y -> left(x) > left(y) >>):
seq(1.2:c, 1.1:b, 1:a)

sorted (obj [l [, u]] [, f], [, 'number'])

Sorts table, sequence or register elements in obj in a given order from obj[l] to
obj[u], but - unlike sort - not in-place, and non-destructively. By default, l is 1 and u
is the length of the structure. Depending on the type of obj, the return is a new table
or sequence.

If f is given, then it must be a function that will receive two structure elements to
determine the sorting order. See sort for further information.

If the last argument 'number' is given, it is assumed that obj contains numbers only
and the sorting will be four times faster. Note that when given, you cannot provide a
sorting function as this mode supports sorting in ascending order only.

The function cannot sort structures featuring values of different types (see
skycrane.sorted for an alternative).

See also: sort, skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, ···], obj [, true])

Substitutes all occurrences of the value x in the table, set, sequence or register obj
with the value v, by default non-destructively. More than one substitution pair can
be given. The substitutions are performed sequentially and by default
simultaneously starting with the first pair. The type of return is determined by the type
of obj.

> subs(1:3, 2:4, [1, 2, -1]):
[3, 4, -1]

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

268 8 Basic Functions

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original structure, but saving
memory. After completion, the function returns the modified structure.

By default, subs is still replacing the elements in a structure with all the replacements
given, including intermediate substitutions. So if we have an expression like

> subs(1:2, 2:3, 3:4, [1, 2, 3])

we will get:

[4, 4, 4]

By passing the multipass=false option, the rest of the replacement list will be
skipped as soon as a substitution has been done:

> subs(1:2, 2:3, 3:4, [1, 2, 3], multipass=false):
[2, 3, 4]

You can check numbers for approximate instead of strict equality by passing the
new strict=false option.

If you substitute a table value with null, then the value will be purged, leaving holes
in the table if the value resided in the array part. By passing the 'reshuffle' option,
these holes will be removed by shifting down other elements to close the space.
Compare:

> subs(2:null, [1, 2, 3]):
[1 ~ 1, 3 ~ 3]

with

> subs(2:null, [1, 2, 3], reshuffle=true):
[1, 3]

With (deeply) nested tables, sequences, registers, sets and pairs, subs can
recursively descent into the entire structure and substitute values with only just one
call, with the descend=true option:

> subs(1:0, 6:10, [1, 2, 3, [4, 5, [6]]], descend=true):
[0, 2, 3, [4, 5, [10]]]

See also: countitems, map, remove, select, subsop, zip, tables.hashole,
tables.reshuffle.

subsop (i:v [, ···], obj [, true])

The function replaces the value in a table, sequence or register obj at the given
index i with the new value v, by default non-destructively. More than one
substitution pair can be given. The type of return is determined by the type of obj.

agena >> 269

If present, the function also copies the metatable and user-defined type of obj to
the new structure.

The function also allows to delete values, by setting v to null.

Examples:

> a := [10, 20, 30]

Substitute the value at index 2 with zero and delete the third element:

> subsop(2:0, 3:null, a):

[10, 0]

The original structure is left unchanged:

> a:

[10, 20, 30]

If the last argument is the option inplace=true, or the Boolean true, then the whole
operation will be done in-place, modifying the original structure, but saving
memory. After completion, the function returns the modified structure.

> subsop(2:0, 3:null, a, true):
[10, 0]

> a:

[10, 0]

If you substitute a table value with null, then the value will be purged, leaving holes
in the table if the value resided in the array part. By passing the 'reshuffle' option,
these holes will be removed by shifting down other elements to close the space.
Compare:

> subsop(2:null, [1, 2, 3]):
[1 ~ 1, 3 ~ 3]

with

> subsop(2:null, [1, 2, 3], reshuffle=true):
[1, 3]

See also: insert statement, prepend, purge, put, subs, tables.hashole,
tables.reshuffle.

sumup (obj)

Sums up all numeric values in table, sequence, register or userdata obj. The return is
a number. If obj is empty or consists entirely of non-numbers, the operator returns
fail. If the structure contains numbers and other objects, only the numbers are

270 8 Basic Functions

added. Numeric entries with non-numeric keys are processed, as well. The
operator uses Kahan-Babuška Summation. To improve accuracy, you may sort obj
before.

See also: addup, foreach, mulup, qsumup, calc.fsum, sort, sorted, stats.cumsum,
stats.issorted, stats.sumdata.

swap (obj, a, b)

In the table array, sequence or register obj, swaps the entries at index positions a
and b, with a, b integers. With obj a pair, swaps the components. The function
returns nothing.

See also: move, purge, shift.

time ()

Returns UTC time in seconds elapsed since the epoch in seconds as a number. The
fractional part of the return represents milliseconds. The epoch usually is January 01,
1970, but this may vary between platforms.

See also: os.clock, os.difftime, os.time, watch, skycrane.stopwatch.

times (f, x, n [, ···])

times (f, x, infinity, eps [, ···])

In the first form, the function takes a start value x of any type, applies function f to it
and repeatedly applies f to its previous result n-1 times. n should be a positive
integer. It returns the result of the last call to f. The second and further arguments of
f must be put right after n.

If n is less than 1, the function returns null.

Example:

> times(<< x -> 1 + recip x >>, 1, 33) -> 1.6180339887499 # Golden ratio

> f := << x -> times(<< n -> 0.5*(n + x/n) >>, 1, 20) >> # square root

You can bail out of the loop prematurely by including a Boolean condition in the
function definition. As soon as the expression evaluates to false, the iteration will
stop and the previous interim result will be returned, e.g.:

> times(<< x -> x < 10 and x + 1 >>, 1, 33):
10

If times should bail out in the first iteration then false, i.e. the result of the function
call, will be returned:

> times(<< x -> x < 0 and x + 1 >>, 1, 33):

agena >> 271

false

In the second form, takes a start value x of any type, applies function f to it and
repeatedly applies f to its previous result until the absolute difference of the last two
function calls reaches or drops below the numeric threshold eps, a non-negative
value.

If a function call evaluates to infinity or undefined, the operator also quits,!

returning infinity or undefined, respectively.

The third argument infinity just signals that the user wants to use this mode. If f is
multivariate, all arguments but the first are passed right after eps.

Example: Solve the equation 73+ 2x - 5 = 0 using Newton's method.

> s := << x -> 7*x^3 + 2*x - 5 >>

> times(<< x -> x - s(x)/calc.eulerdiff(s, x) >>, 4, infinity, DoubleEps):
0.78792505251729

> s(ans):
0

See also: @ operator, foreach, map, calc.aitken.

top (obj)

With the table array, sequence or register obj, the operator returns the element with
the largest index. If obj is empty, it returns null.

See also: bottom.

toreg (obj)

If obj is a string, the function will split it into its characters and return them in a
register with each character in obj as a register value, and in the same order as the
characters in obj.

If obj is a table, the function puts all its values - but not its keys - into a register.

If obj is a set, the function puts all its items into a register. The same applies to
sequences.

If obj contains structures, then only their references will be copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toseq, toset, totable.

272 8 Basic Functions

toseq (obj)

If obj is a string, the function will split it into its characters and return them in a
sequence with each character in obj as a sequence value, and in the same order
as the characters in obj.

If obj is a table, the function puts all its values - but not its keys - into a sequence.

If obj is a set, the function puts all its items into a sequence. The same applies to
registers.

If obj contains structures, then only their references will be copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toset, totable.

toset (obj)

If obj is a string, the function will split it into its characters and returns them in a set.
Note that there is no order in the resulting set.

If obj is a table, sequence or register, the function puts all its values - but not its keys
- into a new set.

If obj contains structures, then only their references will be copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toseq, totable.

totable (obj)

If obj is a string, the function splits it into its characters, and returns them in a table
with each character in obj as a table value in the same order as the characters in
obj.

If obj is a sequence, register, or set, the function converts it into a table.

If obj contains structures, then only their references will be copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toseq, toset.

agena >> 273

type (obj)

This operator returns the basic type of its only argument obj, coded as a string. The
possible results of this function are 'null' (the string, not the value null), 'number',
'string', 'boolean', 'table', 'set', 'sequence', 'register', 'pair',
'complex', 'procedure', 'thread', 'lightuserdata', and 'userdata'.

If obj is a table, set, sequence, pair, or procedure with a user-defined type, then
type will always return the basic type, e.g. 'sequence' or 'procedure'.

See also: :: and :- operators, checktype, gettype, typeof.

typeof (obj)

This operator returns the user-defined type - if it exists - of its only argument obj,
coded as a string.

A self-declared type can be defined for procedures, tables, pairs, sets, and
sequences with the settype function. If there is no user-defined type for obj, then
the basic type will be returned, i.e. 'null' (the string, not the value null), 'number',
'string', 'boolean', 'table', 'set', 'register', 'sequence', 'pair',
'complex', 'procedure', 'thread', and 'userdata'.

See also: :: and :- operators, type, gettype.

unassigned (obj)

This Boolean operator checks whether an expression obj evaluates to null. If obj is a
constant, i.e. a number, boolean including fail, or a string, the operator always
returns false.

See also: assigned.

unique (obj)

With a table obj, the function removes all holes (`missing keys`) and removes
multiple occurrences of the same value in the array part, if present. The hash part of
a table is considered to be always unique by definition, so it just copies it to the
result. The return is a new table with the original table unchanged.

With a sequence or register obj, the unique function removes multiple occurrences
of the same value, if present. The return is a new sequence or register with the
original structure unchanged.

See also: tables.entries.

274 8 Basic Functions

unity (x)

The operator returns just its only argument x, and with function calls returning
multiple results, returns just the first, which is useful to prevent passing additional
arguments to other functions that might not expect them.

Example:

tables.entries always returns two results, the table entries and a Boolean, but the
sorted function does not accept the latter:

> tables.entries([3, 2, 1]):
[3, 2, 1] false

> sorted(tables.entries([3, 2, 1])):
Wrong argument #2 to `sorted`: procedure expected, got boolean.

> sorted(unity tables.entries([3, 2, 1])):
[1, 2, 3]

If a function call does not return anything, unity returns null.

See also: identity, ops.

unpack (obj, [, i [, j]])

Returns the elements from the given table, sequence or register obj. This function is
equivalent to

 return obj[i], obj[i+1], ···, obj[j]

except that the above code can be written only for a fixed number of elements. By
default, i is 1 and j is the length of the object, as defined by the size operator.

Please note that if you put a call to unpack into an expression list, only the first return
of unpack is propagated if the call to unpack is not at the final position of the
expression list, for example:

> s := [unpack([1, 2, 3]), 4, 5]: # 2 and 3 are discarded
[1, 4, 5]

> s := [-1, 0, unpack([1, 2, 3])]: # 2 and 3 are included
[-1, 0, 1, 2, 3]

Consider copyadd in this situation. See also: identity, ops, unity, values.

agena >> 275

values (obj, i1 [, i2, ···])

Returns the elements ik from the given table, sequence or register obj. This function
is equivalent to - for example -

 return [i1 ~ obj[i1], i2 ~ obj[i2], ···] or
 return seq(obj[i1], obj[i2], ···)

The type of return is determined by the first argument obj.

See also: columns, ops, select, unpack.

watch ([option])

The function implements a stop watch. With the first call, the function starts counting
and returns 0. The second call returns the elapsed time in seconds and milliseconds
and restarts the clock. If any argument is given, then the clock will be reset, but it will
not start counting.

See also: time, watch, os.time, skycrane.stopwatch.

whereis (obj, x)

Returns the indices for a given value x in table, sequence or register obj as a new
table, sequence or register, respectively, dependent on the type of obj.

See also: has, member, tables.entries, tables.indices.

write ([fh,] v1 [, v2, ···] [, delim = <str>])

This function prints one or more numbers, Booleans or strings vk to the file denoted
by the handle fh, or to stdout (i.e. the console) if fh is not given.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (e.g. 'delim':'|' or delim='|') as
the last argument to the function with <str> being a string of any length.
Remember that in the function call, a shortcut to 'delim':<str> is delim = <str>.

The function is an interface to io.write.

See also: printf, skycrane.scribe, skycrane.tee.

276 8 Basic Functions

writeline ([fh,] v1 [, v2, ···] [, delim = str])

This function prints one or more numbers, booleans or strings vk followed by a
newline to the file denoted by the handle fh, or to stdout (i.e. the console) if fh is
not given.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':str (i.e. a pair, e.g. 'delim':'|') as the
last argument to the function with str being a string of any length. Remember that
in the function call, a shortcut to 'delim':str is delim=str.

The function is a wrapper to io.writeline.

See also: printf, skycrane.scribe, skycrane.tee.

xpcall (f, err [, arg1, ···])

This function is similar to protect, except that you can set a new error handler.

xpcall calls function f in protected mode, using err as the error handler. Arguments
to f are optional. Any error inside f is not propagated; instead, xpcall catches the
error, calls the err function with the original error object, and returns a status code.
Its first result is the status code (a Boolean), which is true if the call succeeds without
errors. In this case, xpcall also returns all results from the call, after this first result. In
case of any error, xpcall returns false plus the result from err.

See also: protect.

zip (f, obj1, obj2 [, ···])

zip (op, obj1, obj2)

In the first form, the function zips together either two sequences, two registers, or two
tables obj1, obj2 by applying the function f to each of its respective elements.
Depending on the type of obj1 and obj2, the result is a new sequence, register, or
table s where each element s[k] is determined by s[k] := f(obj1[k], obj2[k]).

obj1 and obj2 must have the same number of elements. If you pass tables, they
must have the same keys.

If f has more than two arguments, then its fourth to last argument must be given
right after obj2.

In the second form, op depicts an arithmetic operator, represented as a string, that
zips together the structure elements:

agena >> 277

� '+': addition,
� '-': subtraction,
� '*': multiplication,
� '/': division,
� '\\': integer division,
� '%': modulus,
� '^': exponentiation,
� '**': integer exponentiation.

This method is twice as fast with sequences and registers, and 50 % faster with
tables than passing a function (first form).

If obj1 or obj2 have user-defined types or metatables, they are copied to the
resulting structure, as well. If obj1 has a metatable, then this metatable will be
copied, else the metatable of obj2 will be used if the latter exists. The same applies
to user-defined types.

See also: map, remove, select, subs, subsop.

278 8 Basic Functions

Chapter Nine

Strings

agena >> 279

280 9 Strings

9 Strings

9.1 Basic String Functions

Summary of Functions:

Search

atendof, has, in, notin, instr, strings.find, strings.glob, strings.match,
strings.mfind.

Insertion, Substitution, and Deletion

replace, strings.appendmissing, strings.chomp, strings.chop, strings.gsub,
strings.include, strings.remove, strings.unwrap, strings.wrap.

Extraction

split, strings.advance, strings.between, strings.charset, strings.fields,
strings.gmatch, strings.gmatches, strings.gseparate, strings.separate,
strings.strchr, strings.strrchr, strings.strstr, strings.sub.

Queries

abs, empty, filled, strings.charmap, strings.contains, strings.isaligned,
strings.isalpha, strings.isalphanumeric, strings.isalphaspace,
string.isalphaspec, strings.isascii, strings.isblank, strings.iscenumeric,
strings.iscontrol, strings.isdia, strings.isending, strings.isfloat, strings.isgraph,
strings.ishex, strings.islatin, strings.isinstring, strings.isisoalpha,
strings.isisolower, strings.isisoprint, strings.isisospace, strings.isisoupper,
strings.islatinnumeric, strings.isloweralpha, strings.islowerlatin,
strings.ismagic, strings.isnumber, strings.isnumeric, strings.isnumberspace,
strings.isprintable, strings.isspace, strings.isspec, strings.isstarting,
strings.isupperalpha, strings.isupperlatin,strings.isutf8, strings.iswrapped,
strings.shannon, strings.walker.

Comparing

strings.compare, strings.dice, strings.diffs, strings.dleven, strings.fuzzy,
strings.jaro, strings.strcmp, strings.stricmp, strings.strncmp,
strings.strverscmp,

Counting

size, strings.hits, strings.strlen, strings.utf8size, strings.words.

agena >> 281

Formatting

lower, trim, upper, strings.align, strings.capitalise, strings.format,
strings.isolower, strings.isoupper, strings.ljustify, strings.ltrim, strings.lrtrim,
strings.rjustify, strings.rtrim, strings.tolower, strings.toupper,
strings.uncapitalise.

Conversion

&, fold, join, reduce, tonumber, tostring, strings.a64, strings.bigrams,
strings.diamap, strings.iterate, strings.obfusxor, strings.pack,
strings.packsize, strings.reverse, strings.strtoul, strings.tolatin, strings.toutf8,
strings.transform, strings.unpack, toreg, toseq, totable.

Manipulation

@, map, strings.iterate, strings.repeat, strings.rotateleft, strings.rotateright,
strings.tobytes, strings.tochars.

Miscellaneous

strings.random.

A note in advance: All operators and strings package functions know how to
handle many diacritics properly. Thus, the lower and upper operators know how to
convert these diacritics, and various is* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

â Â ä Ä à À á Á å Å æ Æ ã Ã
ê Ê ë è È é É Ë
ï Ï î Î ì Ì í Í ý Ý ÿ
ô Ô ö Ö ò Ò ø Ø ó Ó õ Õ
û Û ù Ù ü Ü ú Ú
ç Ç ñ Ñ ð Ð þ Þ ß

9.1.1 Operators and Functions

s1 & s2

This binary operator concatenates two strings s1, s2 and returns a new string. s1 or
s2 may also be a number or a Boolean; in this case the argument will be converted
to a string and then concatenated with the other operand.

See also: join.

282 9 Strings

v &:= s

The compound concatenation operator appends string s to the contents of the
string variable v. It is equivalent to: v := v & s.

s1 < s2

The relational operator checks whether string s1 is less then strings s2, taking the
locale into account if the platform supports it. See also: =, >, <=, >=.

s1 atendof s2

This binary operator checks whether string s2 ends in a substring s1. If true, the
position of the position of s1 in s2 will be returned; otherwise null will be returned. The
operator also returns null if the strings have the same length or at least one of them
is the empty string.

See also: in, instr, strings.isstarting, strings.isending.

s1 in s2

This binary operator checks whether string s2 includes s1 and returns its position as a
number, or null if s1 cannot be found. The operator also returns null if at least one
of the strings is the empty string.

See also: atendof, has, instr, notin, strings.contains, strings.isstarting,
strings.isending.

s1 notin s2

This binary operator checks whether string s2 does not include s1 and returns true or
false.

See also: in operator.

s1 split s2

Splits the string s1 into words. The delimiter is given by string s2, which may consist of
one or more characters. The return of the operator is a sequence. If s1= s2 then an
empty sequence will be returned. If s2 is the empty string, then the operator will split
s1 into its individual characters.

See also: strings.fields, strings.iterate, strings.separate, strings.tobytes.

abs (s)

With strings, the operator returns the numeric ASCII value of the given character s (a
string of length 1).

agena >> 283

empty (s)

The operator checks whether the string s is empty. The return is true or false. See
also: filled.

filled (s)

The operator checks whether the string s is non-empty. The return is true or false.
See also: empty.

fold (f, s [, options])

Applies a function f on each item of string s and returns an accumulated result. It
works like reduce with the fold=true option, i.e. the initialiser is always given by the
first character in s. fold supports other options available in reduce.

has (s, chars)

Checks whether at least one character in s matches one of the characters in
chars, a string representing a set of individual characters. If chars is the empty
string, the function generally returns false.

See also: in operator, strings.contains.

instr (s, pattern [, init] [, plain] [, 'reverse'] [, 'borders'])

Looks for the first match of string pattern in the string s. If it finds a match, then instr
will return the index of s where this occurrence starts; otherwise, it will return null. It
also will return null if pattern is the empty string.

If pattern is a set of pattern strings, returns true if at least one of the patterns
matches s; otherwise returns false. (The 'borders' option will be ignored.)

If the option 'reverse' is given, then the search will start from the right end and
always runs to its left beginning and the first occurrence of pattern with respect to
the beginning of s will be returned. In the reverse search, pattern matching is not
supported.

An optional numerical argument init passed anywhere after the second argument
specifies where to start the search; its default value is 1 and may be negative. In
the latter case, the search is started from the |init|'s position from the right end of
s.

The function by default supports pattern matching, almost similar to regular
expressions, see Chapter 9.1.3. instr is 45 % faster than strings.find. If the optional
Boolean argument plain is set to the Boolean true, pattern matching is switched off
and a much faster plain search is conducted instead (speed bonus around 40 %).

284 9 Strings

The optional argument 'borders' returns the start and the end position of a match
in a pair. However, this mode is slow, use strings.find instead which is twice as fast.

See also: atendof, in, strings.isstarting, strings.isending, strings.find.

join (obj [, sep [, i [, j]]])

Concatenates all string values in the table, sequence or register obj in sequential
order and returns a string: obj[i] & sep & obj[i+1] ··· & sep & obj[j]. The default
value for sep is the empty string, the default for i is 1, and the default for j is the
length of the sequence. The function issues an error if obj contains non-strings.
See also: & operator.

lower (s)

The operator receives a string and returns a copy of this string with all uppercase
letters ('A' to 'Z' plus the above mentioned diacritics) changed to lowercase ('a' to 'z'
and the diacritics listed at the end of Chapter 9.1). The operator leaves all other
characters unchanged. Example:

> lower('Elektronika MK-61'):
elektronika mk-61

See also: strings.isolower, strings.tolower, upper.

map (f, s [, ···] [, true])

This function maps a function f to all characters of string s from the left to right. The
return is a sequence of function values.

If function f has only one argument, then only the function and the string s must be
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after argument s. If the last argument is the option
inplace=true, or the Boolean true, then the operation will be done in-place,
modifying the original structure, but saving memory. After completion, the function
returns the modified structure. For further options, see the function description in
Chapter 8.

reduce (f, s [, init [, ··· [, options]]])

reduce (f, s [, ··· [[, option], fold=true]])

Applies a function f on each item of string s and returns an accumulated result.
See reduce in Chapter 8 for more information.

agena >> 285

replace (s1, s2, s3)

replace (s1, obj)

replace (s1, pos, s2)

In the first form, the function replaces all occurrences of string s2 in string s1 by string
s3.

In the second form, the function receives a string s1 and a table, sequence or
register obj of one or more string pairs of the form s2:s3 and replaces all
occurrences of s2 in string s1 with the corresponding string s3. Thus you can replace
multiple patterns simultaneously with only one call to replace.

In the third form, the function inserts a new string s2 into the string s1 at the given
position pos, substituting the respective character in s1 with the new string s2 which
may consist of zero, one or more characters. The return is a new string. If s2 is the
empty string, the character in s1 is deleted. The return is always a new string.

The function does not support pattern matching, use strings.gsub instead.

See also: utils.singlesubs.

size (s)

With a string s, the operator returns its length, i.e. the number of characters in s.

See also: strings.strlen.

tonumber (e [, base])

Tries to convert its argument to a number or complex value. If the argument is
already a number, complex value, or a string convertible to a number or complex
value, then tonumber will return this value; otherwise, it will return e if e is a string, and
fail otherwise. The function recognises the strings 'undefined' and 'infinity'
properly, i.e. it converts them to the corresponding numeric values undefined and
infinity, respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 'Z'
representing 35. In base 10 (the default), the number may have a decimal part, as
well as an optional exponent part. In other bases, only unsigned integers are
accepted. If an option is passed, 'undefined' and 'infinity' are not converted
to numbers; and if e could not be converted, fail will be returned.

See also: strings.fields, strings.strtoul.

286 9 Strings

toreg (s)

Splits string s it into its characters and returns them in a register with each character
in s as a separate value, and in the same order as the characters in s.

See also: strings.tochars.

toseq (s)

Splits string s it into its characters and returns them in a sequence with each
character in s as a separate value, and in the same order as the characters in s.

See also: strings.tochars.

tostring (e [, anyoption])

Receives an argument e of any type and converts it to a string in a reasonable
format. For complete control of how numbers are converted, use strings.format.

If the metatable of e has a '__tostring' field, then the tostring function will call the
corresponding value with e as argument, and will use the result of the call as its
result.

With numbers, the number of digits in the resulting string is dependent on the
kernel/digits setting. See environ.kernel for further information.

If e is a complex number, its real and imaginary parts are returned as two strings. If
any option is given, the return is one string of the format "re+im*I" or "re-im*I",! !

depending on the sign of the imaginary part of e.

See also: tostringx.

tostringx (e)

Works like tostring but also formats structures, userdata and complex numbers the
same way as the prettyprinter does, or in other words: it returns the argument as a
string formatted the same way as the print function writes it on screen. This is useful if
you want to write structures or complex numbers to a file.

totable (s)

Splits string s it into its characters and returns them in a table array with each
character in s as a separate value, and in the same order as the characters in s.

See also: strings.tochars.

agena >> 287

trim (s)

Returns a new string with all leading, trailing and excess embedded white spaces
removed. trim is an operator.

See also: strings.ltrim, strings.lrtrim, strings.remove, strings.rtrim.

upper (s)

The operator receives a string and returns a copy of this string with all lowercase
letters ('a' to 'z' plus the above mentioned diacritics) changed to uppercase ('A' to 'Z'
and the diacritics listed at the end of Chapter 9.1). The operator leaves all other
characters unchanged. Example:

> upper('Elektronika MK-61'):

ELEKTRONIKA MK-61

See also: lower, strings.capitalise, strings.isoupper, strings.toupper.

9.1.2 The strings Library

The strings library provides generic functions for string manipulation, such as finding
and extracting substrings, and pattern matching. When indexing a string in Agena,
the first character is at position 1 (not at 0, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.

The strings library provides all its functions inside the table strings.

strings.a64 (x)

The function converts between 32-bit long integers and little-endian Base64 ASCII
strings (of length 0 to 6).

If the argument x is a Base64 ASCII string, the result is a signed 32-bit integer; if the
argument x is a number, the result is the Base64 ASCII string, which consists of the
characters:

./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

strings.advance (s, p [, option])

strings.advance (s, pos)

In the first form, the function moves to substring p in string s and returns p up to the
end of s. If p could not be found, the function returns null. The function supports
pattern matching. If the optional third argument true is given, the function returns

288 9 Strings

the rest of s following but not including p. In this case, if s ends with p, null will be
returned.

In the second form, the substring starting at position pos (a positive integer) up to the
end of s will be returned. If pos is greater than the length of s, the result is null.

See also: strings.find.

strings.align (s [, n])

Inserts newlines into a string s after each n character. By default n is 79, so a newline
is inserted at position 80, 160, and so forth. The return is a string. The function helps
with correctly outputting formatted text at the console.

strings.appendmissing (s, t)

Appends suffix t (a string) to s (a string) if t is not already at its end; otherwise returns
s. If s is the empty string, t will be returned.

strings.between (s, p, q [, true])

Returns the substring in string s that is nested between the prefix string p and the
suffix string q. p or q may reside within the string. If the Boolean value true is given as
a fourth argument, the function tries to return the substring found as a number. If
nothing could be found, the function returns null.

See also: strings.chomp, strings.include, strings.unwrap, strings.wrap.

strings.bigrams (s [, option])

The function returns the bigrams for strings s. With no option, the return is a
sequence of strings of length 2 each; with any option a sequence with the bigrams
encoded to 4-byte signed integers is returned.

See also: math.hamming, bytes package, strings.dice, strings.ngrams.

strings.byte (s [, i [, j]])

Returns the internal numeric codes of the characters s[i], s[i+1], ..., s[j]. The
default value for i is 1; the default value for j is i. If j is greater than the length of
the string it is auto-corrected to the string length.

Numeric codes are not necessarily portable across platforms.

See also: strings.tobytes.

strings.capitalise (s [, sep])

Converts the first character in string s to upper case - if possible - and returns the
capitalised string. If s is the empty string, it is simply returned. It also converts

agena >> 289

ligatures if the Western European character set is being used. If sep, a string, is
given, then all the words in s - separated by sep - will be capitalised.

See also: upper, strings.uncapitalise.

strings.charmap ()

Queries the internal tables to classify characters. Returns a table of key~value pairs:

strings.isprintable
printable
characters

printable

strings.isblankwhite space, tabblank

strings.iscontrol
control characters
such as \n, \r, \b

control

strings.isspec, strings.isalphaspecpunctuationspunct
strings.ishexhexadecimalshex
strings.isalphanumericdigits 0 to 9digits

strings.isalpha, strings.isalphanumeric,
strings.isalphaspace, strings.isalphaspec,
strings.isdia

diacriticsdia

strings.isvowelvowelsvowel
strings.isloweralphalower-case letterslower
strings.isupperalphaupper-case lettersupper

result may vary across platforms and
codepages

table of all ASCII
characters

ascii

strings.alpha, strings.isalphanumeric, strings.
isalphaspace, strings.isalphaspec

alphabetical lettersalpha

Used by/CommentSequence ofKey

strings.charset (s)

Returns a set of all the unique characters included in a string.

See also: has, strings.contains.

strings.chomp (s, t [,···])

Removes pattern string t from the end of string s if it is there, and will return the
shortened string s; otherwise will return s unchanged. If more than one pattern is
given, each additional pattern will be removed from the previous result.

The function supports pattern matching. In this case you or may not terminate the
pattern with one final '$'.

Example:

> strings.chomp('agena language', '(%a+)', 'ena '):
ag

290 9 Strings

See also: strings.chop.

strings.chop (s)

strings.chop (s, f)

In the first form, removes the last character from string s and returns the shortened
string. If s is empty, it is simply returned.

In the second form, if a function f returning true or false is given, chop checks
each character in the string from the right to the left for the given Boolean condition
and returns the string from its beginning up to and including the character that no
longer satisfies the condition.

Example:

> strings.chop('path/file.name', << x -> x <> '/' >>):
path/

See also: strings.between, strings.chomp.

strings.compare (s1, s2)

When called with no option, returns the first position - an integer - where the two
strings s1 and s2 differ, or 0 if both strings are equal.

See also: strings.strcmp, strings.strverscmp, strings.dice, strings.fuzzy, strings.jaro.

strings.contains (s, t)

Checks whether all characters in string s are part of the characters in string t, and
returns true or false. Embedded zeros, expressed by the character sequence '\000'
or the empty string are supported.

See also: has, in operator, strings.charset.

strings.cut (s, d)

The function takes a string s to be split into two pieces, and a string d of one or
more single-character delimiters, and returns two values: the first part of s up to -
but not including - the delimiter found, and the rest of s also without the delimiter.

If a string cannot be split apart, it will be returned as the first result and the second
return is null.

See also: split, strings.separate.

strings.diamap (s [, option])

The function corrects problems in the Solaris, Linux, OS/2, Windows, and DOS
consoles running code page 850 with diacritics and ligatures read in from the

agena >> 291

keyboard or a text file by mapping them to code page 1252. It takes a strings s,
applies the mapping, and returns a new string. All other characters are returned
unchanged.

If any option is given, the function transforms a string from code page 1252 to 850.

Example:

> strings.diamap('AEIOU-Í_ã+Ï'):

AEIOUÄÖÜÆÅØ

Note that the function does not convert all existing special tokens.

Agena is shipped with substitution tables for code page 1252. If you want to use
another code page, edit the _c2f and _f2c tables in the lib/library.agn file
accordingly.

See also: os.codepage.

strings.dice (s, t)

The function returns the Dice's coefficient of two strings s, t by measuring how
similar a set and another set are, in terms of the number of common bigrams. The
return is the number of matches (where each match counts twice) divided by the
combined length of s and t minus 2.

See also: strings.bigrams, strings.diffs, strings.fuzzy, strings.jaro, strings.ngrams.

strings.diffs (s, t [, n [, option]])

Counts the differences between the two strings s and t: substitutions, transpositions,
deletions, and insertions.

By default, both strings must contains at least n=3 characters. You may change this
by passing any other positive number for n. The function returns fail if at least one of
the strings consists of less characters.

If any fourth argument is given, the return is a sequence of strings describing the
respective difference found, otherwise the returns is the number of the differences
encountered.

The function is at least thrice as fast as strings.dleven, but may count differently in
odd situations.

See also: strings.dice, strings.dleven, strings.fuzzy, skycrane.tolerance.

292 9 Strings

strings.dleven (s, t [, option])

Returns the Damerau-Levenshtein distance between two strings s and t. It is a count
of the minimum number of insertions, deletions, substitutions of a single character,
or transpositions of two neighbouring characters to convert s into t. The return is a
number. If at least one of the strings is empty, undefined will be returned.

If option is set to true, then the Damerau-Levenshtein similarity will be computed:
the higher the value, the more similar the strings are. The score is normalised such
that 0 equates to no similarities and 1 is an exact match with the function taking
into account that if up to four characters at the start of the strings match, the score
will be higher.

See also: strings.fuzzy, strings.dice, strings.diffs, strings.jaro, skycrane.tolerance.

strings.dump (f [, strip])

Returns a string containing a binary representation of the given function f, so that a
later loadstring on this string returns a copy of the function. f must be an Agena
function without upvalues, remember table or internal store table.

If strip is a true value, the binary representation may not include all debug
information about the function, to save space.

The function can also be used to binarily serialise data by defining a function
returning data, e.g.:

> f := proc() is return [1, 2, 3] end;

> s := strings.dump(f);

> loadstring(s)():
[1, 2, 3]

See also: strings.tobytes.

strings.fields (s, [i1 [, i2, ···]] [, delim] [, true])

strings.fields (s, [o] [, delim] [, true])

strings.fields (s, [i1 [, i2, ···]] [, options])

strings.fields (s, [o] [, options])

Extracts the given fields (columns) in string s. In the first form, the field positions i1, i2,
etc. are non-zero integers. The field positions may be negative, denoting fields
counted from the right end of s. If no position is given, then all the fields will be
returned. In the second and fourth form, the field positions are given in the
sequence o.

An optional string delim may be passed to denote the character or character
sequence that separates the individual fields. The default for delim is the white
space.

agena >> 293

If the Boolean value true is given as the last argument, the function tries to convert
the fields into numbers.

In all forms, the function issues an error if a field position does not exist (but check
the bailout option described below).

In the third and fourth form, you can pass one or more of the following options:

� delim=string where string denotes the non-empty string separating the fields, the
default is the white space,

� unwrap=string where string denotes a non-empty string - by default there is no
unwrapping; if a field is enclosed by one of the characters in string then it is
removed from the start and end of the field,

� convert=boolean: if boolean is true then the function tries to convert the field
into a number or complex number. In the latter case, the value must be of the
form "a + I*b" with or without white spaces in between; default is false,

� bailout=boolean: if boolean is true (default) then the function throws an error, if
it is false, fail will be returned if a field does not exist in string s.

The return on success is a sequence of the fields (strings, optionally numbers or
complex numbers).

See also: split, strings.iterate, strings.gseparate, strings.separate, strings.wrap,
tonumber.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of string pattern in string s. If it finds a match, then find
returns the indices of s where this occurrence starts and ends; otherwise, it returns
null. The function supports pattern matching facilities (which you can turn off, see
below). If pattern is a table, set, sequence or register of string patterns, then the
function checks whether at least one of the patterns matches s and returns the
respective result.

A third, optional numerical argument init specifies where to start the search; its
default value is 1 and may be negative. A value of true as a fourth, optional
argument plain turns off the pattern matching facilities (see Chapter 9.1.3), so the
function does a plain `find substring` operation, with no characters in pattern being
considered `magic`. Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values will also
be returned, after the two indices. If pattern is the empty string, the function returns
null.

See also: in, atendof, and instr, regex.find, strings.glob, strings.mfind.

294 9 Strings

strings.format (formatstring, ···)

Returns a formatted version of its variable number of arguments following the
description given in its first argument (which must be a string). The format string
almost follows the same rules as the ISO C function sprintf. The only differences
are that the conversion specifiers *, l and L are not supported and that there are
thirteen extra specifiers: a, A, b, B, h, H, m, n, N, p, P, q, Q, D, and F.

For an overview of all available specifies and examples, see below.

In general a format has the following syntax, where values in square brackets are
optional:

%[flags][width][.precision]

'flags' may be one of the specifiers described below, optionally preceded by:

� - (minus): left-justify the result,
� + (plus): print plus sign in front of positive numbers

You can mix - and +.

'width' is the minimum length of the output in characters. 'precision' depicts the
minimum number of decimal places to appear, with trailing zeros to be added if
necessary.

The following specifiers do not comply to the C standard:

The q specifier formats a string in a form suitable to be safely read back by the
Agena interpreter: All double quotes, newlines, embedded zeros, and backslashes
in the string are correctly escaped when written, and without trailing zeros in the
fractional part when the precision specified in the specifier is greater than the
number of significant digits in the argument supplied. The same applies to Q but
with single quotes. The a and A specifiers work the same like the q and Q specifiers,
respectively, but do not include trailing or leading double quotes. The B specifier
prints a string in backquotes. The b specifier prints a Binary value.

For instance, the call

> strings.format('%q', 'a string with \"quotes\" and \n new line')

will produce the string:

 "a string with \"quotes\" and \
 new line"

The h and H specifiers print a floating-point number in a hexadecimal fractional
notation with the exponent to base 2 represented in decimal digits. On DOS and

agena >> 295

OS/2, the h and H specifiers are not available, and in Windows 2000 they do not
work.

The p specifier multiplies the given number by 100 and displays it in fixed float (‘f’)
format, followed by a percent sign. The m specifier prints a monetary amount with
thousands separators and the decimal point defined by the current locale, the
default is the format string '%.2f'.

The specifier P formats the pointer (returned by lua_topointer). That gives a unique
string identifier for structures, userdata, threads, strings, and functions. For other
values (numbers, null, booleans), this specifier results in a string representing the
pointer NULL.

The n and N specifiers print a number using the decimal point separator of the
locale of the operating system (which may differ from the locale in use by Agena),
otherwise they work like the f and F specifiers.

The specifiers D and F prevent quarrels with numerical functions that may return
non-numbers in case of errors: D formats an integer like the d specifier if the
argument is a number, and the C double representation of undefined otherwise if
the value is not a number. Likewise, F and N either format a float, or the C double
companion piece of undefined (e.g. 1.#QNAN0 in Windows) if the value is not a
number.

The conversion specifiers c, D, d, E, e, f, F, g, G, h, H, i, m, n, N, o, p, u, X, and x all
expect a number as argument, whereas s expects a string, and a, A, P, q, Q and
expect anything.

This function does not accept string values containing embedded zeros.

Examples:

> strings.format('%+15.9f', 10k*Pi):
+31415.926535898

> strings.format('%15.9f', 3.5):
 3.500000000

> strings.format('%-15.9f', 3.5):
3.500000000

> strings.format('%015.9f', 3.5):
00003.500000000

> strings.format('%15.0f', 3.5):
 4

> strings.format('%15d', 3.5):
 3

> strings.format('%X', 2^16-1):
FFFF

> strings.format('%c', 97):

296 9 Strings

a

> strings.format('%s', 'agena >>'):
agena >>

> strings.format('%q', 'agena >>'):
"agena >>"

> strings.format('%d\n%2d\n%02d\n%2.5f\n%+2.5f\n+2.5f\n%s', 1, 1, 1,
> Pi, Pi, -Pi, 'New Horizons'):
1
 1
01
3.14159
+3.14159
-3.14159
New Horizons

Summary:

314.159265%writes in percent%p

0x1.921fb5p+1,
0X1.921FB5P+1

writes a floating-point number in a hexadecimal
fractional notation with the exponent to base 2
represented in decimal digits. %h uses
lower-case, %H upper-case

%h, %H

1e-006
1E-006

writes a floating-point number in either normal or
exponential notation, depending on its
magnitude. %g uses lower-case, %G upper-case

%g, %G

3.141593e+000,
3.141593E+000

writes a floating-point number in exponential
notation (scientific e-notation). %e uses
lower-case, %E upper-case, with around six
fractional digits

%e, %E

writes a long double in normal, fixed-point
notation with 19 fractional digits by default, see
long package in Chapter 11.15

%ld

3.141592..e+000writes as a floating-point number in scientic
notation with 16 fractional digits by default

%le

3.1415926535..writes as a floating-point number in normal,
fixed-point notation with 16 fractional digits by
default

%lf

3.141593writes as a floating-point number in normal,
fixed-point notation

%f

f, Fwrites as unsigned hexadecimal number, with a
cast to uint32_t. %x uses lower-case, %X
upper-case

%x, %X

10writes as an unsigned integer, with a cast to C's
uint32_t

%u
-0b1111111111writes a binary number in the range [-1023, 1023]%b
12writes as an octal number%o
-1, 1writes as an integer%d, %i
ExampleDescriptionSpecifier

agena >> 297

%writes percentage sign%%

agena,
3.1415926535..

writes a string, numbers are automatically
converted properly

%s
awrites the corresponding ASCII character%c
3.1415926535..like %q but without surrounding quotes%a, %A

"3.1415926535.."writes a string put in double (%q), single (%Q) or
backquotes (%B) suitable to be safely read back
by the interpreter

%q, %Q,
%B

3.141593,
undefined

writes a floating-point number if the value is a
number, and "undefined" otherwise

%F

3, undefinedwrites an integer if the value is a number, and
"undefined" otherwise

%D

31415,926536writes a number using the decimal point
separator of the locale of the operating system

%n, %N

31,415.93writes a monetary amount with thousands
separators and the decimal point defined by the
current locale

%m
ExampleDescriptionSpecifier

strings.fuzzy (s, t)

Compares two strings case-insensitively and returns an estimate of their similarity as
both an absolute and relative score, the latter taking into account the length of the
longer string.

One point is given for a matching character. Subsequent matches are given two
extra points. A higher score indicates a higher similarity. With the second return, 1
depicts equality, and a lower value the degree of similarity.

The function is written in Agena and included in the lib/library.agn file.

See also: strings.dice, strings.dleven, strings.diffs, strings.jaro, skycrane.tolerance.

strings.glob (s, pattern [, true])

Compares a string s with a string pattern, the latter optionally including the
wildcards ? and *, where ? represents exactly one unknown character, and *
represents zero or more unknown characters. Other pattern matching facilities are
not supported.

The return is true if the pattern could be found, and false otherwise. If the optional
third argument is true, then the strings will be compared case-insensitively.

See also: regex.find, strings.find.

298 9 Strings

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over string s. The function supports pattern matching facilities
described in Chapter 9.1.3.

If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

> s := 'hello world from Lua'

> for w in strings.gmatch(s, '%a+') do
> print(w)
> od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

> create table t;

> s := 'from=world, to=Lua'

> for k, v in strings.gmatch(s, '(%w+)=(%w+)') do
> t[k] := v
> od

See also: strings.match, strings.gmatches, strings.wrap, strings.unwrap,
tonumber.

strings.gmatches (s, pattern)

Wrapper around strings.gmatch which returns all occurrences of a substring
pattern in string s a in a new sequence.

The function is written in Agena and included in the lib/library.agn file.

strings.gseparate (s, pattern [, tonumber [, init]])

strings.gseparate (s, pattern [, options])

The function takes a string s to be split apart into its tokens one after another, and a
delimiter string pattern, and returns an iterator function that each time it is called,
returns one token. If the end of s has been reached, the function returns null. The
function supports pattern matching. For an iterator without pattern matching, see
strings.iterate.

If s starts with the delimiter, an empty string will be returned.

In the first form, if the Boolean value true is passed to tonumber, the function tries to
convert the token into a number. If init, a positive integer is given, the function
searches from the init'th character in s.

agena >> 299

In the second form, you can also pass one or more of the following options:

� convert=boolean, tries to convert the field into a number of boolean is true,
� unwrap=string, remove enclosing characters, given in string, e.g. double quotes,

if existent,
� init=integer, with integer a positive integer, defines where to start the

extraction.
If the iterator function is called with any argument, the function returns the number
of tokens returned so far but does not search for the next token.

See also: split, strings.fields, strings.gmatch, strings.iterate, strings.separate.

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced
by a replacement string specified by repl, which may be a string, a table, or a
function. gsub also returns, as its second value, the total number of substitutions
made. See Chapter 9.1.3 for more information on patterns.

If repl is a string, then its value is used for replacement. The character % works as
an escape character: any sequence in repl of the form %n, with n between 1 and
9, stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the pattern specifies no
captures, then the whole match is passed as a sole argument.

If the value returned by the table query or by the function call is a string or a
number, then it is used as the replacement string; otherwise, if it is false or null, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum number of substitutions to occur.
For instance, when n is 1 only the first occurrence of pattern is replaced.

Here are some examples:

 x := strings.gsub('hello world', '(%w+)', '%1 %1')
 --> x = 'hello hello world world'

 x := strings.gsub('hello world', '%w+', '%0 %0', 1)
 --> x = 'hello hello world'

 x := strings.gsub('hello world from Lua', '(%w+)%s*(%w+)', '%2 %1')
 --> x = 'world hello Lua from'

300 9 Strings

 x := strings.gsub('home = $HOME, user = $USER', '%$(%w+)', os.getenv)
 --> x = 'home = /home/roberto, user = roberto'

 x := strings.gsub('4+5 = $return 4+5$', '%$(.-)%$', proc (s)
 return loadstring(s)()
 end)
 --> x = '4+5 = 9'

 local t := [name~'lua', version~'5.1']
 x = strings.gsub('$name%-$version.tar.gz', '%$(%w+)', t)
 --> x = 'lua-5.1.tar.gz'

See also: replace.

strings.hits (s, pattern [, true])

Returns the number of occurrences of substring pattern in string s.

If only two arguments are passed, pattern matching facilities (see Chapter 9.1.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

See also: strings.words.

strings.include (s, pos, p)

Inserts the string p into the string s at position pos.

If pos size s, the character at position pos is moved size p places to the right. [

If pos = size s + 1, p is just appended to s, equal to the Agena expression s & p.

The function returns the new string and issues an error, if the index pos is invalid. p
may be the empty string, in this case, p will be returned.

See also: strings.between, strings.remove.

strings.isaligned (s)

Checks whether the string s is aligned on the 4-byte word boundary and returns true
or false.

strings.isalpha (s [, t])

Checks whether the string s consists entirely of alphabetic letters (including
diacritics) and returns true or false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

agena >> 301

See also: strings.isdia, strings.isisoalpha, strings.islatin, strings.isloweralpha,
strings.ismagic, strings.isupperalpha.

strings.isalphanumeric (s [, t])

Checks whether the string s consists entirely of numbers or alphabetic letters
(including diacritics) and returns true or false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.islatinnumeric.

strings.isalphaspace (s [, t])

Checks whether the string s consists entirely of alphabetic letters (including
diacritics) and/or a white space and returns true or false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

strings.isalphaspec (s)

Checks whether the string s consists entirely of the Latin letters a to z, A to Z, or all
characters that are not blanks or alphanumeric, and returns true or false.

See also: strings.isspec, strings.isalphaspace.

strings.isascii (s)

Checks whether the string s consists entirely of C unsigned char 7-bit characters that
fit into the UK/US character set. It is a direct port to the C function `isascii`, and
returns true or false.

strings.isblank (s [, true])

Checks whether the string s consists entirely white spaces or tabulators (\t) and
returns true or false. If the option true is given, the function checks for tabs,
linefeeds, carriage returns, white spaces, vertical tabs, and form feeds.

See also: strings.isisospace, strings.isspace.

strings.iscenumeric (s)

Checks whether the string s consists entirely of the digits 0 to 9 and optionally
exactly one decimal comma at any position, and returns true or false.

See also: strings.isfloat, strings.isnumber, strings.isnumeric, os.setlocale.

302 9 Strings

strings.iscontrol (s)

Checks whether the string s consists entirely of control characters and returns true or
false. Control characters are: '\0', bell, backspace, tab, linefeed, carriage return,
and all other characters between ASCII code 0 and 31, plus the DEL key (ASCII
code127). The function is the opposite to strings.isprintable.

See also: strings.isblank, strings.isprintable, strings.isspec.

strings.isdia (s)

Checks whether the string s consists entirely of diacritics (such as á, â. ø, Ü) and
ligatures (such as ß, Æ) and returns true or false. The function works correctly with
the ISO/IEC 8859-1 character set only.

See also: strings.isalpha.

strings.isending (s, pattern [, true])

Determines whether a string s is ending in the substring pattern, i.e. whether
pattern fits entirely to the end of the string s in case the length of pattern is less
than that of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see Chapter 9.1.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings or both are the same, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.isstarting, atendof.

strings.isfloat (s)

Checks whether the string s consists entirely of the digits 0 to 9 and exactly one
decimal point (or the decimal-point separator at your locale) at any position, and
returns true or false.

See also: strings.isnumber, strings.isnumeric, os.setlocale.

strings.ishex (s)

Checks whether the string s represents a hexadecimal number which consists of the
digits 0 to 9 and or the letters 'a' to 'f' or 'A' to 'F', and returns true or false.

See also: strings.isnumber, utils.hexlify.

agena >> 303

strings.isgraph (s)

Checks whether the string s consists of glyphs only. It is a direct port to the C
function `isgraph`, and returns true or false.

strings.isisoalpha (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic lower
and upper-case characters (including diacritics) and returns true or false. The
function only correctly recognises strings read from a file. Mostly, it cannot process
ligatures input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isolower, strings.isoupper.

strings.isisolower (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
lower-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isloweralpha.

strings.isisoprint (s)

Checks whether the string s consists entirely of printable ISO 8859/1 Latin-1 letters
and returns true or false.

strings.isisospace (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 white spaces and
returns true or false.

See also: strings.isspace.

strings.isisoupper (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
upper-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isisolower, strings.isupperalpha,strings.isisoupper.

strings.islatin (s [, t])

Checks whether the string s entirely consists of the characters 'a' to 'z', and A' to 'Z'. It
returns true or false. If s is the empty string, the result is always false.

304 9 Strings

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isalpha, strings.islowerlatin, strings.isupperlatin.

strings.islatinnumeric (s [, t])

Checks whether the string s consists entirely of numbers or Latin letters 'a' to 'z' and 'A'
to 'Z', and returns true or false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isalphanumeric.

strings.isloweralpha (s [, t])

Checks whether the string s consists entirely of the characters a to z and lower-case
diacritics, and returns true or false. If s is the empty string, the result is always false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isisolower, strings.isupperalpha.

strings.islowerlatin (s [, t])

Checks whether the string s consists entirely of the characters 'a' to 'z', and returns
true or false. If s is the empty string, the result is always false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isupperlatin.

strings.ismagic (s)

Checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters 'A' to
'Z', 'a' to 'z', and the diacritics listed at the top of this chapter.

See also: has, strings.isalpha, strings.isinstring.

strings.ismultibyte (s)

Detects whether the given string s is in UTF-8 encoding and returns two booleans
(true or false): The first Boolean indicates that s is compliant to the UTF-8 standard.
Remember that a string in ASCII or ISO 8859 encoding is also a valid UTF-8 string.

agena >> 305

The second Boolean indicates that s contains at least one multi-byte UTF-8
character, i.e. that at least one character is part of the UTF-8 but not of the ASCII or
ISO 8859 standard.

If an integer is returned as a third argument, it will denote the position where the
string did not meet UTF-8 criteria.

Please note that the function may not produce correct results with text input in a
console. The function can only return correct results if the string to be checked has
been read from a file.

See also: strings.isutf8, strings.isisoalpha.

strings.isnumber (s)

Checks whether the string s consists entirely of the digits 0 to 9 and returns true or
false.

See also: strings.isfloat, strings.ishex, strings.isnumeric.

strings.isnumberspace (s)

Checks whether the string s consists entirely of the digits 0 to 9 or white spaces and
returns true or false.

strings.isnumeric (s)

Checks whether the string s consists entirely of the digits 0 to 9 or digits and
optionally exactly one decimal point (or the decimal-point separator at your locale)
at any position, and returns true or false.

See also: strings.iscenumeric, strings.isfloat, strings.isnumber, os.setlocale.

strings.isolower (s)

Receives an ISO 8859/1 Latin-1 string s and returns a copy of this string with all
upper-case letters changed to lower-case. The operator leaves all other characters
unchanged. s may include embedded zeros, which are preserved in the output.

See also: lower, strings.isoupper.

strings.isoupper (s)

Receives an ISO 8859/1 Latin-1 string s and returns a copy of this string with all
lower-case letters changed to upper-case. The operator leaves all other characters
unchanged. s may include embedded zeros, which are preserved in the output.

See also: lower, strings.isoupper.

306 9 Strings

strings.isprintable (s)

Checks whether the string s consists entirely of characters that can be output at the
console (characters with ASCII codes 32 to 255 except the backspace) and returns
true or false. The function is the opposite to strings.iscontrol.

strings.isspace (s)

Checks whether the string s consists entirely white spaces and returns true or false.
Tabulators \t are not considered to be white spaces.

See also: strings.isblank, strings.isisospace.

strings.isspec (s)

Checks whether the string s consists entirely of punctuation characters (any printing
character that is not a white space or alphanumeric), including

white space ¿ ? ¡ ! " # $ @ § % & ' ` * / + - . , ; () [] { } | ¦ \ ^ _
~ = < >

and returns true or false.

See also: strings.isalphaspec, strings.isspace, strings.ismagic.

strings.isstarting (s, pattern [, true])

Determines whether a string s is beginning with the substring pattern, i.e. whether
pattern fits entirely to the beginning of the string s in case the length of pattern is
less than that of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see Chapter 9.1.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings or have the same length, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given prefix.

See also: strings.isending, atendof.

strings.isupperalpha (s [, t])

Checks whether the string s consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and returns true or false. If s is the empty string, the result is
always false.

agena >> 307

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isisoupper, strings.isloweralpha.

strings.isupperlatin (s [, t])

Checks whether the string s consists entirely of the capital letters 'A' to 'Z', and returns
true or false. If s is the empty string, the result is always false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.islowerlatin.

strings.isutf8 (s)

Detects whether the given string contains at least one multibyte and return true or
false.

See also: strings.isisoalpha, strings.ismultibyte, strings.utf8size.

strings.iswrapped (s, t)

Checks whether string s is enclosed by string t and returns true or false.

See also: strings.unwrap, strings.wrap.

strings.iterate (s [, pos [, n]])

strings.iterate (s, 0 [, option])

strings.iterate (s, delim [, options])

In the first form, returns an iterator function that, when called returns the next n
characters in string str, starting at position pos. pos and n are 1 by default.

In the second form, when pos is zero, returns an iterator function that from the left to
right returns each four consecutive characters in string str as an unsigned 4-byte
integer. The iterator returns Little Endian integers unless the third argument is set to
true to return Big Endian integers.

In the third form, by passing a string del of one or more delimiters as the second
argument, returns an iterator function that step-by-step returns a field surrounded by
at least one of the delimiters. With the third form, you can also pass one or more of
the following options:

308 9 Strings

� convert=boolean, tries to convert the field into a number of boolean is true,
� unwrap=string, remove enclosing characters, given in string, e.g. double quotes,

if existent.

Pattern-matching is not supported, use strings.gseparate instead.

If there are no more characters to process, the iterator returns null.

See also: split, strings.fields, strings.gseparate, strings.separate, strings.tobytes.

strings.jaro (s1, s2 [, option])

Computes either the Jaro similarity or Jaro-Winkler similarity, measures of two strings'
s1, s2 similarity: the higher the value, the more similar the strings are. The score is
normalised such that 0 equates to no similarities and 1 is an exact match.

By default, the function takes into account that if up to four characters at the start of
the strings match, the score will be higher - thus computing the Jaro-Winkler
similarity. If option is set to false, the Jaro similarity is returned which does not check
whether strings match at their beginning.

See also: strings.dice, strings.fuzzy.

strings.ljustify (s, width [, filler])

Adds filling characters to the right end of string s, as necessary to return a new string
of the given width. If s is a number, it is automatically converted to a string before
padding starts.

The filling characters may be denoted by the third optional argument filler
(number or string), otherwise filler is a white space by default. If the resulting string
is longer than the given width, it is truncated to the first width characters.

See also: strings.rjustify.

strings.lrtrim (s [, c])

Returns a new string with all leading and trailing white spaces removed from s. If a
single character is passed for c as an optional second argument, then all leading
and trailing characters given by c are removed. If c is a multi-character string, then
if existing it is removed once from the start and once from the end of s. The
function supports pattern matching.

It does not remove spaces or the given character(s) within the `actual` part of the
string.

See also: trim operator, strings.ltrim, strings.rtrim, strings.wrap.

agena >> 309

strings.ltrim (s [, c])

Returns a new string with all leading white spaces removed from s. If a single
character is passed for c as an optional second argument, then all leading
characters given by c are removed. If c is a multi-character string, then if existing it is
removed once from the start of s. The function supports pattern matching.

See also: trim operator, strings.lrtrim, strings.remove, strings.rtrim.

strings.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns
the captures from the pattern; otherwise it returns null. If pattern specifies no
captures, then the whole match will be returned. A third, optional numerical
argument init specifies where to start the search; its default value is 1 and may be
negative.

The function supports pattern matching facilities. For examples and help in case of
problems, see Chapter 4.7.7.

See also: strings.gmatch, strings.matches, skycrane.xmlmatch.

strings.matches (s, pattern [, init])

Works like strings.match, but returns all matches in only one call.

Example:

> strings.matches('St. Petersburg, Europe', '([äöüßÄÖÜ%a]*)'):
St Petersburg Europe

strings.mfind (s, pattern [, init [, plain]])

Like strings.find, but looks for all the matches of pattern in the string s. If it finds at
least one match, it returns a sequence with at least one pair indicating where the
respective match starts and ends, otherwise, it returns null.

A third, optional numerical argument init specifies where to start the search; its
default value is 1 and may be negative. A value of true as a fourth, optional
argument plain turns off the pattern matching facilities (see Chapter 9.1.3), so the
function does a plain `find substring` operation, with no characters in pattern
being considered `magic`. Note that if plain is given, then init must be given as
well.

Contrary to strings.find, if the pattern has captures, then in a successful match the
captured values are not returned.

See also: in, atendof, and instr, strings.find, strings.matches.

310 9 Strings

strings.ngrams (s, n)

The function produces n-grams of string s. n should be a positive integer and not
larger than the size of s. The return is a sequence of the ordered n-grams of s.

See also: strings.bigrams.

strings.obfusxor (s, k)

Obfuscates a string s using binary xor and a key string k. The output has the same
length as the input. If key k is shorter than s, it is repeated as much as necessary.

To get back the original string, just call the function with the output and the same
key again.

See also: strings.tobytes, utils.hexlify, utils.unhexlify.

strings.pack (fmt, v1, v2, ···)

Returns a binary string containing the values v1, v2, etc. serialized in binary form
(packed) according to the format string fmt, see Chapter 9.1.4.

strings.packsize (fmt)

Returns the size of a string resulting from strings.pack with the given format. The
format string cannot have the variable-length options 's' or 'z'. For format strings,
see Chapter 9.1.4.

strings.random (length [, kind [, l [, u]]])

strings.random (length, alphabet [, option])

In the first form, creates a random string of the given fixed length. By default, i.e.
kind is set to 'base64', a Base64 string consisting of the characters

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

will be returned. If the second argument kind is 'ascii', a random ASCII string
consisting of characters in the range ASCII 32 to ASCII 126 will be returned. You can
change the upper and lower bounds by explicitly passing the non-negative integers
l and u.

In the second form, the random string will consist entirely of length characters given
in alphabet, such as 'ABCDEFG012345':

> strings.random(16, 'abcdef01234'):

cdbfe314f00af1be

When you pass true as a third argument, the default, the function will always
produce really random strings each time it is called. When setting option to false

agena >> 311

and the function is subsequently called in a session, it will always produce the same
sequence of random `random` strings.

See also: math.random.

strings.remove (s, pos [, len])

strings.remove (s, p [, n])

strings.remove (s, p [, ···])

The function removes a substring from a string. It supports pattern matching.

In the first form, starting from string position pos, the function removes len characters
from string s. The return is a new string. If len is not given, it defaults to one
character to be deleted.

It is not an error if len is greater than the actual length of s. In this case all
characters starting at position pos are deleted.

In the second form, substring p is removed n times from string s. The default for n is
infinity, i.e. all occurrences of p are removed.

In the third form, one or more substrings p, ... are removed from string s, in the order
of the arguments.

See also: replace, strings.include, strings.ltrim, strings.rtrim.

strings.repeat (s, n [, delimiter])

Returns a string that is the concatenation of n copies of the string s. An optional
delimiter string may also be given. If n is zero, the empty string will be returned.

strings.reverse (s)

Returns a string that is the string s reversed. See also: reverse, stack.reversed.

strings.rjustify (s, width [, filler])

Adds filling characters to the beginning of string s, as necessary to return a new
string of the given width. If s is a number, it is automatically converted to a string
before padding begins. The filling characters may be denoted by the third optional
argument filler (number or string), otherwise filler is a white space by default. If
the resulting string is longer than the given width, it is truncated to the last width
characters.

See also: strings.ljustify.

312 9 Strings

strings.rtrim (s [, c])

Returns a new string with all trailing white spaces removed from s. If a single
character is passed for c as an optional second argument, then all trailing
characters given by c are removed. If c is a multi-character string, then if existing it is
removed once from the end of s. The function supports pattern matching.

See also: trim operator, strings.lrtrim, strings.ltrim, strings.remove.

strings.rotateleft (s, n [, xorkey [, xorval]])

Rotates all the bits in the string s n bits to the left, with n in range 0 .. 7.

The n bits dropping off the beginning of the string will be appended to the resulting
string, so that there is no information loss when calling strings.rotateright to decrypt
it.

For optional arguments xorkey and xorval see strings.rotateright.

strings.rotateright (s, n [, xorkey [, xorval]])

Rotates all the bits in the string s n bits to the right, with n in range 0 .. 7.

The n bits dropping off the end of the string will be prepended to the resulting string,
so that there is no information loss when calling strings.rotateleft to decrypt it.

You can optionally xor the string by passing the third argument xorkey, an integer in
the range 0 .. 255. (Note that in case the string might be corrupted, the function
issues an error.) By explicitly setting the optional fourth argument xorval to true, you
can achieve further obfuscation of the string while xoring.

strings.separate (s, d [, any])

Splits a string s into its tokens. d is a string that specifies a set of delimiters that may
surround the token to be extracted. Thus, the delimiter in front of a token may be
different from the delimiter at its end.

All the tokens or returned in a sequence in sequential order. If s only consists of
characters that are part of d, or if s or d are empty strings, the function returns fail.

> strings.separate('a word, another word.', ' .,'):
seq(a, word, another, word)

If any third argument is passed, then a) the function returns a sequence with one
empty string if s is the empty string instead of fail, and b) if none of the delimiters
could be found in s, returns a sequence with s in it instead of fail.

See also: split operator, strings.fields, strings.iterate, strings.gseparate.

agena >> 313

strings.shannon (s)

Returns the normalised specific Shannon entropy, the specific Shannon entropy,
and the total information entropy (in bits) for string s, in this order.

The function does not look for any patterns that might be available for compression,
so its use is quite limited and gzip.deflate with the true option as third argument
might be a better alternative.

See also: strings.walker.

strings.strchr (s, i)

strings.strchr (s, c)

The function is an interface to the C strchr function, searches s for a single
character represented by its ASCII code i or the character c (a string of size 0 or 1)
and returns a substring starting from the first match to the end of s. The second
return is the position of the match, starting from 1. It returns null and 0 if no match
was found and issues an error if needle is non-positive.

See also: abs, strings.strrchr, strings.strstr.

strings.strcspn (s1, s2)

The function checks s1 for the first occurrence of any of the characters that are part
of s2 and returns the number of characters of s1 read before this first occurrence.
The function returns the length of string s1 if no characters of s1 matched to s2. If s1
or s2 are empty strings, the function will return 0. The function is an interface to the C
strcspn function.

Example:

> strings.strcspn('abcdef012', '0123456789'):
6

See also: strings.strspn.

strings.strcmp (s1, s2)

The function calls the C function strcmp and returns its result, "a value that has the
same sign as the difference between the first differing pair of characters" (GNU C
Library manual). If the result is negative, then s1 < s2; if it is zero, then s1 = s2, else
s1 > s2.

See also: strings.compare, strings.strcoll, strings.stricmp, strings.strncmp,
strings.strstr, strings.strverscmp.

314 9 Strings

strings.strcoll (s1, s2 [, lang])

Similar to strings.strcmp, but dependent on the current locale, see os.setlocale.
The check may vary across platforms. The function is an interface to the C strcoll
function.

The function accepts a third argument lang, a string, that determines the locale to
be used for the comparison of two strings, just for the single call and without
permanently changing the locale on the system. Examples:

> strings.strcoll('aäüßou', 'aausou'):
1

> strings.strcoll('aäüßou', 'aausou', 'German'):
-1

On some platforms you may have to pass a combination of the ISO 639-1
language code and the ISO 3166-1 region code instead of the full language
name, e.g.:

> strings.strcoll('aäüßou', 'aausou', 'de_DE'):

See also: strings.compare, strings.strverscmp, os.setlocale, skycrane.getlocales.

strings.stricmp (s1, s2)

Works like strings.strcmp, but compares case-insensitively.

See also: strings.compare, strings.strcoll, strings.strncmp, strings.strverscmp.

strings.strlen (s)

Returns the length of string s: the first return is the result of the call to the internal C
function strlen, and the second return is the internally stored length of s, returned by
Agena's size operator.

The difference between strings.strlen and size is that C's strlen only counts the
number of characters up to and excluding the first embedded zero (i.e. character
'\0'), whereas size returns the real length including embedded zeros, but without the
terminating zero. Example:

> s := 'abc' & char(0) & 'defgh';
> # 3 chars up to the first embedded zero, 9 chars at all

> strings.strlen(s):

3 9

agena >> 315

strings.strncmp (s1, s2, n)

Works like strings.strcmp, but compares only the first n characters, or less if at least
one of the string is shorter.

See also: strings.compare, strings.strcoll, strings.stricmp, strings.strverscmp.

strings.strrchr (s, i)

The function is an interface to the C strrchr function, searches s backwards from the
end for a single character represented by its ASCII code i and returns a substring
starting from the first match to the end of s. The second return is the position of the
match, starting from 1. It returns null and 0 if no match was found and issues an
error if needle is non-positive.

See also: abs, strings.strchr, strings.strstr.

strings.strspn (s1, s2)

The function determines the span of character set in string and returns the length of
the initial portion of s1 which consists only of characters that are part of s2. If the first
character in s1 is not in s2, the function will return 0. If s1 or s2 are empty strings, the
function will return 0. The function is an interface to the C strspn function.

Example:

> strings.strspn('012abcdef', '0123456789'):
3

See also: strings.strcspn.

strings.strstr (s1, s2)

The function is an interface to the C strstr function, searches s1 for a substring s2
and returns a substring starting from the first match to the end of s1. The second
return is the position of the match, starting from 1. It returns null and 0 if no match
was found. If s2 is an empty string, the function returns s1.

See also: strings.strchr, strings.strcmp, strings.strrchr.

strings.strtoul (s, base [, true])

Tries to convert an integer of base base represented by string s to a (decimal) value
and if successful returns it or pushes undefined otherwise. If the third argument is
true, then the decimal value and the empty string, or zero and the rest of s where
parsing failed, will be returned.

316 9 Strings

With the true option given, a value of 264 -1 may indicate an overflow if the value in
s is too big - without the option the return will automatically be set undefined in
these cases.

The function provides an interface to the underlying strtoull C function. Negative
values are auto-corrected internally, as the C function may overflow. Bases greater
than 36 are unsupported.

See also: math.convertbase, tonumber.

strings.strverscmp (s1, s2)

The function compares two version strings. It is a direct interface to the GNU C
strverscmp function. The following is a summary of the GNU documentation:

"If you have files jan1, jan2, ..., jan9, jan10, ..., it feels wrong when an application
orders them jan1, jan10, ..., jan2, ..., jan9, because the expected order is just: jan1,
jan2, ..., jan9, jan10, ...

The function returns an integer less than, equal to, or greater than zero if s1 is found,
respectively, to be earlier than, equal to, or later than s2.

Both input strings should be in plain ASCII."

See also: strings.compare, strings.strcmp, strings.strcoll, strings.stricmp.

strings.sub (s, i [, j])

Returns the substring of s that starts at i and continues until j; i and j can be
negative. If j is absent, then it is assumed to be equal to -1 (which is the same as
the string length). In particular, the call string.sub(s,1,j) returns a prefix of s with
length j, and string.sub(s, -i) (for a positive i) returns a suffix of s with length i.

If, after the translation of negative indices, i is less than 1, it is corrected to 1. If j is
greater than the string length, it is corrected to that length. If, after these
corrections, i is greater than j, the function returns the empty string.

Note that Agena's substring indexing auto-corrects the right border if it is
out-of-range, but does not change the left border, so for example ('agena')[2 to 10]
evaluates successfully but ('agena')[0 to 10] does not.

agena >> 317

strings.tobytes (s [, option [, bigendian]])

Converts a string s into a sequence of its numeric ASCII codes. If the string is empty,
an empty sequence will be returned. If option is true or the integer 4, the function
returns word-aligned 4-byte unsigned integers instead of individual bytes. If
bigendian is true, then with word-aligned 4-byte unsigned integers the result is in Big
Endian notation, otherwise it is Little Endian.

Note that numerical codes are not necessarily portable across platforms.

Example:

> s := strings.tobytes('agena', 4): # convert to 4-byte integers
seq(1852139361, 97)

> str := '';

> for i in s do # convert each 4-byte integer
> t := bytes.tobytes(i, 4) # to four single bytes and convert
> str &:= strings.tochars(t) # back to string
> od

> str:
agena

> # or just simply:

> strings.tochars(s, 4):

See also: split operator, strings.bytes, strings.iterate, bytes.tobytes, strings.tochars,
utils.hexlify.

strings.tochars (···)

strings.tochars (s [, nbytes [, little]])

In the first form, receives zero or more integers in the range 0 .. 255 and returns a
string with length equal to the number of arguments, in which each character has
the internal numerical code equal to its corresponding argument.

In the second form, converts all the integers in sequence s to a string. By default, s
is assumed to contain integers in the range 0 .. 255. If nbytes is 4, s should include
unsigned 4-byte integers. If little is the Boolean true - the default - the integers are
converted to Little Endian before assembling the string, otherwise pass false.

Note that numerical codes are not necessarily portable across platforms.

See also: strings.tobytes, toreg, toseq, totable.

318 9 Strings

strings.tolatin (s)

Creates a dynamically allocated copy of string s, changing the encoding from
UTF-8 to ISO-8859-15. Unknown code points are returned unchanged. The return is a
string. ISO-8859-15 is ISO-8859-1 plus the Euro symbol.

See also: aconv package, strings.islatin, strings.toutf8.

strings.tolower (s [, option])

Converts all uppercase letters in string s to lowercase. By default, only the
characters 'A' to 'Z' are transformed. If you pass any option, then also the diacritics
listed at the end of Chapter 9.1 are converted, too. s may include embedded
zeros, which are preserved in the output.

See also: lower, strings.toupper.

strings.toupper (s [, option])

Converts all lowercase letters in string s to uppercase. By default, only the
characters 'a' to 'z' are transformed. If you pass any option, then also the diacritics
listed at the end of Chapter 9.1 are converted, too. s may include embedded
zeros, which are preserved in the output.

See also: lower, strings.toupper.

strings.toutf8 (s)

Creates a dynamically allocated copy of string s, changing the encoding from
ISO-8859-15 to UTF-8. The return is a string. ISO-8859-15 is ISO-8859-1 plus the Euro
symbol.

See also: aconv package, strings.isutf8, strings.tolatin, strings.utf8size.

strings.transform (f, s)

Applies a function f to the ASCII value of each character in string s and returns a
new string. f must return an integer in the range [0, 255], otherwise an error will be
issued.

Note that numerical codes are not necessarily portable across platforms.

strings.uncapitalise (s [, sep])

Converts the first character in string s to lower case - if possible - and returns the
uncapitalised string. If s is the empty string, it is simply returned. It also converts
ligatures if the Western European character set is being used. If sep, a string, is
given, then all the words in s - separated by sep - will be uncapitalised.

agena >> 319

See also: lower, strings.capitalise.

strings.unpack (fmt, s [, pos])

Returns the values packed in string s (see strings.pack) according to the format
string fmt, see Chapter 9.1.4. An optional pos marks where to start reading in s
(default is 1). After the read values, this function also returns the index of the first
unread byte in s. If s - depending on the requested transformation - is too short, the
function just returns null and zero.

strings.unwrap (s [, delim])

Removes an enclosing character chr from string s and returns the modified string
i.e. with chr deleted from both the start and end of s. One or more potential
enclosing characters are given in string delim, which defaults to a single and a
double quote (`"'`).

With the first enclosing character in delim found in s, the function returns the
shortened string.

If s is not enclosed by any of the characters in delim, s will be returned unmodified.

See also: strings.between, strings.iswrapped, strings.lrtrim, strings.wrap.

strings.utf8size (s)

Determines the size of the string s in UTF-8 encoding and returns a non-negative
integer. The return is not the number of bytes used to represent a UTF-8 string, but
the number of single- and multi-byte `UTF-8 characters`. Thus, for example, while
size strings.toutf8('à') returns 2, strings.utf8size(strings.toutf8('à'))

returns 1.

Please note that the function may not produce correct results with text input in a
console. The function can only return correct results if the string to be checked has
been read from a file.

See also: size, strings.isutf8.

strings.walker (s [, stream [, stats]])

For string s, returns the normalised specific Shannon entropy.

By default s is considered to be a bit stream, otherwise, if the second argument
stream is set to true, to be a byte stream. If the third argument stats is true, then
the function also returns the serial correlation coefficient, the Chi square distribution,
the mean of the ASCII values in s, and the Monte Carlo value for Pi, in this order.

See also: strings.shannon.

320 9 Strings

strings.words (s [, delim [, true]])

Counts the number of words in a string s. A word is any sequence of characters
surrounded by white spaces or its left and/or right borders. The user can define any
other delimiter by passing an optional character delim (of type string) as a second
argument. If the third argument is true, then succeeding delimiters are ignored. The
return is a number.

See also: strings.hits.

strings.wrap (s, t [, true])

Wraps a string s with another strings t, returning the Agena equivalent of t & s & t.

If s is a number, null or a Boolean, it is converted to a string before the operation
starts.

If the third argument is true, then wrapping is done only if t is missing at the start
and the end of s; otherwise simply returns s.

See also: strings.between, strings.iswrapped, strings.lrtrim, strings.unwrap.

agena >> 321

9.1.3 Patterns

Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

� x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the
character x itself.

� .: (a dot) represents all characters.
� %a: represents all letters.
� %c: represents all control characters.
� %d: represents all digits.
� %l: represents all lowercase letters.
� %k: represents all upper and lower-case consonants, y and Y are not

considered consonants.
� %p: represents all punctuation characters.
� %s: represents all space characters, e.g. white spaces, newlines, tabulators,

and carriage returns,
� %u: represents all uppercase letters.
� %v: represents all upper and lower-case vowels including the letters y and Y.
� %w: represents all alphanumeric characters.
� %x: represents all hexadecimal digits.
� %z: represents the character with representation 0.
� %<y>: (where <y> is any non-alphanumeric character) represents the

character y. This is the standard way to escape the magic characters. Any
punctuation character (even the non magic) can be preceded by a '%'
when used to represent itself in a pattern.

� [set]: represents the class which is the union of all characters in set. A range
of characters may be specified by separating the end characters of the
range with a '-'. All classes %y described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w_] (or [_%w]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the
octal digits plus the lowercase letters plus the '-' character.

� The interaction between ranges and classes is not defined. Therefore,
patterns like [%a-z] or [a-%%] have no meaning.

� [^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, %v etc.), the corresponding
uppercase letter represents the complement of the class. For instance, %S

represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent to %l.

322 9 Strings

Pattern Item:

A pattern item may be

• a single character class, which matches any single character in the class;
• a single character class followed by '*', which matches 0 or more repetitions

of characters in the class. These repetition items will always match the
longest possible sequence;

• a single character class followed by '+', which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

• a single character class followed by '-', which also matches 0 or more
repetitions of characters in the class. Unlike '*', these repetition items will
always match the shortest possible sequence;

• a single character class followed by '?', which matches 0 or 1 occurrence of
a character in the class;

• %n, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below);

• %bxy, where x and y are two distinct characters; such item matches strings
that start with x, end in y, and where the x and y are balanced. This means
that, if one reads the string from left to right, counting +1 for an x and -1 for a
y, the ending y is the first y where the count reaches 0. For instance, the item
%b() matches expressions with balanced parentheses;

• %f[set], a frontier pattern; such item matches an empty string at any position
such that the next character belongs to set and the previous character does
not belong to set. The set `set` is interpreted as previously described. The
beginning and the end of the subject are handled as if they were the
character '\0'.

Pattern:

A pattern is a sequence of pattern items. A '^' at the beginning of a pattern anchors
the match at the beginning of the subject string. A '$' at the end of a pattern
anchors the match at the end of the subject string. At other positions, '^' and '$'
have no special meaning and represent themselves.

Captures:

A pattern may contain sub-patterns enclosed in parentheses; they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numbered according to
their left parentheses. For instance, in the pattern '(a*(.)%w(%s*))', the part of the
string matching 'a*(.)%w(%s*)' is stored as the first capture (and therefore has
number 1); the character matching '.' is captured with number 2, and the part
matching '%s*' has number 3.

agena >> 323

As a special case, the empty capture () captures the current string position (a
number). For instance, if we apply the pattern '()aa()' on the string 'flaaap', there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

9.1.4 Format Strings for Pack and Unpack

The first argument to strings.pack, strings.packsize, and strings.unpack is a format
string, which describes the layout of the structure being created or read.

A format string is a sequence of conversion options. The conversion options are as
follows:

� <: sets Little Endian
� >: sets Big Endian
� =: sets native Endian
� ![n]: sets maximum alignment to n (default is native alignment)
� b: a signed byte (char)
� B: an unsigned byte (char)
� h: a signed short (native size)
� H: an unsigned short (native size)
� l: a signed long (native size)
� L: an unsigned long (native size)
� j: a lua_Integer
� J: a lua_Unsigned
� T: a size_t (native size)
� i[n]: a signed int with n bytes (default is native size)
� I[n]: an unsigned int with n bytes (default is native size)
� f: a float (native size)
� d: a double (native size)
� n: an Agena number of C type double = lua_Number
� cn: a fixed-sized string with n bytes
� z: a zero-terminated string
� s[n]: a string preceded by its length coded as an unsigned integer with n bytes

(default is a size_t)
� x: one byte of padding
� Xop: an empty item that aligns according to option op (which is otherwise

ignored)
� ' ': (a white space) ignored

(A "[n]" means an optional integral numeral.) Except for padding, spaces, and
configurations (options "xX <=>!"), each option corresponds to an argument in
strings.pack or a result in strings.unpack.

For options "!n", "sn", "in", and "In", n can be any integer between 1 and 16. All
integral options check overflows; strings.pack checks whether the given value fits in

324 9 Strings

the given size; strings.unpack checks whether the read value fits in a Lua integer.
For the unsigned options, Lua integers are treated as unsigned values too.

Any format string starts as if prefixed by "!1=", that is, with maximum alignment of 1
(no alignment) and native endianness.

Native endianness assumes that the whole system is either Big or Little Endian. The
packing functions will not emulate correctly the behavior of mixed-Endian formats.

Alignment works as follows: For each option, the format gets extra padding until the
data starts at an offset that is a multiple of the minimum between the option size
and the maximum alignment; this minimum must be a power of 2. Options "c" and
"z" are not aligned; option "s" follows the alignment of its starting integer.

All padding is filled with zeros by strings.pack and ignored by strings.unpack.

agena >> 325

9.2 memfile - Memory File for Strings

The memfile library implements a character buffer, i.e. a `memory file` userdata
that stores a string of almost unlimited length, along with functions to administer it. It
is useful if you have to iteratively concatenate a lot of strings, being 20 times faster
than the & operator.

Typical usage:

> m := memfile.charbuf() # create a memory file

> memfile.append(m, 'nasa', 'jpl') # put two strings into it

> f := memfile.iterate(m, 1, 2) # from position 1, return 2 chars per call

> f():
na

> f():
sa

> f():
jp

> f():
l

> f():

null

Dump the contents of the buffer, making room for new content:

> memfile.dump(m):

nasajpl

Let us declare a bit field of two bytes:

> b := memfile.bitfield(16)

and in these two bytes, set the even bits to 1, i.e. twice to 0b10101010 = 170:

> for i to 16 do if even(i) then b[i] := 1 fi od

The contents of the field is:

> b:
bitfield(0b10101010, 0b10101010)

Get some bits, the first and the tenth:

> b[1]:
0

> b[10]:
1

326 9 Strings

Clear the bits in the first byte:

> for i to 8 do if even(i) then b[i] := 0 fi od

> b:
bitfield(0b00000000, 0b10101010)

The package provides the following metamethods:

garbage collection'__gc'

formatting for output at the console; with bit fields, returns
binary representations

'__tostring'

filled operator'__filled'

empty operator'__empty'

= equality operator'__eq'

notin operator'__notin'

in operator'__in'

size operator, number of characters currently stored; with bit
fields returns the number of bits in the field, not bytes

'__size'

write operation, e.g. n[p] := value, with p the index, counting
from 1; with bit fields, sets a bit, not a byte

'__writeindex'

read operation, e.g. n[p] or n[p to q], with p, q indices, both
counting from 1; with bit fields, reads a bit, not a byte

'__index'

FunctionalityMetamethod

The functions are:

memfile.append (memfile, v [,···] [, delim=str])

memfile.append (memfile, v [,···] [, false])

In the first form, appends one or more numbers, strings, Booleans or null's v, etc. to
the end of memfile. Anything not a string is converted to one before insertion. The
function returns nothing.

In the second form, appends one or more bytes v, ..., all unsigned integers in the
range 0 .. 255, into byte buffer memfile. v may also be one or more sequences of
bytes. Pass false as the very last argument if you want v, ... to be converted to
strings before insertion.

You can specify the optional character delimiter option `delim = str` that
separates each value to be added to the memory file, e.g. memfile.append(m,
'a', 'b', 'c', delim = ';') actually adds the string 'a;b;c;'. You may later on
drop the final delimiter by calling memfile.dump with the size of the delimiter.

See also: memfile.move, memfile.prepend, memfile.purge, memfile.put,
memfile.rewind, memfile.setbyte, memfile.setitem.

agena >> 327

memfile.attrib (memfile)

Returns the total capacity of a memfile and the current number of allocated bytes,
in this order.

See also: memfile.getsize.

memfile.bitfield (n [,···])

Creates a bit field of at least n bits and optionally sets zeros or ones into this field.
The return is a byte buffer with initially all positions set to zero.

If you pass optional ones or zeros, or the Booleans true or false, they are set from
the right end to the left end of the new bit field, e.g. if we have

> b := memfile.bitfield(4, 1, 1, 1, 0)

we will store 0b0111 = 7 decimal into the field. If you need it the other way around,
execute something like

> b := memfile.bitfield(4, unpack(reverse(reg(1, 1, 1, 0))))

The number of bits actually allocated is always a multiple of 8, i.e. the field is filled
up to whole bytes. In the example above, instead of four bits we created a bit field
of eight bits.

Since the memory file created is no different from the one created by
memfile.charbuf, with the exception of the metatable, you can apply all the other
memfile functions on it. The bit field metatable `bitfield` contains specialised
functions to get, set, determine the size and print bit fields, which work on the bit
and not byte level.

See also: memfile.attrib, memfile.bytebuf, memfile.charbuf, memfile.resize.

memfile.bytebuf ([n [,···]])

Creates a memory file of fixed size n bytes and fills it with zeros if n > 0. It can also
initialise the buffer with bytes (second to last argument). If no argument is given, n is
set to zero.

Since the memory file created is no different from the one created by
memfile.charbuf, you can apply all the other memfile functions on it.

If n is zero, a byte buffer of size zero with no pre-filled slots will be created. This allows
to easily insert bytes later with calls to memfile.append without having to run
memfile.rewind or memfile.move before.

See also: memfile.attrib, memfile.bitfield, memfile.charbuf, memfile.resize.

328 9 Strings

memfile.charbuf ([v [,···] [, delim=str]])

Creates a memory file and optionally puts one or more numbers, strings, Booleans
or null's v into it. The function returns the memory file created.

You can specify the optional character delimiter option `delim = str` that
separates each value to be added to the memory file, e.g. memfile.charbuf('a',
'b', 'c', delim = ';') actually adds the string 'a;b;c;'. You may later on drop
the final delimiter by calling memfile.dump with the size of the delimiter.

See also: memfile.attrib, memfile.bytebuf, memfile.resize.

memfile.clearbit (memfile, n)

memfile.clearbit (memfile, pos, n)

In the first form, unsets absolute bit position n in the memfile, i.e. sets it to 0. n counts
from 1. To set a bit, use memfile.setbit.

In the second form, in byte no. pos of the memfile, unsets the n-th bit, i.e. sets it to 0,
where n > 0.

The return is the modified byte at byte position pos.

See also: memfile.getbit, memfile.setbit, memfile.setbyte, memfile.setchar,
memfile.setfield, memfile.setitem.

memfile.dump (memfile [, n])

Without a second argument, returns the whole string stored in memfile and resets
memfile completely to its original state, so that it can store a new string. With a byte
buffer, the function refills it with zeros again after dumping the contents.

If a positive integer n is passed as an optional argument, then the function just
dumps n bytes from the end (tail) of the memory file and returns them as a string,
leaving the rest of the memfile untouched. If the memfile should be empty after this
operation, it is reset, which is equal to calling the function without an optional
argument.

The function returns null, if memfile is empty.

Examples:

> m := memfile.bytebuf();

> memfile.append(m, 'abcd');

agena >> 329

Cut the buffer to size 2:

> memfile.move(m, 2);

Append 'xyz' to remaining 'ab':

> memfile.append(m, 'xyz'):

> memfile.substring(m):

abxyz

Cut the buffer to zero size:

> memfile.move(m, 0):

> memfile.dump(m):

null

See also: memfile.get, memfile.getbytes, memfile.rewind, memfile.substring,
memfile.tostring.

memfile.find (memfile, str [, pos])

memfile.find (memfile, byte [, pos])

memfile.find (memfile, s [, pos])

With a character or byte buffer, searches memfile for a substring str and returns its
position, an integer, or null if the string has not been found. The optional argument
pos indicates the position where to start the search, and is 1 by default.

With a byte buffer, searches for the given byte or sequence s of bytes,
non-negative integers in the range 0 to 255.

The function does not support pattern matching, use memfile.match instead.

See also: memfile.mfind, memfile.substring, in metamethod.

memfile.get (memfile [, n])

Without a second argument, returns the whole string stored in memfile.

If a positive integer n is passed as an optional argument, then the function just
returns n characters from the end (tail) of the memory file.

The function contrary to memfile.dump does not remove any contents and also
does not reset or re-size the memory file.

See also: memfile.dump, memfile.getbytes, memfile.substring.

330 9 Strings

memfile.getbit (memfile, n)

memfile.getbit (memfile, p [, n])

In the first form, returns the bit stored at absolute bit position n in the memfile. n
counts from 1.

In the second form, from byte no. p in the memfile, returns the n-th bit, where p and
n > 0.

The return is either 1 or 0.

See also: memfile.clearbit, memfile.getfield, memfile.setbit.

memfile.getbyte (memfile, pos [, option])

From memfile, returns the byte at position pos, with pos <> 0. If pos is negative, the
position is relative to the end of the string. The return is an integer in the range [0,
255].

If any option is given, then the function returns a string with the binary representation
of the byte at pos, e.g. '0b10000000'.

See also: memfile.getbit, memfile.getbytes, memfile.getchar, memfile.getitem.

memfile.getbytes (memfile [, pos])

From memfile, starting from byte position pos in memfile, returns a register of all the
bytes (integers in the range 0 .. 255) stored in the memory file. pos is 1 by default,
i.e. all bytes will be returned. If pos is negative, the position is relative to the end of
the string.

See also: memfile.dump, memfile.getbit, memfile.getbyte, memfile.getchar,
memfile.getitem, memfile.getsize, size metamethod.

memfile.getchar (memfile, pos)

From memfile, returns the character at position pos, with p<> 0. If pos is negative,
the position is relative to the end of the string. The return is a string of size 1: the
character.

See also: memfile.getbyte, memfile.get, memfile.getitem, memfile.substring.

agena >> 331

memfile.getfield (memfile, n)

Returns the bit stored at absolute bit position n in memfile. n counts from 1.

The return is either 1 or 0.

See also: memfile.setfield, memfile.clearbit, memfile.getbit, memfile.setbit.

memfile.getitem (memfile, p [, n])

From memfile, returns the substring starting at position p and of length n, with
non-zero p. If p is negative, the position is relative to the end of the string. By default,
n is 1.

See also: memfile.getbyte, memfile.getchar, memfile.getsize, memfile.iterate,
memfile.setitem, memfile.substring.

memfile.getsize (memfile)

From memfile, returns the number of characters (bytes) stored in it.

See also: size metamethod, memfile.attrib.

memfile.iterate (memfile [, pos [, n]])

Returns an iterator function that when called, returns the next n characters stored in
memfile, starting at position pos. If there are no more characters, the iterator returns
null. By default pos and n are 1.

See also: memfile.getitem, memfile.substring.

memfile.map (f, memfile [,···])

Maps a function f on each character in memfile, in-place. f must always return a
number or a string.

memfile.match (memfile, str [, pos])

With a byte or character buffer, searches memfile for a substring str and returns its
start and end position, both positive integer plus the pattern found, or null if the
string has not been found. The optional argument pos indicates the position where
to start the search, and is 1 by default.

The function supports pattern matching, see Chapter 9.1.3.

See also: memfile.find, memfile.mfind, memfile.substring, in metamethod.

332 9 Strings

memfile.mfind (memfile, str [, pos])

memfile.mfind (memfile, byte [, pos])

memfile.mfind (memfile, s [, pos])

With a character or byte buffer, searches memfile for all occurrences of substring
str and returns pairs representing the respective start and end positions, or null if
the string has not been found at all. The optional argument pos indicates the
position where to start the search and is 1 by default. The function supports pattern
matching, see Chapter 9.1.3.

> m := memfile.charbuf();

> memfile.append(m, 'NASA/JPL');

> memfile.mfind(m, 'A'): # find letter A
seq(2:2, 4:4)

> memfile.mfind(m, '(%w)'): # find all characters

seq(1:1, 2:2, 3:3, 4:4, 6:6, 6:6, 7:7, 8:8)

With a byte buffer, searches for the given byte or sequence s of bytes,
non-negative integers in the range 0 to 255.

See also: memfile.match, memfile.mfind, memfile.substring, in metamethod.

memfile.move (memfile, pos)

Sets the end of the current memfile to the given position pos, inclusive, with pos a
non-negative integer, or in other words: changes the size of the memfile without
reallocating memory. If pos is 0, the memfile is cleared. If pos is, for example 2, then
if you call memfile.append thereafter with a substring, it will be added starting at
position 3, preserving the values at position 1 and 2. The function returns nothing.

See also: memfile.append, memfile.resize, memfile.rewind.

memfile.prepend (memfile, v [,···] [, delim=str])

memfile.prepend (memfile, v [,···], true)

In the first form, inserts one or more numbers, strings, Booleans or null's v, etc. to the
start of memfile. Anything not a string is converted to one before the insertion. The
function returns nothing.

In the second form, by passing true as the very last argument, prepends one or
more bytes v, ..., all unsigned integers in the range 0 .. 255, in byte buffer memfile. v
may also be one or more sequences of bytes.

You can specify the optional character delimiter option `delim = str` that
separates each value to be added to the memory file, e.g. memfile.append(m,
'a', 'b', 'c', delim = ';') actually adds the string 'a;b;c;'. You may later on
drop the final delimiter by calling memfile.dump with the size of the delimiter.

agena >> 333

See also: memfile.move, memfile.append, memfile.rewind, memfile.purge,
memfile.put, memfile.setbyte, memfile.setitem.

memfile.purge (memfile, pos [, n])

Starting from position pos, removes n bytes or characters from memory file memfile,
shifting down other elements to close the space. n is 1 by default. If pos is negative
then the deletion will start at the |pos|-th position from the right. The function returns
true on success and false otherwise.

See also: memfile.append, memfile.prepend, memfile.put, memfile.setbyte,
memfile.setitem.

memfile.put (memfile, pos, str)

memfile.put (memfile, pos, b [,···])

Puts string str or sequence of bytes b, ... into memory file memfile starting from
position pos, shifting the other values into open space. If pos is negative then the
deletion will start at the |pos|-th position from the right.

The function automatically grows the memory file if needed. It returns nothing.

See also: memfile.append, memfile.prepend, memfile.purge, memfile.setbyte,
memfile.setitem.

memfile.read (fh, memfile [, bufsize])

Reads data from the file denoted by its filehandle fh into the given memfile
userdata.

The file should have previously been opened with binio.open and should finally be
closed with binio.close.

By default, the function reads in the entire file if bufsize is not given.

If a positive integer has been passed with bufsize, the function only reads in the
given number of bytes per each call, returns the number of bytes actually read and
increments the file position thereafter so that the next bytes in the file can be read
with a new call to memfile.read.

(Passing the bufsize argument may also be necessary if your platform requires that
an internal input buffer is aligned to a certain block size.)

If the end of the file has been reached, or there is nothing to read at all, null will be
returned. In case of an error, it quits with the respective error.

If you want to read in the file again in the current session, call binio.rewind with the
file handle before.

334 9 Strings

Example:

> m := memfile.charbuf();

> print(size m); # should be zero

> fd := binio.open('memfile.bin');

> pos := 1;

> # the following loop is equivalent to the simple call
> # `memfile.read(fd, m)`:

> do
> pos := memfile.read(fd, m, 512) # read 512 bytes per each call
> until pos = null;

> binio.close(fd); # should now be non-zero

> print(size m);

See also: memfile.write.

memfile.replace (memfile, pattern, repl [, init [, n]])

Replaces pattern with repl in memory file memfile. The return is the number of
substitutions made. pattern and repl may either be strings or byte sequences.

The replacements start at position init, which be default is 1, i.e. the start of the
buffer. If n is given, then the number of substitutions is limited by that number. By
default, all occurrences are replaced.

The function supports pattern matching, see Chapter 9.1.3 for more information on
patterns.

memfile.resize (memfile, n [, flag])

Resizes the memfile to exactly n places (bytes), with n > 0. It can grow or shrink a
memory file and in the latter case preserves the remaining content. If the memory
file is to be enlarged, the function optionally fills the new space with zeros if the third
argument flag true is given, otherwise you may just pass false which is the default.

You may call bytes.optsize before to determine the optimal number of places
(bytes) in the memory file to be word-aligned.

See also: memfile.attrib, memfile.bytebuf, memfile.charbuf, memfile.getitem,
memfile.move, memfile.rewind.

memfile.reverse (memfile)

Reverses the data, i.e. bytes, in a memory file, in-place. The function returns
nothing.

agena >> 335

memfile.rewind (memfile)

Sets the current size of a memfile to zero, effectively clearing the buffer without
re-allocating memory. The function returns nothing.

See also: memfile.append, memfile.dump, memfile.move.

memfile.setbit (memfile, n)

memfile.setbit (memfile, pos, n [, val])

In the first form, sets absolute bit position n in the memfile to 1. n counts from 1. To
clear a bit, use memfile.clearbit.

In the second form, in byte no. pos of the memfile, sets the n-th bit to val, where val
is either a Boolean or 0 or 1 and n > 0. If val is omitted, sets the bit to 1.

The return is the modified byte at byte position pos.

See also: memfile.clearbit, memfile.getbit, memfile.setbyte, memfile.setchar,
memfile.setfield, memfile.setitem.

memfile.setbyte (memfile, pos, i [, count])

Sets byte i of type (non-negative) integer into memfile at the existing position pos,
with pos <> 0.

If pos is negative, the position is relative to the end of the string. i should be an
integer in the range [0, 255]. The function returns nothing.

If a fourth argument count is given, then the function sets count bytes - starting from
position pos - to the given byte. By default, count is 1. If pos has not been set before,
the function fills all preceding positions with zeros, if they have not yet been already
set to any byte.

See also: memfile.getbyte, memfile.getchar, memfile.setbit, memfile.setchar,
memfile.setitem.

memfile.setchar (memfile, pos, c)

Sets character c of type string into memfile at the existing position pos, with pos <>
0. If c consists of multiple characters, only the first character will be written to the
memory file.

If pos is negative, the position is relative to the end of the string. i should be an
integer in the range [0, 255]. The function returns nothing.

If a fourth argument count is given, then the function will set count places - starting
from position pos - to the given character. By default, count is 1. If pos has not been

336 9 Strings

set before, the function will fill all preceding positions with white spaces, if they have
not yet been already set.

See also: memfile.getbyte, memfile.getchar, memfile.setbit, memfile.setchar,
memfile.setitem.

memfile.setfield (memfile, n, val)

Sets the n-th bit in a memory file to val, where val is either the Boolean true or false,
or 0 or 1. In n is negative, then the |n|-th bit from the left side of the buffer is set or
unset.

The return is the modified byte in which the bit resides.

See also: memfile.clearbit, memfile.getfield, memfile.setbit.

memfile.setitem (memfile, str, pos)

memfile.setitem (memfile, byte, pos)

In the first form, sets a substring str into memfile at position pos, with non-zero pos. If
the substring is too long, the function issues an error. If pos is negative, the position is
relative to the end of the string.

In the second form, does the same with the non-negative integer byte.

The function returns nothing.

See also: memfile.append, memfile.prepend, memfile.purge, memfile.getitem,
memfile.setbyte, memfile.setchar.

memfile.shift (memfile, n)

Rotates the contents of the buffer memfile n bytes to the right if n is positive, and n
bytes to the left if n is negative. The function returns nothing.

See also: memfile.move, memfile.substring.

memfile.substring (memfile [, p [, q]])

From memfile, returns the substring from position p to position q, with non-zero p, q. If
p or q are negative, the respective positions are relative to the end of the string. q is
p by default. If p and q are missing, the whole contents is returned without dumping
it. The function returns null if the buffer is empty.

See also: memfile.dump, memfile.get, memfile.getitem, memfile.tostring.

agena >> 337

memfile.tostring (b [,···])

memfile.tostring (memfile)

In the first form, converts one or more bytes b, ... into a string, to be used for
example as search criteria in memfile.find. Each byte should be an unsigned
integer in the range 0 .. 255. b may also be a sequence of one or more bytes.

In then second form, returns the whole contents of memfile as a string without
dumping the contents.

See also: memfile.substring.

memfile.write (fh, memfile [, pos [, nchars]])

Writes the string in a memfile userdata to the file denoted by its numeric file handle
fh.

The file should be opened with binio.open and closed with binio.close after
completion.

The start position pos is 1 by default but can be changed to any other valid position
in the memfile.

The number of characters (not necessarily bytes) to be written can be changed by
passing an optional fourth argument nchars, a positive number, and by default
equals the total number of characters in memfile. (Passing the nchars argument
may also be necessary if your platform requires that buffers must be aligned to a
particular block size.)

The function returns the index of the next start position (an integer) for a further call to
memfile.write to write further characters, where the return should be passed to the
third pos argument.

If the end of the string in memfile has been reached, the function returns null and
flushes all unwritten content to the file so that you do not have to call binio.sync
manually.

No further information is stored to the file created.

Example on how to write a string of 8,000 characters piece-by-piece:

> m := memfile.charbuf();

> to 1000 do
> memfile.append(m, 'nasa/jpl')
> od;

> fd := binio.open('memfile.bin');

> pos := 1;

338 9 Strings

> # The following is equivalent to "memfile.write(fd, m)":

> do # write 1024 values per each call
> pos := memfile.write(fd, m, pos, 1024)
> until pos = null;

> binio.close(fd);

Use binio.sync if you want to make sure that any unwritten content is written to the
file when calling memfile.write multiple times.

See also: memfile.read.

agena >> 339

9.3 utf8 - UTF-8 Helpers

This library provides basic support for UTF-8 encoding. It provides all its functions
inside the table utf8. This library does not provide any support for Unicode other than
the handling of the encoding. Any operation that needs the meaning of a
character, such as character classification, is outside its scope.

Unless stated otherwise, all functions that expect a byte position as a parameter
assume that the given position is either the start of a byte sequence or one plus the
length of the subject string. As with many string functions, negative indices count
from the end of the string.

Functions that create byte sequences accept all values up to 0x7FFFFFFF, as
defined in the original UTF-8 specification; that implies byte sequences of up to six
bytes.

Functions that interpret byte sequences only accept valid sequences (well formed
and not overlong). By default, they only accept byte sequences that result in valid
Unicode code points, rejecting values greater than 10FFFF and surrogates. A
boolean argument lax, when available, lifts these checks, so that all values up to
0x7FFFFFFF are accepted. (Not well formed and overlong sequences are still
rejected.)

utf8.chars (···)

Receives zero or more integers, converts each one to its corresponding UTF-8 byte
sequence and returns a string with the concatenation of all these sequences.

utf8.charpattern

The pattern (a string, not a function) "[\0-\x7F\xC2-\xF4][\x80-\xBF]*", which matches
exactly one UTF-8 byte sequence, assuming that the subject is a valid UTF-8 string.

utf8.codes (s [, lax])

Returns values so that the construction

 for p, c in utf8.codes(s) do body od

will iterate over all characters in string s, with p being the position (in bytes) and c the
code point of each character. It raises an error if it meets any invalid byte
sequence.

340 9 Strings

utf8.codepoint (s, [, i [, j [, lax]]])

Returns the codepoints (as integers) from all characters in s that start between byte
position i and j (both included). The default for i is 1 and for j is i. It raises an error if
it meets any invalid byte sequence.

utf8.len (s, [, i [, j [, lax]]])

Returns the number of UTF-8 characters in string s that start between positions i and j
(both inclusive). The default for i is 1 and for j is -1. If it finds any invalid byte
sequence, returns a false value plus the position of the first invalid byte.

utf8.offset (s, n [, i])

Returns the position (in bytes) where the encoding of the n-th character of s
(counting from position i) starts. A negative n gets characters before position i. The
default for i is 1 when n is non-negative and size s + 1 otherwise, so that
utf8.offset(s, -n) gets the offset of the n-th character from the end of the string. If the
specified character is neither in the subject nor right after its end, the function
returns null.

As a special case, when n is 0 the function returns the start of the encoding of the
character that contains the i-th byte of s.

This function assumes that s is a valid UTF-8 string.

agena >> 341

9.4 aconv - Internationalization

As a plus package, the aconv package is not part of the standard distribution and
must be activated with the import statement, i.e. import aconv.

The package is not available for Mac OS X.

The aconv library allows to convert strings from one code page (character set) to
another. For a list of available code pages, see aconv.list. It is a port to the GNU
iconv package, where iconv stands for `internationalization conversion`.

Typical usage: First open a handle by passing the from code page and the to
code page, in this example, we convert a text from Latin-1 to UTF-8:

> import aconv

> cd := aconv.open('latin1', 'utf-8');

> aconv.convert(cd, 'äöüß'):
-ä-ö-ü+í

After all strings have been converted, the handle must be closed.

> aconv.close(fd);

Hint for UNIX & MacOS X users: You must have the iconv package installed on your
system in order to use this package.

The available functions are:

aconv.open (from, to)

Opens a new conversion descriptor, from the from character set (a string) to the to
character set (also a string). Concatenating "//TRANSLIT" to the first argument will
enable character transliteration and concatenating "//IGNORE" to the first argument
will cause iconv to ignore any invalid characters found in the input string.

This function returns a new converter or issues an error. For a list of available
character sets, see aconv.list. from and to may be given in upper and lower case.

342 9 Strings

aconv.convert (cd, str)

Converts string str to the desired character set. cd depicts the converter descriptor.
This method always returns the converted string on success, and null and an error
code otherwise:

� aconv.ERROR_NO_MEMORY
Failed to allocate enough memory in the conversion process.

� aconv.ERROR_INVALID
An invalid character was found in the input sequence.

� aconv.ERROR_INCOMPLETE
An incomplete character was found in the input sequence.

� aconv.ERROR_FINALIZED
Trying to use an already-finalized converter. This usually means that the user was
tweaking the garbage collector private methods.

� aconv.ERROR_UNKNOWN
There was an unknown error.

See also: strings.tolatin, strings.toutf8.

aconv.close (cd [, ···])

Closes one or more converters cd and for each converter successfully closed
returns true, or false otherwise.

aconv.list ()

Returns a table of all supported codepages.

agena >> 343

9.5 hashes - Hashes

As a plus package, the hashes package is not part of the standard distribution and
must be activated with the import statement, i.e. import hashes.

9.5.1 Introduction

The packages computes various hashes for variable-sized strings and for numbers.
All the functions require a string or number as the first argument, and - with the
exception of the hashes.md5 function - optionally the maximum number of slots in
an assumed hash table as the second argument if you want the modulus of the
hash value to be returned. Alternatively, you can tentatively apply hashes.fibmod or
hashes.fibmod2 to the resulting hash for more evenly distributed results.

For almost each of the functions listed below an algorithm in the Agena language
roughly explaining its mode of operation has been given.

9.5.2 Usefulness

With a dictionary of 517,996 surnames, where each surname consists of 7.55
characters on average, the following table shows the performance of some string
hashes, computed on an Intel i-5 6500 CPU, 3.2 GHz.

2.302391.000075murmur3
2.302231.000044murmur2
6.94101.000000md5
2.2239271.001793lua
2.392301.000058jen
2.3748'9901.017662ispell
2.242361.000070fnv
2.2842367'7503.447653fletcher
2.41511'3771.022457elf
2.462381.000073djb2rot
2.662631.000122djb2
2.3524081.000788djb
2.492231.000044derpy
2.3041'7951.003477dek
2.272331.000064crc32
3.2023452'5157.910631crc16
2.333281.000054cksum
2.55447477'13012.675476bsd
2.24'656363'8313.360010bp
2.3721211.000234bkdr
2.33511'3771.022457asu
2.462281.000054adler32

Running
time

Max. values
per hash

CollisionsCollision quotientHash

344 9 Strings

5.75101.000000varlen
2.3431'3191.002553superfast
2.298'712453'5868.042167strval
2.2555'0641.009873sth
2.312331.000064sdbm
2.2924551.000879sax
2.192381.000073rs
2.3723391.000655roaat
2.2731'9521.003783raw
2.712291.000056pl
2.16511'3771.022457pjw
2.172511.000098oaat
2.572341.000066murmur3128

Running
time

Max. values
per hash

CollisionsCollision quotientHash

9.5.3 Summary of Operators and Functions

Numeric Hashes and Checksums

%, symmod, math.morton, math.modulus, math.nearmod, bytes.parity,
hashes.damm, hashes.digitsum, hashes.droot, hashes.fibmod,
hashes.fibmod2, hashes.ftok, hashes.interweave, hashes.j32to32,
hashes.jinteger, hashes.jnumber, hashes.luhn, hashes.mix, hashes.mix64,
hashes.mix64to32, hashes.numlua, hashes.parity, hashes.reflect,
hashes.squirrel32, hashes.squirrel64, hashes.varlen, hashes.verhoeff

String Hashes

hashes.adler32, hashes.asu, hashes.bkdr, hashes.bp, hashes.bsd,
hashes.cksum, hashes.crc8, hashes.crc16, hashes.crc32, hashes.dek,
hashes.derpy, hashes.djb, hashes.djb2, hashes.djb2rot, hashes.elf,
hashes.fletcher, hashes.fuv, hashes.ispell, hashes.jen, hashes.lua,
hashes.md5, hashes.murmur2, hashes.murmur3, hashes.murmur3128,
hashes.oaat, hashes.pjw, hashes.pl, hashes.raw, hashes.roaat, hashes.rs,
hashes.sax, hashes.sdbm, hashes.sha256, hashes.sha512, hashes.sth,
hashes.strval, hashes.sumupchars, hashes.superfast, hashes.sysv,
hashes.varlen

agena >> 345

9.5.4 Functions

hashes.adler32 (s [, n [, h]])

Returns the Adler32 hash for string s. If n is given and non-zero, the hash is taken
modulo n before returning. h by default is 65521, but may be any other
non-negative integer.

hashes.asu (s [, n [, h]])

Returns a hash for string s as proposed by A. V. Aho, R. Sethi, J. D. Ullman in their
book "Compilers: Principle, Techniques, and Tools", Addison-Wesley, 1988, p. 436.

If n, a positive integer, is given, the computed hash is taken modulo n. The optional
argument h determines the initial value of the resulting hash code before the string
is evaluated, and is 0 by default.

The algorithm used is equivalent to:

asu := proc(s :: string, n, h) is
 local g;
 n := n or 0;
 h := h or 0;
 for i in s do
 h := (h <<< 4) &+ abs i;
 g := h && 0xf0000000;
 if g <> 0 then
 h := h ^^ (g >>> 24);
 h := h ^^ g
 fi
 od;
 return if n <> 0 then h % n else h fi
end;

See also: hashes.elf.

hashes.bkdr (s [, n [, seed [, h]]])

Computes a hash value published by Brian Kernighan and Dennis Ritchie, for string
s. If n, a positive integer, is given, the computed hash is taken modulo n. The
optional integer seed determines a salt is 131 by default; you may chose other
primes if necessary. If h is given, the initial hash value in the computation is set to
this non-negative integer which defaults to zero. The return is a number. The
algorithm used is equivalent to:

bkdr := proc(s :: string, n, h) is
 n := n or 0;
 seed := seed or 131; # 31, 131, 1313, 13131, 131313, etc.
 h := 0;
 for i in s do
 h := (h &* seed) &+ abs i
 od;
 return if n <> 0 then h % n else h fi
end;

346 9 Strings

hashes.bp (s [, n [, h]])

Computes a hash for string s; it may be useful to classify words with common
endings since they have the same hash code. If n, a positive integer, is given, the
computed hash is taken modulo n. The optional argument h determines the initial
value of the resulting hash code before the string is evaluated, and is 0 by default.

The return is a number. The algorithm used is equivalent to:

bp := proc(s :: string, n, h) is
 n := n or 0;
 h := h or 0;
 for i in s do
 h := h <<< 7 ^^ abs i;
 od;
 return if n <> 0 then h % n else h fi
end;

See also: hashes.strval, math.ndigits, math.nthdigit.

hashes.bsd (s [, mode])

Returns the 8-bit or 16-bit BSD checksum for the given string s. The return is a
non-negative integer. By default, the function computes the 16-bit checksum, a
value between 0 and 65,535 if mode is not given or is true. If mode is set to false, the
8-bit checksum is computed, a value between 0 and 255.

hashes.cksum (s [, len])

Returns the same checksum as the UNIX cksum utility for the given string s. The
return is a non-negative integer. By default, the full length of s is evaluated, but you
may compute the hash for the first len characters by passing a second argument
(an integer).

The function can be used to validate the integrity of a file but may not always
detect hacker manipulation.

hashes.collisions (s, f [, iters [, factor [, returnbag]]])

Takes a table or sequence s of strings and one of the hash functions f and returns
the mean number of collisions (a value of 1 is best), number of total slots (occupied
or free), the time it took to run the procedure, and if returnbag is true, the hashing
table (a bag). If iters, a positive integer, is not given, then the function determines
the hash values only once, otherwise iters times. If factor, a positive integer or
fraction, is not given, the number of slots of the virtual hash table is twice the
number of elements in s.

The function is written in Agena (see lib/hashes.agn).

agena >> 347

hashes.crc8 (s [, init])

Performs 8-bit reversed cyclic redundancy check for string s, starting with initial CRC
value init, which is 0 by default. The return is a non-negative integer.

hashes.crc16 (s [, init])

Performs 16-bit reversed cyclic redundancy check for string s, starting with initial
CRC value init, which is 0 by default. The return is a non-negative integer.

hashes.crc32 (s [, init])

Performs 32-bit reversed cyclic redundancy check for string s, starting with initial
CRC value init, which is 0 by default. The return is a non-negative integer.

hashes.damm (x [, true])

If passed no option, computes the checksum of its argument x (an integer or string
consisting of ciphers), and returns an integer in the range 0 .. 9 using the Damm
algorithm. Contrary to the Luhn algorithm, it detects all single-digit errors and all
adjacent transposition errors.

If passed the Boolean option true, the function checks whether x includes the
correct checksum digit at its end.

If you pass an integer x and if |x| > math.lastcontint, then an error will be issued,
for x cannot be represented accurately on your system. Pass a string instead.

See also: hashess.luhn, hashes.verhoeff.

hashes.dek (s [, n [, h]])

Computes a hash value for string s proposed by Donald E. Knuth in The Art Of
Computer Programming Volume 3, under the topic of sorting and search.

If n, a positive integer, is given, the computed hash is taken modulo n. The optional
argument h determines the initial value of the resulting hash code before the string
is evaluated, and is 0 by default. The algorithm used roughly resembles:

dek := proc(s :: string, n, h) is
 n := n or 0;
 h := h or size s;
 for i in s do
 h := ((h <<< 5) ^^ (h >>> 27)) ^^ abs i
 od;
 return if n <> 0 then h % n else h fi
end;

348 9 Strings

hashes.derpy (s [, seed [, false]])

Takes a string s and an optional seed and computes the Derpy hash, a 4-byte
XOR-interweaved unsigned integer. You can return the original higher and lower
parts of the hash by passing the third argument false. The seed defaults to 0.

hashes.digitsum (x [, n])

Computes the digit sum of the integer x to the base n and returns an integer. n is 10
by default. If x is negative, the result is negative, i.e. -hashes.digitsum(abs(x), n) will
be returned. The function is written in Agena and included in the lib/hashes.agn file.

hashes.djb (s [, n [, lsh [, h]]])

Computes the Daniel J. Bernstein hash for string s. If n, a positive integer, is given,
the computed hash is taken modulo n. The optional argument h determines the
initial value of the resulting hash code before the string is evaluated, and is 5381 by
default. The return is a number. The algorithm used roughly resembles:

djb := proc(s :: string, n, sh) is
 local h;
 h := 5381;
 n := n or 0;
 sh := sh or 5;
 for i in s do
 h :=(h <<< sh) &+ h &+ abs i
 od;
 return if n <> 0 then h % n else h fi

end;

hashes.djb2 (s [, n [, f [, h]]])

Computes a modified Daniel J. Bernstein hash for string s. If n, a positive integer, is
given, the computed hash is taken modulo n. The optional argument h determines
the initial value of the resulting hash code before the string is evaluated, and is
5381 by default. The return is a number. The algorithm used roughly resembles:

djb2 := proc(s :: string, n, f) is
 local h;
 h := 5381;
 f := f or 33;
 n := n or 0;
 for i in s do
 h := (f &* h) ^^ abs i
 od;
 return if n <> 0 then h % n else h fi
end;

hashes.djb2rot (s [, n [, sh [, f [, h]]]])

Like hashes.djb2, but using an additional left rotation-bit shift operation; good
performance, few collisions. The algorithm used is equivalent to:

agena >> 349

djb2rot := proc(s :: string, n, sh, f) is
 local h;
 h := 5381;
 f := f or 33;
 sh := sh or 17;
 n := n or 0;
 for i in s do
 h := h <<<< sh;
 h := (f &* h) ^^ abs i
 od;
 return if n <> 0 then h % n else h fi
end;

hashes.droot (x [, b])

Returns the digital root and the additive persistence for the integer x and base b. By
default b is 10.

The digital root is the sum of its digits and the sum of the digits of this sum, and so
forth, until the respective sum is less than b. The additive persistence is the number
of summations it took to compute the root.

hashes.elf (s [, n [, h]])

Similar to hashes.asu, but optimised for 32-bit CPUs, commonly used in UNIX
systems. The code is equivalent to:

elf := proc(s :: string, n, h) is
 local x;
 n := n or 0;
 h := h or 0;
 for i in s do
 h :=(h <<< 4) &+ abs i;
 x := h && 0xf0000000;
 if x <> 0 then
 h := h ^^ (x >>> 24);
 fi;
 h := h && ~~(x)
 od;
 return if n <> 0 then h % n else h fi
end;

hashes.fibmod (k, m [, true])

Returns an unsigned 32-bit integer hash value for the non-negative integer k and
the given number of slots m - also a non-negative integer - that may be more
evenly distributed than just computing k % m, with every number far removed from
the previous and the next number, but not necessarily in every case. The function
uses Fibonacci hashing, and returns a value that is equivalent to:

fibmod := proc(k :: nonnegint, m :: nonnegint) is
 local p := k *(Phi - 1);
 return bytes.numto32(m * frac(p))
end;

350 9 Strings

The result is in the range 0 .. m - 1 if m is odd; if m is even, the result is always in the
range 1 .. m - 1, unless k = 0 or m = 0 where the function returns 0.

Note that with a < b, fibmod(a, m) is not necessarily less than fibmod(b, m).

If you pass the optional third argument true, then the results are always the same
across different platforms - due to performance reasons, the default is false.

See also: %, math.fibmod2, math.modulus.

hashes.fibmod2 (k, i)

Similar to hashes.fibmod, but computes the Fibonacci modulus for the signed
integer k over a set of 2i slots, with i 0.m

The result is in the range 0 .. 2i - 1 if i is even; if i is odd, the result is always in the
range 1 .. 2i - 1, unless k = 0 or i = 0 where the function returns 0.

The function is 20 % faster than hashes.fibmod called with a power of 2.

See also: hashes.fibmod, math.ispow2.

hashes.fletcher (s, [mode [, len]])

If mode is not given or is true, returns the position-dependent 16-bit checksum of a
string s according to Fletcher's algorithm using an internal 32-bit accumulator, and
returns an integer. The 360th and all succeeding characters are ignored.

If mode is false, returns the position-dependent 8-bit checksum using an internal
16-bit accumulator, and returns an integer in the range [257, 65535]. The 21st and
all succeeding characters are ignored.

If the option len is given, only the first len characters are processed.

hashes.fnv (s [, n])

Computes the Fowler-Noll-Vo hash for string s. If n, a positive integer, is given, the
computed hash is taken modulo n. The return is a number. The algorithm used is
equivalent to:

fnv := proc(s :: string, n) is
 local h;
 h := 2166136261;
 n := n or 0;
 for i in s do
 h := (h &* 16777619) ^^ abs i
 od;
 return if n <> 0 then h % n else h fi

end;

agena >> 351

hashes.ftok (inode, device [, id, [, n]])

Computes the System V IPC (Inter Process Communications) key. inode, device and
optional id are all 4-byte signed integers, with id defaulting to 0. The return is an
integer equivalent to, in signed bits mode:

(inode && 0xffff) || ((device && 0xff) <<< 16) || ((id && 0xffu) <<< 24)

If n is given and non-zero, the hash is taken modulo n before returning.

See also: os.ftok.

hashes.interweave (x [, option [, mask [, sh [, n]]]])

Splits a number x into its higher and lower unsigned 4-byte words hx and lx and
applies one of the following binary operations on them: 'or' (the default), 'and',
'xor'.

By passing a non-negative mask as the optional third argument, the mask is applied
to the intermediate result, the default is 0xFFFFFFFF.

If a fourth positive sh integer is given, the intermediate result is right-shifted sh bits; if
sh is a negative integer, it is left-shifted sh bits. If sh is 0 (the default), there is no shift.

If a fifth argument n is given, a positive integer, the intermediate result is taken
modulus n. The default is 1.

Thus, with hx, lx := bytes.numwords(x):

� option = 'or': (((hx || lx) && mask) >>> sh) % n, if sh > 0,
� option = 'and': (((hx && lx) && mask) >>> sh) % n, if sh > 0,
� option = 'xor': (((hx ^^ lx) && mask) >>> sh) % n, if sh > 0,

and

� option = 'or': (((hx || lx) && mask) <<< |sh|) % n, if sh < 0,
� option = 'and': (((hx && lx) && mask) <<< |sh|) % n, if sh < 0,
� option = 'xor': (((hx ^^ lx) && mask) <<< |sh|) % n, if sh < 0.

hashes.ispell (s [, n [, h]])

Computes the ISpell hash for string s. If n, a positive integer, is given, the computed
hash is taken modulo n. The optional argument h determines the initial value of the
resulting hash code before the string is evaluated, and is 0 by default.

352 9 Strings

hashes.j32to32 (x [, n])

Hashes an unsigned 4-byte integer x (i.e. in the range 0 .. 232 - 1) to yet another
integer in the same range, Julia-style.

If a second argument n is given, a positive integer, the intermediate result is taken
modulus n. The default for n is 1.

See also: hashes.jinteger.

hashes.jen (s [, n])

Computes the Bob Jenkins' hash (96 bit Mix Function) for string s. If n, a positive
integer, is given, the computed hash is taken modulo n. The return is a number.
Please see the C hashes.c source file for its implementation.

hashes.jinteger (x [, h])

Value-based hashing of an unsigned 4-byte integer x, with seed h which by default
is 4,294,967,295 = 232 - 1, ported from the Julia language.

See also: hashes.jnumber, hashes.j32to32.

hashes.jnumber (x [, n [, option]])

Maps a number x to one or two unsigned 4 byte integers, Julia-style. If n, a positive
integer, is given, the computed hashes are taken modulo n. By default, only one
unsigned 4-byte integer will be returned. If you pass true for option then the
function will split x into its higher and lower unsigned 4-byte words and returns
unsigned 4-byte integer hashes for each of them. In this case, the second return is
equal to the result of hashes.jnumber when called without this option.

See also: bytes.numwords, hashes.jinteger.

hashes.lua (s [, n])

Returns the hash, an integer, Lua/Agena internally computes for string s. If n, a
positive integer, is given, the computed hash is taken modulo n. It is an adaption of
the Shift-Add-XOR hash. This variant chooses the length of the string as its seed, not
a fixed value, and scans from the right to the left. See also: hashes.sax.

hashes.luhn (x [, true])

If passed no option, computes the checksum of its argument x (an integer or string
consisting of ciphers), and returns an integer in the range 0 .. 9 using the Luhn
formula, which is used to validate credit card numbers, IMEIs or some social security
numbers.

agena >> 353

If passed the Boolean option true, the function checks whether x includes the
correct checksum digit at its end.

If you pass an integer x and if |x| > math.lastcontint, then an error will be issued,
for x cannot be represented accurately on your system. Pass a string instead.

The Luhn formula does not recognise the transposition 09 vs. 90, nor does it detect
twin 22 vs. 55, 33 vs. 66, and 44 vs. 77.

See also: hashess.damm, hashes.verhoeff.

hashes.md5 (fn, option)

hashes.md5 (s [, n])

In the first form, computes the MD5 hash for file fn if option is any non-numeric
option. fn is a file name, not a handle.

In the second form, computes the MD5 hash for string s. By default, the function
internally splits the string into chunks of n = 64 bytes each to compute the result.
You can change that by passing any other non-negative integer for n where 0
stands for the entire length of s.

The return is a string of 32 characters that represent 16 pairs of hexagesimal
numbers where the alphabetical letter is in upper-case.

See also: hashes.varlen.

hashes.mix (a, b, c)

The function mixes three non-negative integers a, b, c assumed to be 32-bit and
returns an integer.

hashes.mix64 (x [, n])

Computes the 64-bit mix for number x. If n, a positive integer, is given, the
computed hash is taken modulo n. The return is a number. See also:
hashes.mix64to32.

hashes.mix64to32 (x [, n])

Computes the 64-bit mix for number x. If n, a positive integer, is given, the
computed hash is taken modulo n. The return is a number. See also:
hashes.mix64.

354 9 Strings

hashes.murmur2 (s [, n])

Returns MurmurHash2 for string s. If n, a positive integer, is given, the computed
hash is taken modulo n. Note that the function returns different values on little-
endian and big-endian machines.

See also: hashes.murmur3, hashes.murmur3128.

hashes.murmur3 (s [, n])

Computes MurmurHash3 using 32-bit unsigned integers internally, for the given
string s and returns an integer. If n, a positive integer, is given, the computed hash is
taken modulo n. Note that the function returns different values on little-endian and
big-endian machines.

See also: hashes.murmur2, hashes.murmur3128.

hashes.murmur3128 (s [, n [, seed]])

Computes MurmurHash3 using 128-bit unsigned integers internally, for the given
string s and returns four unsigned 32-bit integers. If n, a positive integer, is given, the
computed hash is taken modulo n. seed, if not given, is 0x9747b28c by default.
Note that the function returns different values on little-endian and big-endian
machines. (In OS/2 and Raspberry Pi the function always returns an error.)

See also: hashes.murmur2, hashes.murmur3128.

hashes.numlua (n [, h])

Computes the integral unsigned 4-byte hash for any integral or fractional number n,
equal to the one used to store numeric keys in the hash parts of Agena's tables,
plus a secondary hash. The return, which may differ across platforms, is equivalent
to:

> hx, lx := bytes.numworda(n); h := (h - 1) || 1;

> mask :=0x5bd1e995;

> return (hx + lx) % h, (hx * lx) % h,
> ((hx ^^ mask)+ (lx ^^ mask)) % h;

hashes.oaat (s [, n [, h]])

Computes the One-at-a-Time hash for string s. If given, n must be a positive integer.
The optional argument h determines the initial value of the resulting hash code
before the string is evaluated, and is 0 by default. The return, which may vary across
platforms, is a number. The algorithm used is equivalent to:

hashmask := << n -> (1 <<< n) - 1 >>

oaat := proc(s :: string, n) is
 local h := 0;
 n := n or 0;

agena >> 355

 for i in s do
 inc h, abs i;
 inc h, h <<< 10;
 h := h ^^ (h >>> 6)
 od;
 inc h, h <<< 3;
 h := h ^^ (h >>> 11);
 inc h, h <<< 15;
 return if n <> 0 then h && hashmask(n) else h fi
end;

See also: hashes.roaat.

hashes.parity (x)

Returns a byte with even parity for the non-negative integer x, and returns an integer
in the range [0, 255]. See also: bytes.parity32.

hashes.pjw (s [, n [, h]])

Computes the P. J. Weinberger Hash for string s. If n, a positive integer, is given, the
computed hash is taken modulo n. The optional argument h determines the initial
value of the resulting hash code before the string is evaluated, and is 0 by default.

The return is a number.

hashes.pl (s [, n [, f [, h]]])

Computes Paul Larson's hash of Microsoft Research for string s. If n, a positive
integer, is given, the computed hash is taken modulo n. The optional argument h
determines the initial value of the resulting hash code before the string is evaluated,
and is 0 by default. The return is a number. The algorithm is equivalent to:

pl := proc(s :: string, n, f, h) is
 local h := 0;
 f := f or 101;
 n := n or 0;
 h := h or 0;
 for i in s do
 h :=(h &* f) &+ abs i
 od;
 return if n <> 0 then h % n else h fi
end;

With initial h=5381 and f=33, emulates the GNU hash.

hashes.raw (s [, n [, h]])

Computes a self-invented hash for string s. If n, a positive integer, is given, the
computed hash is taken modulo n. The optional argument h determines the initial
value of the resulting hash code before the string is evaluated, and is 0 by default.
The return is a number. The algorithm used is equivalent to:

356 9 Strings

raw := proc(s :: string, n, h) is
 n := n or 0;
 h := h or 0;
 for i in s do
 h := 38 &* (h <<< 1) &+ abs i &- 63
 od;

 return if n <> 0 then h % n else h fi
end;

hashes.reflect (x [, n])

Reorders the bits of the n-bit integer x by reflecting them about the middle position.
By default, n is 32, but may be any other integer in [1, 32]. The return is an integer.

hashes.roaat (s [, n [, h]])

Like hashes.oaat, but uses bit rotation internally instead of simple bit shifts. The result
may vary across platforms.

hashes.rs (s [, n [, h]])

Computes the Robert Sedgewick hash for string s, but without ANDing the result with
0x7FFFFFFF. If n, a positive integer, is given, the computed hash is taken modulo n.
The optional argument h determines the initial value of the resulting hash code
before the string is evaluated, and is 0 by default. The return is a number. The
algorithm used is equivalent to:

rs := proc(s :: string, n, h) is
 local a, b := 63689, 378551;
 n := n or 0;
 h := h or 0;
 for i in s do
 h := h &* a &+ abs i;
 a := a &* b
 od;
 return if n <> 0 then h % n else h fi
end;

hashes.sax (s [, n [, h]])

Computes the Shift-Add-XOR hash for string s. If n, a positive integer, is given, the
computed hash is taken modulo n. The optional argument h determines the initial
value of the resulting hash code before the string is evaluated, and is 5381 by
default. The return is a number. The algorithm used is equivalent to:

sax := proc(s :: string, n) is
 local h := 5381;
 n := n or 0;
 for i in s do
 h := h ^^ ((h <<< 5) + (h >>> 2) + abs i)
 od;
 return if n <> 0 then h % n else h fi
end;

agena >> 357

hashes.sdbm (s [, n [, h]])

Computes the ndbm database library hash for string s. If n, a positive integer, is
given, the computed hash is taken modulo n. The optional argument h determines
the initial value of the resulting hash code before the string is evaluated, and is 0 by
default. The return is a number. The algorithm uses a public-domain
implementation. The algorithm used is equivalent to:

sdbm := proc(s :: string, n) is
 local h := 0;
 n := n or 0;
 for i in s do
 h := abs i &+ (h <<< 6) &+ (h <<< 16) &- h
 od;
 return if n <> 0 then h % n else h fi
end;

hashes.sha256 (s [, salt [, rounds]])

Calculates a SHA256 cryptographic hash for string s, optionally using a salt of type
string, and the optional number of rounds to be taken. salt by default is the empty
string and rounds is 5000.

The first return is the hash itself, and the second return includes the control
parameters salt and rounds plus the first result.

In case of errors, the function returns fail.

Due to the algorithm and the resulting long running times this function is not suited
for usage with string hash tables.

hashes.sha512 (s [, salt [, rounds]])

Calculates a SHA512 cryptographic hash for string s, optionally using a salt of type
string, and the optional number of rounds to be taken. salt by default is the empty
string and rounds is 5000.

The first return is the hash itself, and the second return includes the control
parameters salt and rounds plus the first result. Thus, the second return is the same
as the output of the mkpasswd UNIX command.

In case of errors, the function returns fail.

Due to the algorithm and the resulting long running times this function is not suited
for usage with string hash tables.

358 9 Strings

hashes.squirrel32 (key [, seed])

Takes any signed integer key and applies Squirrel Eiserloh's hash function on it. The
return is a signed 4-byte integer. You may optionally add a seed as a second
argument, a non-negative integer, with 0 the default.

hashes.squirrel64 (key [, seed])

Similar to bytes.numwords, but applying Squirrel Eiserloh's hash function on its first
argument key, any Agena number, integral or fractional, and returning the higher
and lower parts of the result as two unsigned 4-byte integers. You may optionally
add a seed as a second argument, a non-negative integer, with 0 the default.

hashes.sth (s [, n [, h]])

Computes the s-th hash for string s. If n, a positive integer, is given, the computed
hash is taken modulo n. The optional argument h determines the initial value of the
resulting hash code before the string is evaluated, and is 0 by default. The return is a
number. The algorithm has been published at StackOverflow. The algorithm is
equivalent to:

sth := proc(s :: string, n) is
 local h := 0;
 n := n or 0;
 for i in s do
 h := (h <<< 6) ^^ (h >>> 26) ^^ abs i
 od;
 return if n <> 0 then h % n else h fi
end

hashes.strval (s [, sh [, h]])

Computes a hash with many collisions, useful to classify words with common
endings since they have the same hash code. s denotes the string to be hashed,
sh the left-shift, which is -8 by default; and h the initial hash value before
computation starts, 0 by default. The algorithm used is equivalent to:

strval := proc(s :: string, sh, h) is
 sh := n or 8;
 h := h or 0;
 for i in s do
 h := h <<< sh;
 h := h &+ abs i
 od;
 return h
end;

See also: hashes.bp, math.ndigits, math.nthdigit.

agena >> 359

hashes.sumupchars (s [, f [, g]])

Sums up all the ASCII values in string s and returns the result as a positive integer.
The sum is expressed as an unsigned 32-bit integer, so keep overflows in mind.

Instead of just adding the plain ASCII values, you might optionally apply function f
to the first character in s, and function g to the second character in s, then f again
on the third character, g on the fourth character, and so forth. Example:

> sum := hashes.sumupchars("agena",
> << x ->(x && 0xff) <<< 8 >>,
> << x -> x && 0xff >>):

> ~~(sum + (sum >>> 16)):

Note that the Internet checksum, even if strictly implemented according to RFC
1071, has by far more collisions than the other hash functions available in this
package.

hashes.superfast (s [, n [, h]])

Takes a string s and applies the SuperFastHash algorithm on all its characters,
returning an integer in the domain 0 through 4294967295 decimal. If n, a positive
integer, is given, the computed hash is taken modulo n. The optional argument h
determines the initial value of the resulting hash code before the string is evaluated,
and is 0 by default.

hashes.sysv (s [, n [, f [, h]]])

For string s, computes the System V hash to access libraries via dynamic symbol
tables on UNIX. If n, a positive integer, is given, the computed hash is taken modulo
n. The optional positive integer f is the factor to multiply intermediate results, see
algorithm below, and is 16 by default. The optional argument seed h determines
the salt and is 0 by default; you may chose other primes if necessary.

The return is a number.

The algorithm used is equivalent to:

sysv := proc(s :: string, n, f, h) is
 n := n or 0;
 f := f or 16;
 h := h or 0;
 for i in s do
 h := f &* h &+ abs i;
 h := h ^^ ((h >>> 24) && 0xf0)
 od;
 h := h && 0xfffffff;
 return if n <> 0 then h % n else h fi
end;

360 9 Strings

For GNU hash, see hashes.pl.

hashes.varlen (x, salt [, n])

Computes a variable-length integer hash for string or number x and string salt. If
the optional positive integer n is given, the computed hash is taken modulo n.
Depending on the given keyword, the number of collisions might be zero, so this
function is an alternative to hashes.md5.

hashes.verhoeff (x [, true])

If passed no option, computes the checksum of its argument x (an integer or string
consisting of ciphers), and returns an integer in the range 0 .. 9 using the Verhoeff
algorithm. Contrary to the Luhn algorithm, it detects all single-digit errors, and all
accidental transposition involving two adjacent ciphers.

If passed the Boolean option true, the function checks whether x includes the
correct checksum digit at its end.

If you pass an integer x and if |x| > math.lastcontint, then an error will be issued,
for x cannot be represented accurately on your system. Pass a string instead. The
function also returns an error, if a non-digit is included in string x.

See also: hashes.damm, hashes.luhn.

agena >> 361

9.6 bloom - Bloom Filter

As a plus package, the bloom package is not part of the standard distribution and
must be activated with the import statement, i.e. import bloom.

9.6.1 Introduction

This package implements the Bloom filter, a dictionary containing bit signatures of
its individual strings (words).

A Bloom filter is a memory-efficient mean to check whether a string probably is part
of a dictionary or whether it is definitely not part of the dictionary, with acceptable
query times. It consumes less memory than the original dictionary of strings and can
be used to prevent unnecessary access to the file system on which the actual
dictionary resides, for example in dBASE III+, binary or text files.

With respect to this package, a dictionary does not depict an Agena table
dictionary, but just a list of strings, e.g.: "Akatsuki", "Chandrayaan", "Chang'e", "Mars
Express", "Venera", "Voyager".

Depending on the size of the Bloom filter, the hash string function used, and the
number of internal iterations - i.e. number of `salts` - when inserting or reading
values, around 80 % of memory can be saved with only around 5 % of the words to
be actually looked up in the original dictionary. Bloom filter lookup takes around a
third more running time than searching Agena built-in data structures.

Technically, the hash value of a string - see hashes package for a variety of string
hash functions - is converted into a bit signature that is stored to slots in the Bloom
filter. Internally, the Bloom filter implemented here uses four unsigned bytes for each
slot (C type uint32_t). The string hash function should produce the least number of
collisions.

You cannot delete values from a Bloom filter. Also, you cannot change the number
of slots of the bloom filter or the number of salts.

You may use the package as follows:

1. Determine the number of entries s in your original dictionary d.

2. Create a Bloom filter b with s\4 slots and 4 salts:

b := bloom(s \ 4, 4);

362 9 Strings

3. Insert all entries str of your dictionary into Bloom filter b using a string hash
function, e.g.:

for str in d do
 bloom.include(b, hashes.sdbm(str))
od;

4. Query the Bloom filter for any entry, using the same hash function:

result := hashes.find(b, hashes.sdbm('Zond'));

if result = false then
 print('entry really not included')
else
 print('entry probably included, search original dictionary.')
fi;

5. Query a Bloom filter slot, with an index counting from 1:

b[1]:

of just output all slots with bloom.toseq.

6. Check the state of the bloom filter b:

bloom.attrib(b):

9.6.2 Functions

bloom.attrib (b)

Returns various information on the Bloom filter:

� key 'size': number of internal slots of the bloom filter, the first argument to
bloom.new.

� key 'salts': number of internal hash functions (salts) applied to a word when
computing the signature, the second argument to bloom.new.

� key 'wordsincluded': number of words included into the filter. If the signature of
a word is already included, it is not counted.

� key 'collisions': number of collisions detected when trying to include a word
into the filter, for its internal signature is already present. If a word has already
been included in the filter, its collision is being counted nevertheless.

� key 'bytes': size of the whole Bloom filter userdata in bytes.

bloom.get (b, i)

With a bloom filter b, returns the value stored at b[i], where i, the index, is an integer
counting from 1.

See also: bloom.toseq.

agena >> 363

bloom.find (b, hash)

Checks whether a string converted to the hash value is part of a dictionary of strings
represented by Bloom filter userdata b. The function returns true or false, where false
means that the string is definitely not included in the original dictionary, and true
means it is probably part of the original dictionary.

Example: bloom.find(b, hashes.pl('Soyuz')).

See also: bloom.include.

bloom.include (b, hash)

Inserts the hash value (an integer) of a string into the Bloom filter b, a userdata. By
default, the function returns nothing.

If a hash value has already been inserted, nothing happens.

If the optional third argument is true, internal information will be returned: the last
internal subhash - an integer - computed before inserting the signature of the string
into the Bloom filter, and a table with the keys representing the slot indices of the
Bloom filter modified (an integer starting from 1) and the respective bit position set
to 1 (counting from 0, from the right of the bit field).

Example: bloom.include(b, hashes.pl('Soyuz')).

See also: bloom.find.

bloom.new (n, salts)

Creates a Bloom filter, of type userdata, consisting of n slots. The number of salts
internally applied when inserting or searching the hash value of a string is given by
salts, a positive integer in the range [1, 65]. If salts is 1, then no salt is applied,
otherwise (salts - 1) salts are applied.

With a large list of surnames, for example, n should be at least a fourth of the
number of words contained in the dictionary, and salts should be 4.

See also: bloom.attrib, bloom.toseq.

bloom.toseq (b)

Receives a Bloom filter b and converts its internal slots into a sequence of integers,
the return.

See also: bloom.get.

364 9 Strings

9.7 regex - Regular Expression Matching

As a plus package, the regex package is not part of the standard distribution and
must be activated with the import statement, i.e. import regex.

UNIX users may need to install the pcre2-8 library before using this binding.

The package provides basic functions to work with Perl Compatible Regular
expressions, PCRE2 flavour.

It is advised to define regular expressions as strings enclosed in backquotes as this
will prevent escaping of backslashes so you do not have to enter a backslash twice
in order to become part of a regular expression.

To include a backquote in a string enclosed by backquotes, use the escape
sequence \q as this is the only escape sequence processed.

Example:

> import regex

> regex.find('agena', `\w*`):
1 5

> p := regex.new(`[a-z]*`)

> regex.find('agena', p):

1 5

> regex.match('agena', p):

agena

The package supports metamethods, e.g.:

> p@@find('agena'):

1 5

For the full documentation, check the regex.txt file in the doc folder of your Agena
installation. Frequently used functions are:

regex.count (subj, patt, [cf], [ef], [larg...])

This function counts matches of the pattern patt in the string subj. For the meaning
of the arguments, check regex.find.

agena >> 365

regex.find (subj, patt, [init], [cf], [ef], [larg...])

The function searches for the first match of the regexp patt in the string subj,
starting from offset init, subject to flags cf and ef.

subj is a string, patt either a string containing a regex or a regex userdata created
by regex.new.

init is the start offset in the subject and defaults to 1. If a negative value is given,
the check starts at the |init|-th character from the right.

cf, ef depict compilation and execution flags (bitwise OR), respectively, passed as
numbers.

larg may contain PCRE2 library-specific arguments.

The function returns null on failure, and on success:

1. the start point of the match (a number, counting from 1),
2. the end point of the match (a number),
3. all substring matches ("captures"), in the order they appear in the pattern. false is

returned for sub-patterns that did not participate in the match.

See also: in operator, regex.flags, regex.match, regex.new, strings.find,
strings.glob.

regex.flags ([tbl])

The function returns a table containing the numeric values of the constants defined
by the used regex library, with the keys being the (string) names of the constants. If
the table argument tbl is supplied then it is used as the output table, otherwise a
new table is created.

The constants contained in the returned table can then be used in most functions
and methods where compilation flags or execution flags can be specified. They
can also be used for comparing with return codes of some functions and methods
for determining the reason of failure. For details, see the PCRE2 library
documentation.

regex.match (subj, patt, [init], [cf], [ef], [larg...])

The function searches for the first match of the regexp patt in the string subj,
starting from offset init, subject to flags cf and ef. For the meaning of the
arguments, see regex.find.

See also: regex.find, regex.flags, regex.new.

366 9 Strings

regex.new (patt, [cf], [larg...])

The function compiles regular expression patt into a regular expression object
whose internal representation is corresponding to the library used. The returned
result then can be used by the functions, e.g. regex.find, regex.match. Regular
expression objects are automatically garbage collected. See the library-specific
documentation for details of the library-specific arguments larg..., if any.

agena >> 367

368 9 Strings

Chapter Ten

Structures

agena >> 369

370 10 Structures

10 Structures

10.1 Tables

Summary of Functions:

General Queries

countitems, empty, filled, has, in, member, notin, recurse, size,
tables.getsize, tables.getsizes, tables.hashole, tables.isall, tables.isarray,
tables.ishash, tables.isnullarray, tables.maxn, type, typeof, whereis.

Retrieving Values

$, columns, descend, getentry, unique, unpack, values, tables.array,
tables.borders, tables.entries, tables.getarray, tables.getfield,
tables.gethash, tables.geti, tables.gettable, tables.hash, tables.indices,
tables.parts.

Operations

@, addup, append, cleanse, copy, copyadd, include, map, move,
prepend, purge, put, qsumup, remove, sumup, select, selectremove, shift,
sort, sorted, subs, subsop, swap, zip, tables.concat, tables.include,
tables.move, tables.pack, tables.reshuffle, tables.setfield, tables.settable,
tables.unpack.

Relational Operators

=, ==, ~=, <>. ~<>.

Cantor Operations

intersect, minus, subset, union, xsubset.

Miscellaneous

tables.dimension, tables.allocate, tables.newtable.

agena >> 371

10.1.1 Operators & Functions

append (x, t)

Adds x to the end of table t, in-place. The function returns the modified structure.
For more information, check Chapter 8.

See also: include, prepend, put, insert statement.

augment (t1, t2 [, ···])

Joins two or more tables t1, t2 etc. together horizontally. All tables must be of the
same size and have the same keys. The function is written in Agena and included in
the lib/library.agn file.

See also: columns, linalg.augment.

bintersect (t1, t2 [, option])

Returns all values of table t1 that are also values in table t2. The function performs
a binary search in t2 for each value in t1. If no option is given, t2 is sorted before
starting the search. If you pass an option of any value then t2 should already have
been sorted, for no correct results would be returned otherwise.

With larger tables, this function is much faster than the intersect operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bisequal, bminus.

bisequal (t1, t2 [, option])

Determines whether the tables t1 and t2 contain the same values. The function
performs a binary search. If no option is given (any value), t1 and t2 are sorted
before starting the search. If you pass an option of any type then t1 and t2 should
already have been sorted, for no correct results would be returned otherwise.

With larger tables, this function is much faster than the = operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bminus.

bminus (t1, t2 [, option])

Returns all values of table t1 that are not values in table t2. The function performs a
binary search in t2 for each value in t1. If no option is given, t2 is sorted before
starting the search.

372 10 Structures

If you pass any option then t2 should already have been sorted, for no correct
results would be returned otherwise.

With larger tables, this function is much faster than the minus operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bisequal.

bottom (t)

With table array t, the operator returns the element at index 1. If t is empty, it returns
null.

See also: top.

cleanse (t)

Empties a table, returns the emptied structure. The memory previously occupied
can be reused by the interpreter.

columns (t, p [, ···] [, 'structure'])

Extracts the given columns p (etc.) from the two-dimensional table t. The return is
either a table of structures if the option 'structure' is given, or a multiple return of
tables.

The function is written in Agena and included in the lib/library.agn file.

See also: ops, select, unpack, values, linalg.column, utils.readscv.

copy (t)

The operator copies the entire contents of a table t into a new table. See Chapter
8 for more information.

copyadd (t [, ···])

Copies all elements in table t and any further optional arguments into a new table
and returns it.

The array and hash parts are copied 1:1, i.e. the keys and entries in the array part of
t are copied to the array part of the new table, and the elements in the hash part
of t are copied to the hash part of the new table, with the same keys, too. For
performance reasons, substructures are not deep-copied.

For further information, check the description of copyadd in Chapter 8.

agena >> 373

countitems (item, t)

countitems (f, t [, ···])

In the first form, counts the number of occurrences of an item in the table t.

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure t that satisfy the given relation are counted.
If the function has more than one argument, then all arguments except the first are
passed right after the name of table t.

The return is a number. The function may invoke metamethods.

See also: select.

descend (f, t, [, ···] [, option])

Returns all elements in table t that satisfy a given condition expressed by function f.
The function can be multivariate and must return either true or false. The optional
second and all further arguments of f may be passed as the third, etc. argument.

All the keys and entries are scanned. For more information see the description of
descend in Chapter 8.

See also: has, recurse, select.

duplicates (t [, option])

Returns all the values that are stored more than once to the given table t, and
returns them in a new table. Each duplicate will be returned only once.

If option is not given, the structure is sorted before evaluation since this is needed to
determine all duplicates. The original structure is left untouched, however.

The total size of the new register is equal to the number of the elements in the result.

If a value of any type is given for option, the function assumes that the table has
been already sorted. Otherwise it is suggested to use skycrane.sorted before the
call to duplicates if the table contains values of different types, to prevent errors.

The function is written in Agena and included in the lib/library.agn file.

empty (t)

Checks whether table t does not contain any element. The return is true or false.
The operator works with dictionaries, as well. See also: filled.

374 10 Structures

filled (t)

Checks whether table t contains at least one element. The return is true or false.
The operator works with dictionaries, as well. See also: empty.

getentry (t [, k1, ···, kn])

Returns the entry t[k1, ···, kn] from the table t without issuing an error if one of
the given indices ki (second to last argument) does not exist. See also rawget.

getmetatable (t)

If t does not have a metatable, returns null. Otherwise, if the t's metatable has a
'__metatable' field, returns the associated value. Otherwise, returns the metatable
of table t.

See also: setmetatable.

getorset (t, k1, ···, kn, v)

Returns the non-null element at index t[k1, k2, ..., kn], where t is a table. If any index
position is invalid, the function returns null.

If t[k1, k2, ..., kn] = null, then the function assigns t[k1, k2, ..., kn] := v and returns v.

See also: getentry.

has (t, x)

Checks whether table t contains element x. In general, all the entries are scanned,
but if x is not a number then the indices of the table are searched, too. The function
performs a deep scan so that it can find elements in deeply nested tables.

The function return true if x could be found in t, and false otherwise.

See also: descend, in, member, recurse, satisfy.

include (t, x [, ···])

Inserts one or more values x, ··· to the end of table t, not discarding multiple
returns if its last argument is a function call. For more information, see Chapter 8.

See also: copyadd, append, prepend, put, insert statement.

agena >> 375

join (t [, sep [, i [, j]]])

Concatenates all string values in the table t in sequential order and returns a string:
t[i] & sep & t[i+1] ··· & sep & t[j]. The default value for sep is the empty string,
the default for i is 1, and the default for j is the length of the table. The function
issues an error if t contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.g.:

> join(map(tostring, [1, 2, 3])):
123

map (f, t [, ···] [, true])

Maps the function f on all elements of a table t. See map in Chapter 8 for more
information.

See also: countitems, remove, select, selectremove, subs, subsop, and zip.

member (x, obj)

Searches x in the table obj and if successful returns true plus the index of the first hit.
Otherwise returns false and null. The function is much faster than whereis if you
need the index of the first hit only. Note that with respect to whereis, the parameters
are in reverse order.

See also: has, whereis, tables.entries, tables.indices.

move (t1, start, stop, newidx [, t2])

Copies elements from table t1 to table t2, performing the equivalent to the
following multiple assignment: t2[newidx],··· = t1[start], ···, t1[stop]. The default for
t2 is t1, i.e. elements are shifted in the same table. The destination range can
overlap with the source range.

Returns the destination table t2.

See also: purge, put.

prepend (x, t)

Prepends x to the beginning of table t, in-place. The function returns the modified
structure. For more information, check Chapter 8.

See also: append, include, put, insert statement.

376 10 Structures

purge (t [, pos])

purge (t, a, b)

Removes from table t the element at position pos, shifting down other elements to
close the space, if necessary. Returns the value of the removed element. The
default value for pos is n, where n is the length of the table, so that a call purge(t)
removes the last element of t.

In the second form, removes all elements starting from index a to index b (inclusive),
moving excess elements down to close the space; the function automatically
performs a garbage collection after shifting. In the 2nd form, nothing will be
returned.

Use the delete element from table statement if you want to remove any
occurrence of the table value element from a table.

Note that the function only works if the table is an array, i.e. if it has positive integral
and consecutive keys only.

See also: move, put, shift, swap.

put (t, [pos,] value)

Inserts element value at position pos in table t, shifting up other elements to open
space, if necessary. The default value for pos is n+1, where n is the current table
size, so that a call put(t, value) inserts value at the end of t.

Use the insert element into structure statement if you want to add an element at
the current end of a table, for it is much faster.

The function returns the modified structure.

See also: move, prepend, purge.

qsumup (t)

Raises all numeric values in table t to the power of 2 and sums up these powers.
See qsumup in Chapter 8 for more information. See also: sumup.

recurse (f, t [, ···][, option])

Checks each element of table t by applying a function f on each of its elements.
f can be a multivariate function and must return either true or false. The optional
second and all further arguments of f may be passed as the third, etc. argument.

All the entries and keys are scanned. For more information, see the description of
recurse in Chapter 8.

agena >> 377

See also: has, descend, select.

remove (f, t [, ··· [, reshuffle=true] [, inplace=true]])

Returns all values in table t that do not satisfy a condition determined by function
f. See remove in Chapter 8 for more information.

See also: map, select, selectremove, subs, subsop, zip.

reverse (t)

Reverses the order of all elements in the array part of table t. The function returns
the modified structure.

See also: strings.reverse, stack.reversed.

select (f, t [, ··· [, reshuffle=true]])

Returns all values in table t that satisfy a condition determined by function f. See
select in Chapter 8 for more information.

See also: map, remove, selectremove, subs, subsop, zip.

selectremove (f, t [, ··· [, reshuffle=true]])

Returns all values in table t that satisfy and do not satisfy a condition determined
by function f, in two tables. See selectremove in Chapter 8 for more information.

See also: map, remove, select, subs, subsop, zip.

setmetatable (t, metatable)

Sets the metatable for the given table t. (You cannot change the metatable of
other types from Agena, only from C.) If metatable is null, removes the metatable
of the given table. If the original metatable has a '__metatable' field, raises an error.
The function cannot assign metatables to C library functions.

This function returns t.

See also: getmetatable.

shift (t, a, b)

Moves an element in the table array t from position old to new, with old, new
integers, shifting all the other elements accordingly - which might also cause a
rotation. The function returns nothing.

See also: move, purge, swap.

378 10 Structures

size (t)

Returns the number of actual entries in the array and hash parts of table t. The
operator returns a number and conducts a linear traversal.

See also: environ.attrib, tables.getsize, tables.getsizes.

sort (t [, comp] [, 'number'])

Sorts table t in a given order, and in-place. See sort in Chapter 8 for more
information.

See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (t [, comp] [, 'number'])

Sorts table elements in t in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 8 for more information.

See also: sort, skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, ···], t [, true])

Substitutes all occurrences of value x in table t with value v. See subs in Chapter 8
for more information.

See also: map, remove, select, subsop, zip.

subsop (i:v [, ···], t [, true])

Substitutes the value at t[i] with value v, where v can also be null, deleting the
element in this case. See subsop in Chapter 8 for more information.

sumup (t)

Sums up all numeric values in table t. See sumup in Chapter 8 for more
information.

See also: addup, qsumup.

swap (t, a, b)

Swaps the table array t entries at index positions a and b, with a, b integers. The
function returns nothing.

See also: move, purge.

agena >> 379

top (t)

With table array t, the operator returns the element with the largest index. If t is
empty, it returns null.

See also: bottom.

type (t)

Returns the type of table t, i.e. the string 'table'.

typeof (t)

Returns either the user-defined type of table t, or the basic type 'table'.

unique (t)

The function removes all holes (`missing keys`) in the array part of table t and
removes multiple occurrences of the same value, if present. See unique in Chapter
8 for more information.

values (t, i1 [, i2, ···])

Returns the elements from the given table t in a new table. This function is
equivalent to

 return [i1 ~ t[i1], i2 ~ t[i2], ···]

See also: ops, select, unpack.

zip (f, t1, t2)

This function zips together two tables t1, t2 by applying the function f to each of its
respective elements. See Chapter 8 for more information.

See also: map, remove, select, subs.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in the Cantor way, i.e. {1,
1} = {1} true, {1, 2} xsubset {1, 1, 2, 2, 3, 3} true.d d

t1 = t2

This equality check of two tables t1, t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

380 10 Structures

If not, the operator then checks whether t1 and t2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

See also: bisequal, environ.isequal.

t1 == t2

This strict equality check of two tables t1, t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are the same. In this case,
the search is linear.

See also: bisequal, environ.isequal.

t1 ~= t2

This approximate equality check of two tables t1, t2 first tests whether t1 and t2
point to the same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are approximately equal
(please see approx for further details). In this case, the search is linear.

t1 <> t2

This inequality check of two tables t1, t2 first tests whether t1 and t2 do not point to
the same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 do not contain the same values,
and returns true or false. In this case, the search is quadratic. See also: bisequal.

t1 ~<> t2

Approximate inequality check, the negation of the ~= operator.

c in t

Checks whether the table t contains the value c and returns true or false. The
search is linear.

See also: notin operator, binsearch for binary search.

c notin t

Checks whether table t does not contain the value c and returns true or false. The
search is linear.

agena >> 381

See also: in operator.

t1 intersect t2

Searches all values in t1 that are also values in t2 and returns them in a new table.
The search is quadratic, so you may use bintersect instead if you want to compare
large tables since bintersect performs a binary search. The key ~ value pairs in the
hash part of a table are treated as being unique. If t1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
try to copy them from t2. See also: tables.numintersect.

t1 minus t2

Searches all values in table t1 that are not values in table t2 and returns them as a
new table. The search is quadratic, so you may use bminus instead if you want to
compare large tables since bminus performs a binary search. The key ~ value
pairs in the hash part of a table are treated as being unique. If t1 has a metatable
and/or a user-defined type, then they will be copied to the result; otherwise the
function will try to copy them from t2. See also: tables.numminus.

t1 subset t2

Checks whether all values in table t1 are included in table t2 and returns true or
false. The operator also returns true if t1 = t2. The search is quadratic.

t1 union t2

Concatenates two tables t1 and t2 simply by copying all its elements - even if they
occur multiple times - to a new table. The key ~ value pairs in the hash part of a
table are treated as being unique. If t1 has a metatable and/or a user-defined
type, then they will be copied to the result; otherwise the function will try to copy
them from t2. See also: tables.numunion.

t1 xsubset t2

Checks whether all values in table t1 are included in table t2 and whether t2
contains at least one further element, so that the result is always false if t1 = t2. The
search is quadratic.

See also: bintersect, bisequal, bminus, purge, put in Chapter 8 Basic Functions.

f @ t

The operator maps a function f to all the values in table t and returns a table as
the result. f must be a univariate function and return only one value. If t has
metamethods or user-defined types, the return will also have them.

The operator actually calls function map.

382 10 Structures

Examples:

> << x -> x^2 >> @ [1, 2, 3]:
[1, 4, 9]

> << x -> x > 0 >> @ [1, 2, 3]:
[true, true, true]

See also: $ and $$ operators.

f $ t

Returns all values in table t that satisfy a condition determined by function f. f
should be a univariate function and return at least one value. In the multivariate
case, all results but the first are ignored. The return might include holes.

> << x -> x > 1 >> $ [1, 2, 3]:
[2 ~ 2, 3 ~ 3]

If present, the function also copies the metatable and user-defined type of t to the
new table. The operator actually calls function select.

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
subsop, unique, values, zip.

f $$ t

Checks whether at least one element in table t satisfies the condition defined by
function f and returns true or false. f should be a univariate function and return at
least one value. In the multivariate case, all results but the first are ignored.

> << x -> x < 1 >> $$ [1, 2, 3]:
false

The return might include holes.

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
subsop, unique, values, zip.

10.1.2 tables Library

This library provides generic functions for table manipulation. It provides all its
functions inside table tables.

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the 'length' of a table we mean the result of
the length operator.

agena >> 383

tables.allocate (t, key1, value1 [, key2, value2, ···, keyn, valuen])

Sets the specified keys and values to table t, i.e. t[keyk] := valuek. Note that if a
key is given multiple times, then only the first occurrence of the key in the argument
sequence is processed. The function returns nothing.

See also: tables.include.

tables.array (t)

Returns the array part of table t in a new table, with all key~value pairs preserved.

See also: tables.hash, tables.hashole, tables.parts.

tables.borders (t [, option])

By default, returns the smallest and largest assigned integral index - in this order - in
the array part of a table t.

If any option is given, then the function determines the smallest and largest
assigned integral index in both the array and hash part of table t. Note that this is
slower since the entire hash part has to be searched linearly.

If zeros are returned, the array or the array and hash part of the table is empty.

See also: environ.attrib, tables.getsize, tables.indices, tables.maxn.

tables.concat (t [, sep [, i [, j]]])

Given a table array where all elements are strings or numbers, returns the string t[i]
& sep & t[i+1] ··· sep & t[j]. The default value for sep is the empty string, the default
for i is 1, and the default for j is size(t). If i is greater than j, returns the empty string.

See also: join.

tables.dimension (a:b [, c:d, ···] [, default])

tables.dimension (a:b [, c:d, ···] [, init = default])

In the first form, creates a table of any dimension with arbitrary index ranges a:b etc.
with a, b, etc. integers, and an optional default for all its entries. default must not
be a pair.

In the second form the initialiser may be given as the option "init = default", which
allows to also use pairs as a default.

If the initialiser is a structure, i.e. table, set, sequence or register, then individual
copies of the initialiser are created to avoid referencing to the same structure.

384 10 Structures

See also: tables.newtable, create table/dict statements.

tables.entries (t [, option])

Returns all entries of table t (not its keys) in a new table array. Its second result, a
Boolean, indicates whether a value has been found in the hash part of t.

When given any second argument, the function returns all the table values that
have integral keys - in ascending order of these integral keys.

See also: member, unique, tables.hashole, tables.indices, whereis.

tables.getarray (t, k)

Tries to find a value with integral index k in the array part of table t and returns it,
otherwise returns null. The function might be useful to explore the interpreter's
internal table administration.

See also: tables.gethash.

tables.getfield (t, k)

Returns t[k] - where k is a string, i.e. a field name - or null if there is no value at t[k].
The function triggers a metamethod if needed. Useful to explore the C API function
lua_getfield.

tables.gethash (t, k)

Tries to find a value with integral index k in the hash part of table t and returns it,
otherwise returns null. The function might be useful to explore the interpreter's
internal table administration. (Note that any table value with a non-positive integral
key is always stored in the hash part.

A table with holes in the array part, always indexed by positive integral keys, might
store some of its values in the hash part, too.)

See also: tables.getarray.

tables.geti (t, k)

Returns t[k] - where k is an integer - or null if there is no value at t[k], from table t.
The function triggers a metamethod if needed. The function also returns the type
name of the value. Useful to explore the C API function lua_geti.

tables.getsize (t [, option])

Returns a guess on the number of elements in a table t. If any option is given, the
function additionally returns a Boolean indicator on whether a table contains an
allocated hash part, and a Boolean indicator on whether null has been assigned to

agena >> 385

a table. The latter return is not foolproof, especially if a table value has been
deleted with a raw assignment, e.g. t[2] := null;

The function is useful to determine the size of a table much more quickly than the
size operator does, using a logarithmic instead of linear method, but may return
incorrect results if the array part of a table has holes. It also does not count the
number of elements in the hash part of a table.

See also: size, tables.getsizes, tables.isarray, tables.ishash.

tables.getsizes (t [, option])

If any option is given, returns the actual number of elements currently stored in the
array and hash part. If no option is given, then an estimate of the number of
elements in the array part will be returned, and 0 for the hash part as this cannot be
estimated.

Returns two integers: the first for the array part, the second for the hash part.

See also: size, tables.getsize, tables.isarray, tables.ishash.

tables.gettable (t, k)

Returns t[k] - where k is any value - or null if there is no value at t[k], with t a table.
The function triggers a metamethod if needed. Useful to explore the C API function
lua_gettable.

tables.hash (t)

Returns the hash part of table t in a new table with all key~value pairs preserved.

See also: tables.array, tables.parts.

tables.hashole (t)

Checks whether the array part of a table contains at least one null value, i.e. a
hole, and returns true in this case and false otherwise. The table may or may not
have a hash part, this does not influence the result.

See also: tables.entries, tables.isarray, tables.isnullarray.

tables.include (t, key, value [, ···])

Inserts values into a subtable of table t. If t[key] already represents a table, value is
added to the end of its array part. If t[key] is unassigned, then it creates a new
subtable and inserts value into it, which is equivalent to the pseudo code:

386 10 Structures

for i from 3 to nargs do
 if assigned t[key] then
 insert <argumenti> into t[key]
 else
 t[key] := [<argumenti>]
 end
fi

The function returns nothing.

See also: copyadd, bags.include, tables.allocate.

tables.indices (t [, option])

Returns all keys of table t in an unsorted new table.

If you pass any optional argument, the function will return the integral indices of a
table only, in ascending order. In this case, the second result, a Boolean, indicates
whether at least one integral key has been found in the hash part, so you might sort
the table if needed. This mode is 40 % faster than the standard mode of the
function.

See also: member, tables.borders, tables.entries, whereis.

tables.isall (t, type)

Checks whether all elements in a table t are of a given type. Eligible types that the
function accepts are 'number', 'integer' (numbers that are all integral), 'complex',
'string' and 'boolean'. Also supported are 'posint' (positive integers),
'positive' (positive numbers), 'nonnegint' (non-negative integers) and
'nonnegative' (non-negative numbers).

The function is at least fifteen times faster than checking structures with the satisfy
function. Examples:

> tables.isall([1, 2, Pi], 'number'):
true

which is equal to:

> tables.isall([1, 2, Pi], number):
true

> tables.isall([1, 2, 3], 'integer'):
true

> tables.isall([1, 2, 3], integer):
true

> satisfy(<< x -> x :: integer >>, [1, 2, 3]):
true

agena >> 387

tables.isarray (t)

Checks whether the given table t is a pure array, i.e. only contains one or more
elements in the array part of the table but none in the hash part, and returns true or
false. The second Boolean return indicates whether the array has holes.

The function checks for elements that are actually assigned, not for slots that have
just been allocated. With empty tables, always returns false.

See also: environ.attrib, tables.hashole, tables.ishash, tables.isnullarray,
tables.getsizes.

tables.ishash (t)

Checks whether the given table t is a pure dictionary, i.e. only contains one or
more elements in the hash part of t but none in the array part, and returns true or
false. The function checks for elements that are actually assigned, not for slots that
have just been allocated. With empty tables, always returns false.

See also: environ.attrib, tables.isarray, tables.getsizes.

tables.isnullarray (t)

Checks whether the given table t is a pure array, i.e. only contains one or more
elements in the array part of the table, but none in the hash part. It then checks
whether at least one of the elements in t is the null value and returns true or false.

See also: tables.hashole, tables.isarray.

tables.maxn (t)

Returns the largest positive numerical index of the given table t, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.) See also tables.borders, which is faster with arrays.

tables.move (t1, start, stop, newidx [, t2])

Copies elements from the table t1 to the table t2, performing the equivalent to the
following multiple assignment: t2[newidx],··· = t1[start], ···, t1[stop]. The default for
t2 is t1, i.e. elements are shifted in the same table. The destination range can
overlap with the source range.

Returns the destination table t2.

Example: The following statement copies four elements in table a from position 3
up to and including 6 to a new table b, starting with index 1:

> a := ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'];

388 10 Structures

> b := tables.move(a, 3, 6, 1, []);

> b:
[c, d, e, f]

The next statement copies four elements in a to its beginning:

> tables.move(a, 3, 6, 1);

> a:
[c, d, e, f, e, f, g, h]

See also: move, purge, shift, swap.

tables.new ([bool,] a, b [, k])

tables.new ([bool,] f, a, b [, k [, ···]])

tables.new (n, init = default)

In the first form, if no Boolean bool is given as the very first argument, the function
creates a table array [a, a+k, ···, b-k, b], with a, b, and k (the step size) being
numbers. The step size is 1 if k - a number - is not given. If any Boolean bool is given
as the very first argument, the function generates a linearly spaced table array of k
numbers in the interval [a, b].

In the second form, if no Boolean bool is given as the very first argument, the
function returns a table array [1~f(a), 2~f(a+k), ···, ((b-a)*1/k+1)~f(b)], with f a
function, a and b numbers. Thus, the function f is applied to all numbers between
and including a and b. If f requires two or more arguments, the second, third, etc.
argument must be passed after k.

If any Boolean bool is given as the very first argument, the function generates a
linearly spaced table array of k numbers in the interval [a, b] with f applied to all its
members.

The function uses the Kahan-Babuška summation algorithm to prevent round-off
errors in case the step size is non-integral.

In the third form, creates a table array of n slots, pre-filled with default which may
be of any type.

Examples:

> tables.new(<< x, y -> x:x^2 + y >>, 1, 5, 1, 10):
[1:11, 2:14, 3:19, 4:26, 5:35]

> p := [0.1, 0.2, 0.1, 0.3, 1]

> tables.new(<< x -> x:p[x] >>, 1, size p):
[1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1]

agena >> 389

> tables.new(true, -4, 4, 6):
[-4, -2.4, -0.8, 0.8, 2.4, 4]

> tables.new(8, init = 0):
[0, 0, 0, 0, 0, 0, 0, 0]

tables.new also accepts functions that may return null. Example:

> tables.new(<< x -> if x % 3 = 0 then x else null fi >>, 0, 10):
[1 ~ 0, 4 ~ 3, 7 ~ 6, 10 ~ 9]

See also: foreach, map, registers.new, sequences.new, tables.newtable.

tables.newtable (a, b)

Returns a table with a pre-allocated array slots and b pre-allocated hash slots. a and
b should be non-negative integers. If a or b is negative, zero slots will be
pre-allocated with no error being issued.

The function is useful only if you have to pass a table initialiser as a function
argument, otherwise it is recommended to use the create table statement.

See also: tables.new, create table/dict statements.

tables.numintersect (a, b)

Returns the number of elements in the intersection of a and b, aka size(a intersect
b), without the overhead of generating the structure.

tables.numminus (a, b)

Returns the number of elements in the difference of a \ b, aka size(a minus b),
without the overhead of generating the structure.

tables.numunion (a, b)

Returns the number of elements in the union of a and b, aka size(a union b), without
the overhead of generating the structure.

tables.pack (···)

Returns a new table with all arguments stored into keys 1, 2, etc. and with a field "n"
with the total number of arguments. Note that the resulting table may not be a
table array, if some arguments are null.

See also: tables.unpack.

390 10 Structures

tables.parts (t)

Returns both the array and the hash part of table t in two tables, with all key~value
pairs preserved.

See also: tables.array, tables.hash, tables.hashole, tables.isarray, tables.ishash.

tables.reshuffle (t [, flag])

Removes all null values from the array part of a table and moves the remaining
non-null values in the array part to close the space. If any second argument is not
given, also moves all values in the hash part of table t to the end of its array part,
thus emptying the hash part. The function works in-place, thus destructively, and
returns nothing.

See also: sort, sorted.

tables.setfield (t, k, v)

The function sets value v to field k in table t, triggering a metamethod if available
and necessary. k represents the field name, i.e. a string, and v any value. This is
equivalent to the assignment statement t[k] := v. Useful to explore the behaviour of
the underlying C API function lua_setfield.

tables.settable (t, k, v)

The function sets value v to field k in table t, triggering a metamethod if available
and necessary. k represents the index which may be of any type, and v any value.
This is equivalent to the assignment statement t[k] := v. Useful to explore the
behaviour of the underlying C API function lua_settable.

tables.unpack (t [, i [, j]])

Returns the elements from the given table array. This function is equivalent to

return t[i], t[i+1], ···, t[j].

By default, i is 1 and j is size(t). The function works like unpack, but only for tables.

agena >> 391

10.2 Sets

Summary of Functions:

Queries

$$, empty, filled, has, in, notin, recurse, size, type, typeof, sets.isall,
sets.numintersect, sets.numminus, sets.numunion.

Retrieving Values

descend, unpack.

Operations

@, $$, cleanse, copy, copyadd, map, remove, select, selectremove.

Relational Operators

=, ==, ~=, <>.

Cantor Operations

intersect, minus, subset, union, xsubset.

Miscellaneous

cleanse, sets.newset, sets.resize.

cleanse (s)

Empties set s and returns the emptied structure. The memory previously occupied
can be reused by the interpreter.

copy (s)

The operator copies the entire contents of a set s into a new set. See Chapter 8 for
more information.

descend (f, s, [, ···] [, option])

Returns all elements in set s that satisfy a given condition expressed by function f.
The function can be multivariate and must return either true or false. The optional
second and all further arguments of f may be passed as the third, etc. argument.

For more information see the description of descend in Chapter 8.

392 10 Structures

copyadd (s [, ···])

Copies all elements in set s and any further optional arguments into a new set and
returns it. For performance reasons, substructures are not deep-copied.

For further information, check the description of copyadd in Chapter 8.

empty (s)

The operator checks whether a set s does not contain any element. The return is
true or false.

See also: filled.

filled (s)

The operator checks whether a set s contains at least one element. The return is
true or false.

See also: empty.

getmetatable (s)

If t does not have a metatable, returns null. Otherwise, if the s's metatable has a
'__metatable' field, returns the associated value. Otherwise, returns the metatable
of sequence s.

See also: setmetatable.

getorset (s, k1, ···, kn, v)

Returns the non-null element at index s[k1, k2, ..., kn], where s is a sequence. If any
index position is invalid, the function returns null.

If s[k1, k2, ..., kn] = null, then the function assigns s[k1, k2, ..., kn] := v and returns v.

See also: getentry.

has (s, x)

Checks whether set s contains element x. The function performs a recursive scan so
that it can find elements in deeply nested structures.

The function return true if x could be found in s, and false otherwise.

See also: descend, in, recurse, satisfy.

agena >> 393

map (f, s [, ···] [, true])

Maps the function f on all elements of a set s. See map in Chapter 8 for more
information.

See also: countitems, remove, select, selectremove, subs, subsop, and zip.

recurse (f, s [, ···][, option])

Checks each element of set s by applying a function f on each of its elements. f
can be a multivariate function and must return either true or false. The optional
second and all further arguments of f may be passed as the third, etc. argument.

For more information, see the description of recurse in Chapter 8.

See also: has, descend, select.

remove (f, s [, ···] [, true])

Returns all values in set s that do not satisfy a condition determined by function f.
See remove in Chapter 8 for more information.

See also: map, select, selectremove, subs, subsop, zip.

select (f, s [, ···] [, true])

Returns all values in set s that satisfy a condition determined by function f. See
select in Chapter 8 for more information.

See also: map, remove, selectremove, subs, subsop, zip.

selectremove (f, s [, ···])

Returns all values in set s that satisfy and do not satisfy a condition determined by
function f, in two sets. See selectremove in Chapter 8 for more information.

See also: map, remove, select, subs, subsop, zip.

size (s)

Returns the number of items in a set s.

type (s)

Returns the type of set s, i.e. the string 'set'.

394 10 Structures

typeof (s)

Returns either the user-defined type of set s, or the basic type 'set'.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. {1, 1}
= {1} true, {1, 2} xsubset {1, 1, 2, 2, 3, 3} true.d d

s1 = s2

This equality check of two sets s1, s2 first tests whether s1 and s2 point to the same
set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same items, and
returns true or false. In this case, the search is linear.

s1 == s2

With sets, the == operator acts exactly as the = operator.

s1 ~= s2

With sets, the ~= operator compares each element in s1 and s2 for approximate
equality. See approx for further details. The return is either true or false.

s1 <> s2

This inequality check of two sets s1, s2 first tests whether s1 and s2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same items,
and returns true or false. In this case, the search is linear.

c in s

Checks whether the set s contains the item c and returns true or false. The search is
constant.

c notin s

Checks whether the set s does not contain the item c and returns true or false. The
search is constant.

s1 intersect s2

Searches all items in set s1 that are also items in set s2 and returns them in a set.
The search is linear. If t1 has a metatable and/or a user-defined type, then they will
be copied to the result; otherwise the function will try to copy them from t2.

agena >> 395

See also: sets.numintersect.

s1 minus s2

Searches all items in set s1 that are not items in set s2 and returns them as a set.
The search is linear. If s1 has a metatable and/or a user-defined type, then they will
be copied to the result; otherwise the function will try to copy them from s2.

See also: sets.numminus.

s1 subset s2

Checks whether all items in set s1 are included in set s2 and returns true or false.
The operator also returns true if s1 = s2. The search is linear.

s1 union s2

Concatenates two sets s1 and s2 simply by copying all its items to a new set. If s1
has a metatable and/or a user-defined type, then they will be copied to the result;
otherwise the function will try to copy them from s2.

See also: sets.numunion.

s1 xsubset s2

Checks whether all items in set s1 are included in set s2 and whether s2 contains at
least one further item, so that the result is always false if s1 = s2. The search is linear.

f @ s

The operator maps a function f to all the values in set s and returns a set as the
result. f must be a univariate function and return only one value. If s has
metamethods or user-defined types, the return will also have them.

Examples:

> << x -> x^2 >> @ {1, 2, 3}:
{1, 4, 9}

> << x -> x > 1 >> @ {1, 2, 3}:
{false, true}

See also: $, $$, countitems, remove, select, selectremove, subs, subsop, and zip.

f $ s

Returns all values in set s that satisfy a condition determined by function f. f should
be a univariate function and return at least one value. In the multivariate case, all
results but the first are ignored.

396 10 Structures

> << x -> x > 1 >> $ {1, 2, 3}:
{2, 3}

If present, the function also copies the metatable and user-defined type of s to the
new set.

See also: @, $$, map, remove, selectremove, subs, subsop, zip.

f $$ s

Checks whether at least one element in set s satisfies the condition defined by
function f and returns true or false. f should be a univariate function and return at
least one value. In the multivariate case, all results but the first are ignored.

> << x -> x < 1 >> $$ {1, 2, 3}:
false

sets.isall (s, type)

Checks whether all elements in a set s are of a given type. Eligible types that the
function accepts are 'number', 'integer' (numbers that are all integral), 'complex',
'string' and 'boolean'.

The function is at least fifteen times faster than checking structures with the satisfy
function.

sets.newset (n)

Returns a set with n pre-allocated slots. n should be a non-negative integer.

The function is useful only if you have to pass a set initialiser as a function argument,
otherwise it is recommended to use the create set statement.

See also: tables.new, sequences.new, registers.new.

sets.numintersect (a, b)

Returns the number of elements in the intersection of a and b, aka size(a intersect
b), without the overhead of generating the structure.

sets.numminus (a, b)

Returns the number of elements in the difference of a \ b, aka size(a minus b),
without the overhead of generating the structure.

sets.numunion (a, b)

Returns the number of elements in the union of a and b, aka size(a union b), without
the overhead of generating the structure.

agena >> 397

sets.resize (s [, newsize [, true]])

Resizes set s to store at least newsize elements. If the last argument is true the
number of pre-allocated slots will be adjusted to an optimum of the smallest power
of 2 greater than or equal to n.

If only s is given, the number of pre-allocated slots will be changed to the smallest
power of 2 greater than or equal the current size, usually freeing formerly occupied
space.

If newsize < size s or the number of pre-allocated slots would not change, the
function does nothing and returns without modifying the set.

The function returns the number of allocated elements and the number of
pre-allocated slots.

See also: math.nextpower, size, environ.attrib maxsize and size values.

398 10 Structures

10.3 Sequences

Summary of Functions:

Queries

countitems, empty, filled, has, in, member, notin, recurse, size, typeof,
whereis, sequences.isall, sequences.numitersect, sequences.numminus,
sequences.numunion.

Retrieving Values

descend, getentry, unique, unpack, values.

Operations

@, $, addup, append, cleanse, copy, copyadd, include, join, map,
move, mulup, prepend, purge, qsumup, remove, reverse, select,
selectremove, sumup, shift, sort, sorted, subs, subsop, swap, zip,
sequences.new.

Relational Operators

=, ==, ~=, <>.

Cantor Operations

intersect, minus, subset, union, xsubset.

10.3.1 Operators & Functions

append (x, s)

Adds x to the end of sequence s, in-place. The function returns the modified
structure. For more information, check Chapter 8.

See also: include, prepend, put, insert statement.

augment (s1, s2 [, ···])

Joins two or more sequences s1, s2 etc. together horizontally. All sequences must
be of the same size. The function is written in Agena and included in the
lib/library.agn file.

See also: columns.

agena >> 399

bintersect (s1, s2 [, option])

Returns all values of sequence s1 that are also values in sequence s2. The function
performs a binary search in t2 for each value in t1. If no option is given, t2 is sorted
before starting the search. If you pass an option of any value then t2 should
already have been sorted, for no correct results would be returned otherwise.

With larger sequences, this function is much faster than the intersect operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bisequal, bminus.

bisequal (s1, s2 [, option])

Determines whether the sequences s1 and s2 contain the same values. The
function performs a binary search. If no option is given (any value), s1 and s2 are
sorted before starting the search. If you pass an option of any type then s1 and s2
should already have been sorted, for no correct results would be returned
otherwise.

With larger sequences, this function is much faster than the = operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bminus.

bminus (s1, s2 [, option])

Returns all values of sequence s1 that are not values in sequence s2. The function
performs a binary search in s2 for each value in s1. If no option is given, s2 is sorted
before starting the search. If you pass the option then s2 should already have been
sorted, for no correct results would be returned otherwise.

With larger sequences, this function is much faster than the minus operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bisequal.

bottom (s)

With sequence s, the operator returns the element at index 1. If s is empty, it returns
null.

See also: top.

400 10 Structures

cleanse (s)

Empties a sequence and returns the emptied structure. The memory previously
occupied can be reused by the interpreter.

columns (s, p [, ···] [, 'structure'])

Extracts the given columns p (etc.) from the two-dimensional sequence s. The return
is either a sequence of structures if the option 'structure' is given, or a multiple
return of sequences.

The function is written in Agena and included in the lib/library.agn file.

See also: ops, select, unpack, values, utils.readscv.

copy (s)

The operator copies the entire contents of a sequence s into a new sequence. See
Chapter 8 for more information.

copyadd (s [, ···])

Copies all elements in sequence s and any further optional arguments into a new
sequence and returns it. For performance reasons, substructures are not
deep-copied.

For further information, check the description of copyadd in Chapter 8.

countitems (item, s)

countitems (f, s [, ···])

Counts the number of occurrences of an item in the sequence s. For further
information, see Chapter 8.

descend (f, s, [, ···] [, option])

Returns all elements in sequence s that satisfy a given condition expressed by
function f. The function can be multivariate and must return either true or false. The
optional second and all further arguments of f may be passed as the third, etc.
argument.

For more information see the description of descend in Chapter 8.

duplicates (s [, option])

Returns all the values that are stored more than once to the given sequence s, and
returns them in a new sequence. Each duplicate will be returned only once.

agena >> 401

If option is not given, the structure is sorted before evaluation since this is needed to
determine all duplicates. The original structure is left untouched, however.

The total size of the new register is equal to the number of the elements in the result.

If a value of any type is given for option, the function assumes that the sequence
has been already sorted. Otherwise it is suggested to use skycrane.sorted before
the call to duplicates if the sequence contains values of different types, to prevent
errors.

The function is written in Agena and included in the lib/library.agn file.

empty (s)

The operator checks whether the sequence s does not contain any element. The
return is true or false.

See also: filled.

filled (s)

The operator checks whether the sequence s contains at least one element. The
return is true or false.

See also: empty.

getentry (s [, k1, ···, kn])

Returns the entry s[k1, ···, kn] from the sequence s without issuing an error if one
of the given indices ki (second to last argument) does not exist.

getmetatable (s)

If s does not have a metatable, returns null. Otherwise, if the s's metatable has a
'__metatable' field, returns the associated value. Otherwise, returns the metatable
of sequence s.

See also: setmetatable.

getorset (s, k1, ···, kn, v)

Returns the non-null element at index r[k1, k2, ..., kn], where r is a register. If any
index position is invalid, the function returns null.

If r[k1, k2, ..., kn] = null, then the function assigns r[k1, k2, ..., kn] := v and returns v.

See also: getentry.

402 10 Structures

has (s, x)

Checks whether sequence s contains element x. The function performs a recursive
scan so that it can find elements in deeply nested structures.

The function return true if x could be found in s, and false otherwise.

See also: descend, in, member, recurse, satisfy, whereis.

include (s, x [, ···])

Inserts one or more values x, ··· to the end of sequence s, not discarding multiple
returns if its last argument is a function call. For more information, see Chapter 8.

See also: copyadd, append, prepend, put, insert statement.

join (s [, sep [, i [, j]]])

Concatenates all string values in sequence s in sequential order and returns a
string: s[i] & sep & s[i+1] ··· & sep & s[j]. The default value for sep is the empty
string, the default for i is 1, and the default for j is the length of the sequence. The
function issues an error if s contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.g.:

> join(map(tostring, seq(1, 2, 3))):
123

map (f, s [, ···] [, true])

Maps the function f on all elements of a sequence s. See map in Chapter 8 for
more information.

See also: remove, select, subs, subsop, zip.

member (x, obj)

Searches x in the sequence obj and if successful returns true plus the index of the
first hit. Otherwise returns false and null. The function is much faster than whereis if
you need the index of the first hit only. Note that with respect to whereis, the
parameters are in reverse order.

See also: has, whereis.

agena >> 403

move (s1, start, stop, newidx [, s2])

Copies elements from sequence s1 to sequence s2, performing the equivalent to
the following multiple assignment: s2[newidx],··· = s1[start], ···, s1[stop]. The default
for s2 is s1, i.e. elements are shifted in the same sequence. The destination range
can overlap with the source range.

Returns the destination sequence s2.

See also: purge, put.

mulup (s)

Multiplies all numeric values in sequence s. See mulup in Chapter 8 for more
information.

See also: sumup.

prepend (x, s)

Prepends x to the beginning of sequence s, in-place. The function returns the
modified structure.

See also: append, include, put, insert statement.

purge (s [, pos])

purge (s, a, b)

In the first form, the function removes from sequence s the element at position pos,
shifting down other elements to close the space, if necessary. Returns the value of
the removed element, or nothing if pos is invalid.

The default value for pos is n, where n is the length of the sequence, so that a call
purge(s) removes the last element of s.

In the second form, it removes all elements starting from index a to index b
(inclusive), moving excess elements down to close the space; the function
automatically performs a garbage collection after shifting. In the 2nd form, nothing
will be returned.

See also: move, put.

put (s, [pos,] value)

Inserts element value at position pos in sequence s, shifting up other elements to
open space, if necessary. The default value for pos is n+1, where n is the current
sequence size, so that a call put(s, value) inserts value at the end of s.

404 10 Structures

Use the insert element into structure statement if you want to add an element at
the current end of a sequence, for it is much faster.

The function returns the modified structure.

See also: move, prepend, purge.

qsumup (s)

Raises all numeric values in sequence s to the power of 2 and sums up these
powers. See qsumup in Chapter 8 for more information. See also: sumup.

recurse (f, s [, ···][, option])

Checks each element of sequence s by applying a function f on each of its
elements. f can be a multivariate function and must return either true or false. The
optional second and all further arguments of f may be passed as the third, etc.
argument. For more information, see the description of recurse in Chapter 8.

remove (f, s [, ···] [, true])

Returns all values in sequence s that do not satisfy a condition determined by
function f. See remove in Chapter 8 for more information.

See also: map, select, subs, subsop, zip.

reverse (s)

Reverses the order of all elements in sequence s in-place. The function returns the
modified structure.

See also: strings.reverse, stack.reversed.

select (f, s [, ···] [, true])

Returns all values in sequence s that satisfy a condition determined by function f.
See select in Chapter 8 for more information.

See also: map, remove, subs, subsop, zip.

selectremove (f, s [, ···])

Returns all values in sequence s that satisfy and do not satisfy a condition
determined by function f, in two sequences. See selectremove in Chapter 8 for
more information.

See also: map, remove, select, subs, subsop, zip.

agena >> 405

setmetatable (s, metatable)

Sets the metatable for the given sequence s. (You cannot change the metatable
of other types from Agena, only from C.) If metatable is null, removes the
metatable of the given sequence. If the original metatable has a '__metatable'
field, raises an error. The function cannot assign metatables to C library functions.

This function returns t.

See also: getmetatable.

shift (s, a, b)

Moves an element in sequence s from position old to new, with old, new integers,
shifting all the other elements accordingly - which might also cause a rotation. The
function returns nothing.

See also: move, purge, swap.

size (s)

Returns the number of items in a sequence s.

sort (s [, comp] [, 'number'])

Sorts sequence s in a given order, and in-place. See sort in Chapter 8 for more
information.

See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (s [, comp] [, 'number'])

Sorts sequence elements in s in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 8 for more information.

See also: sort, skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, ···], s [, true])

Substitutes all occurrences of the value x in sequence s with the value v. See subs
in Chapter 8 for more information.

See also: map, remove, select, subsop, zip.

subsop (i:v [, ···], s [, true])

Substitutes the value at s[i] with value v, where v can also be null, deleting the
element in this case. See subsop in Chapter 8 for more information.

406 10 Structures

sumup (s)

Sums up all numeric values in sequence s. See sumup in Chapter 8 for more
information. See also: addup, qsumup.

swap (s, a, b)

In sequence s, swaps the entries at index positions a and b, with a, b integers. The
function returns nothing.

See also: move, purge, shift.

top (s)

With sequence s, the operator returns the element with the largest index. If s is
empty, it returns null.

See also: bottom.

type (s)

Returns the type of sequence s, i.e. the string 'sequence'.

typeof (s)

Returns either the user-defined type of sequence p, or the basic type 'sequence'.

unique (s)

With a sequence s, the function removes multiple occurrences of the same item, if
present in s. See unique in Chapter 8 for more information.

values (s, i1 [, i2, ···])

Returns the elements from the given sequence s in a new sequence. This function is
equivalent to

 return seq(s[i1], s[i2], ···)

See also: ops, select, unpack.

whereis (obj, x)

Returns the indices for a given value x in sequence obj as a new sequence,
respectively, dependent on the type of obj.

See also: has, member.

agena >> 407

zip (f, s1, s2)

This function zips together two sequences s1, s2 by applying the function f to each
of its respective elements. See Chapter 8 for more information.

See also: map, remove, select, subs.

Following are the binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(1,
1) = seq(1) true, seq(1, 2) xsubset seq(1, 1, 2, 2, 3, 3) true.d d

s1 = s2

This equality check of two sequences s1, s2 first tests whether s1 and s2 point to the
same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

s1 == s2

This strict equality check of two sequences s1, s2 first tests whether s1 and s2 point
to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are the same and are in the
same order, and returns true or false. In this case, the search is linear.

s1 ~= s2

This approximate equality check of two sequences s1, s2 first tests whether s1 and
s2 point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are approximately equal and
are in the same order, and returns true or false. In this case, the search is linear. See
approx for further information on the approximation check.

s1 <> s2

This inequality check of two sequences s1, s2 first tests whether s1 and s2 do not
point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

408 10 Structures

c in s

Checks whether the sequence s contains the value c and returns true or false. The
search is linear. See also binsearch for binary search.

c notin s

Checks whether the sequence s does not contain the value c and returns true or
false. The search is linear.

See also: in operator.

s1 intersect s2

Searches all values in sequence s1 that are also values in sequence s2 and returns
them in a sequence. The search is quadratic. If s1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
try to copy them from s2. See also sequences.numintersect.

s1 minus s2

Searches all values in sequence s1 that are not values in sequence s2 and returns
them as a sequence. The search is quadratic. If s1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
try to copy them from s2. See also sequences.numminus.

s1 subset s2

Checks whether all values in sequence s1 are included in sequence s2 and returns
true or false. The operator also returns true if s1 = s2. The search is quadratic.

s1 union s2

Concatenates two sequences s1 and s2 simply by copying all its elements - even if
they occur multiple times - to a new sequence. If s1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
try to copy them from s2. See also sequences.numunion.

s1 xsubset s2

Checks whether all values in sequence s1 are included in sequence s2 and
whether s2 contains at least one further element, so that the result is always false if
s1 = s2. The search is quadratic.

f @ s

The operator maps a function f to all the values in sequence s and returns a
sequence as the result. f must be a univariate function and return only one value. If
s has metamethods or user-defined types, the return will also have them.

agena >> 409

The operator actually calls function map.

Examples:

> << x -> x^2 >> @ seq(1, 2, 3):
seq(1, 4, 9)

> << x -> x > 0 >> @ seq(1, 2, 3):
seq(true, true, true)

See also: $ and $$ operators.

f $ s

Returns all values in sequence s that satisfy a condition determined by function f. f
should be a univariate function and return at least one value. In the multivariate
case, all results but the first are ignored.

> << x -> x > 1 >> $ seq(1, 2, 3):
seq(2, 3)

If present, the function also copies the metatable and user-defined type of obj to
the new sequence.

The operator actually calls function select.

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
unique, values, zip.

f $$ s

Checks whether at least one element in sequence s satisfies the condition defined
by function f and returns true or false. f should be a univariate function and return
at least one value. In the multivariate case, all results but the first are ignored.

> << x -> x < 1 >> $$ seq(1, 2, 3):
false

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
unique, values, zip.

10.3.2 sequences Library

This library provides generic functions for sequence manipulation. It provides all its
functions inside table sequences.

410 10 Structures

sequences.dimension (a:b [, c:d, ···] [, default])

sequences.dimension (a:b [, c:d, ···] [, init = default])

In the first form, creates a sequence of any dimension with index ranges a:b etc.
with a, b, etc. integers, and an optional default for all its entries. default must not
be a pair. The left-hand side values a, c, ... of the dimensions must always be 1.

In the second form the initialiser may be given as the option "init = default", which
allows to also use pairs as a default.

If the initialiser is a structure, i.e. table, set, pair, sequence or register, then individual
copies of the initialiser are created to avoid referencing to the same structure.

See also: sequences.newtable, create sequence statements.

sequences.isall (s, type)

Checks whether all elements in sequence s are of a given type. Eligible types that
the function accepts are 'number', 'integer' (numbers that are all integral),
'complex', 'string' and 'boolean'. Also supported are 'posint' (positive integers),
'positive' (positive numbers), 'nonnegint' (non-negative integers) and
'nonnegative' (non-negative numbers).

The function is at least fifteen times faster than checking structures with the satisfy
function.

sequences.new ([bool,] a, b [, k])

sequences.new ([bool,] f, a, b [, k [, ···]])

sequences.new (n, init = default)

In the first form, if no Boolean bool is given as the very first argument, the function
creates a sequence seq(a, a+k, ···, b-k, b), with a, b, and k (the step size) being
numbers. The step size is 1 if k - a number - is not given. If any Boolean bool is given
as the very first argument, the function generates a linearly spaced sequence of k
numbers in the interval [a, b].

In the second form, if no Boolean bool is given as the very first argument, the
function returns a sequence seq(1~f(a), 2~f(a+k), ···, ((b-a)*1/k+1)~f(b)), with f
a function, a and b numbers. Thus, the function f is applied to all numbers between
and including a and b. If f requires two or more arguments, the second, third, etc.
argument must be passed after k. If any Boolean bool is given as the very first
argument, the function generates a linearly spaced sequence of k numbers in the
interval [a, b] with f applied to all its members.

The function uses the Kahan-Babuška summation algorithm to prevent round-off
errors in case the step size is non-integral.

agena >> 411

In the third form, creates a sequence of n slots, pre-filled with default which may
be of any type.

Examples:

> sequences.new(<< x, y -> x:x^2 + y >>, 1, 5, 1, 10):
seq(1:11, 2:14, 3:19, 4:26, 5:35)

> p := seq(0.1, 0.2, 0.1, 0.3, 1)

> sequences.new(<< x -> x:p[x] >>, 1, size p):
seq(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

> sequences.new(true, -4, 4, 6):
seq(-4, -2.4, -0.8, 0.8, 2.4, 4)

> sequences.new(8, init = 0):
seq(0, 0, 0, 0, 0, 0, 0, 0)

sequences.new also accepts functions that may return null. In this case, an
element is not added to the resulting structure. Example:

> sequences.new(<< x -> if x % 3 = 0 then x else null fi >>, 0, 10):
seq(0, 3, 6, 9)

See also: foreach, map, sequences.dimension, tables.new, sets.new,
registers.new.

sequences.newseq (n)

Returns a sequence with n pre-allocated slots. n should be a non-negative integer.

The function is useful only if you have to pass a sequence initialiser as a function
argument, otherwise it is recommended to use the create sequence statement.

The function is written in Agena and included in the lib/library.agn file.

See also: sequences.dimension.

sequences.numintersect (a, b)

Returns the number of elements in the intersection of a and b, aka size(a intersect
b), without the overhead of generating the structure.

sequences.numminus (a, b)

Returns the number of elements in the difference of a \ b, aka size(a minus b),
without the overhead of generating the structure.

412 10 Structures

sequences.numunion (a, b)

Returns the number of elements in the union of a and b, aka size(a union b), without
the overhead of generating the structure.

sequences.resize (s [, newsize [, true]])

Resizes sequence s to the given number of pre-allocated slots. If you actually shrink
a sequence, then it discards any surplus elements.

The function returns the number of allocated elements and the number of
pre-allocated slots, which may be vacant.

If newsize is 0 or newsize is less than the current size, then the function also purges
all surplus values in the sequence.

If the optional third argument is true and newsize is non-zero, then the function sets
the optimum number of pre-allocated slots to the smallest power of 2 greater than
or equal to newsize.

If you pass just s without any further arguments, the function automatically allocates
to the optimum number of slots without dropping any values.

Note that Agena automatically enlarges and shrinks a sequence if necessary when
adding new or purging existing values, see environ.kernel/seqautoshrink.

See also: math.nextpower, size, environ.attrib maxsize and size values.

agena >> 413

10.4 Registers

Summary of Functions:

Queries

countitems, filled, has, in, member, recurse, size, whereis, registers.isall,
registers.numitersect, registers.numminus, registers.numunion.

Retrieving Values

descend, getentry, unique, unpack, values.

Operations

@, $, addup, append, cleanse, copy, copyadd, include, join, map,
move, mulup, prepend, purge, remove, replace, sumup, select,
selectremove, shift, sort, sorted, subs, subsop, swap, zip, registers.new.

Relational Operators

=, ==, ~=, <>.

Cantor Operations

intersect, minus, subset, union, xsubset.

With the exception of getentry, map and zip, the following functions have been
built into the kernel as unary operators:

10.4.1 Operators & Functions

append (x, r)

Adds x to the end of register r, in-place. The function returns the modified structure.
For more information, check Chapter 8.

See also: include, prepend, put, insert statement.

augment (r1, r2 [, ···])

Joins two or more registers r1, r2 etc. together horizontally. All registers must be of
the same size. The function is written in Agena and included in the lib/library.agn file.

See also: columns.

414 10 Structures

bintersect (r1, r2 [, option])

Returns all values of register t1 that are also values in register t2. The function
performs a binary search in t2 for each value in t1. If no option is given, t2 is sorted
before starting the search. If you pass an option of any value then t2 should
already have been sorted, for no correct results would be returned otherwise.

With larger registers, this function is much faster than the intersect operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bisequal, bminus.

bisequal (r1, r2 [, option])

Determines whether the registers r1 and r2 contain the same values. The function
performs a binary search. If no option is given (any value), r1 and r2 are sorted
before starting the search. If you pass an option of any type then r1 and r2 should
already have been sorted, for no correct results would be returned otherwise.

With larger registers, this function is much faster than the = operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bminus.

bminus (r1, r2 [, option])

Returns all values of register r1 that are not values in register r2. The function
performs a binary search in r2 for each value in r1. If no option is given, r2 is sorted
before starting the search. If you pass the option then r2 should already have been
sorted, for no correct results would be returned otherwise.

With larger registers, this function is much faster than the minus operator.

The function is written in Agena and included in the lib/library.agn file.

See also: bintersect, bisequal.

bottom (r)

With register r, the operator returns the element at index 1. If r is empty, it returns
null.

See also: top.

agena >> 415

cleanse (r)

Empties a register by setting all its places to null and returns the modified register.

columns (r, p [, ···] [, 'structure'])

Extracts the given columns p (etc.) from the two-dimensional register r. The return is
either a register of structures if the option 'structure' is given, or a multiple return of
registers.

The function is written in Agena and included in the lib/library.agn file.

See also: ops, select, unpack, values, utils.readscv.

copy (r)

The operator deep-copies the entire contents of a register r into a new register. See
Chapter 8 for more information.

copyadd (r [, ···])

Copies all elements in register s and any further optional arguments into a new
register and returns it. For performance reasons, substructures are not deep-copied.

For further information, check the description of copyadd in Chapter 8.

countitems (item, r)

countitems (f, r [, ···])

Counts the number of occurrences of an item in the register r. For further
information, see Chapter 8.

descend (f, r, [, ···] [, option])

Returns all elements in register r that satisfy a given condition expressed by function
f. The function can be multivariate and must return either true or false. The optional
second and all further arguments of f may be passed as the third, etc. argument.

For more information see the description of descend in Chapter 8.

See also: has, recurse, select.

duplicates (r [, option])

Returns all the values that are stored more than once to the given register r, and
returns them in a new register. Each duplicate will be returned only once.

416 10 Structures

If option is not given, the structure is sorted before evaluation since this is needed to
determine all duplicates. The original structure is left untouched, however.

The total size of the new register is equal to the number of the elements in the result.

If a value of any type is given for option, the function assumes that the register has
been already sorted. Otherwise it is suggested to use skycrane.sorted before the
call to duplicates if the register contains values of different types, to prevent errors.

The function is written in Agena and included in the lib/library.agn file.

empty (r)

The operator checks whether the register r does not contain any element. The
return is true or false.

See also: filled.

filled (r)

The operator checks whether the register r contains at least one element. The return
is true or false.

See also: empty.

getentry (r [, k1, ···, kn])

Returns the entry r[k1, ···, kn] from the register r without issuing an error if one of
the given indices ki (second to last argument) does not exist.

getmetatable (r)

If r does not have a metatable, returns null. Otherwise, if the r's metatable has a
'__metatable' field, returns the associated value. Otherwise, returns the metatable
of register r.

See also: setmetatable.

getorset (r, k1, ···, kn, v)

Returns the non-null element at index r[k1, k2, ..., kn], where s is a register. If any
index position is invalid, the function returns null.

If r[k1, k2, ..., kn] = null, then the function assigns r[k1, k2, ..., kn] := v and returns v.

See also: getentry.

agena >> 417

has (r, x)

Checks whether register r contains element x. The function performs a recursive
scan so that it can find elements in deeply nested structures.

The function return true if x could be found in s, and false otherwise.

See also: descend, in, member, recurse, satisfy, whereis.

include (r, x [, ···])

Inserts one or more values x, ··· to the end of register r, not discarding multiple
returns if its last argument is a function call. For more information, see Chapter 8.

See also: copyadd, append, prepend, put, insert statement.

join (r [, sep [, i [, j]]])

Concatenates all string values in register r in sequential order and returns a string:
r[i] & sep & r[i+1] ··· & sep & r[j]. The default value for sep is the empty string,
the default for i is 1, and the default for j is the top of the register. The function
issues an error if s contains non-strings.

member (x, obj)

Searches x in the register obj and if successful returns true plus the index of the first
hit. Otherwise returns false and null. The function is much faster than whereis if you
need the index of the first hit only. Note that with respect to whereis, the parameters
are in reverse order.

See also: has, whereis.

map (f, r [, ···])

Maps the function f on all elements of a register r. See map in Chapter 8 for more
information.

See also: @, has, remove, select, subs, zip.

move (r1, start, stop, newidx [, r2])

Copies elements from register r1 to register r2, performing the equivalent to the
following multiple assignment: r2[newidx],··· = r1[start], ···, r1[stop]. The default for
r2 is r1, i.e. elements are shifted in the same register. The destination range can
overlap with the source range.

Returns the destination register r2.

418 10 Structures

See also: purge, put, swap.

mulup (r)

Multiplies all numeric values in register r. See mulup in Chapter 8 for more
information.

See also: sumup.

prepend (x, r)

Prepends x to the beginning of register r, in-place. The function returns the modified
structure.

See also: append, include, put, insert statement.

purge (r [, pos])

purge (r, a, b)

In the first form, the function removes from register r the element at position pos,
shifting down other elements to close the space, if necessary. Returns the value of
the removed element, or nothing if pos is invalid. The default value for pos is n,
where n is the length of the register, so that a call purge(r) removes the last
element of r.

In the second form, removes all elements starting from index a to index b (inclusive),
moving excess elements down to close the space; the function automatically
performs a garbage collection after shifting. In the 2nd form, nothing will be
returned.

Note that the function also reduces the top pointer of r by the number of elements
removed.

See also: move, put, shift, swap.

qsumup (r)

Raises all numeric values in register r to the power of 2 and sums up these powers.
See qsumup in Chapter 8 for more information.

See also: addup, sumup.

put (r, [pos,] value)

Inserts element value at position pos in register r, shifting up other elements to open
space, if necessary. The default value for pos is n+1, where n is the current register
size, so that a call put(r, value) inserts value at the end of r.

agena >> 419

Use the insert element into structure statement if you want to add an element at
the current end of a register, for it is much faster.

The function returns the modified structure.

See also: move, prepend, purge.

recurse (f, r [, ···][, option])

Checks each element of register r by applying a function f on each of its
elements. f can be a multivariate function and must return either true or false. The
optional second and all further arguments of f may be passed as the third, etc.
argument. For more information, see the description of recurse in Chapter 8.

See also: descend, has, select.

remove (f, r [, ···] [, true])

Returns all values in register r that do not satisfy a condition determined by function
f. The total size of the new register is equal to the number of the elements in the
result. See remove in Chapter 8 for more information.

See also: map, select, subs, zip.

reverse (r)

Reverses the order of all elements in register s in-place. The function returns the
modified structure.

See also: strings.reverse, stack.reversed.

select (f, r [, ···] [, true])

Returns all values in register r that satisfy a condition determined by function f. The
total size of the new register is equal to the number of the elements in the result. See
select in Chapter 8 for more information.

See also: $, map, remove, subs, zip.

selectremove (f, r [, ···])

Returns all values in register r that satisfy and do not satisfy a condition determined
by function f, in two new registers. The total size of the new registers is equal to the
number of the elements in the respective results. See selectremove in Chapter 8 for
more information.

See also: map, remove, select, subs, zip.

420 10 Structures

setmetatable (r, metatable)

Sets the metatable for the given register s. (You cannot change the metatable of
other types from Agena, only from C.) If metatable is null, removes the metatable
of the given register. If the original metatable has a '__metatable' field, raises an
error. The function cannot assign metatables to C library functions.

This function returns t.

See also: getmetatable.

shift (r, a, b)

Moves an element in register r from position old to new, with old, new integers,
shifting all the other elements accordingly - which might also cause a rotation. The
function returns nothing.

See also: move, purge, swap.

size (r)

Returns the total number of items assignable in register r.

sort (r [, comp] [, 'number'])

Sorts register r in a given order, and in-place. All the values in the register up to the
position pointed to by the size operator must be of the same type and non-null.
See sort in Chapter 8 for more information. See also: sorted.

sorted (r [, comp] [, 'number'])

Sorts register elements in r in a given order, but - unlike sort - not in-place, and
non-destructively. All the values in the register up to the position pointed to by the
size operator must be of the same type and non-null. See sorted in Chapter 8 for
more information.

See also: sort.

subs (x:v [, ···], r)

Substitutes all occurrences of the value x in register r with the value v. See subs in
Chapter 8 for more information.

See also: map, remove, select, subsop, zip.

agena >> 421

subsop (i:v [, ···], r [, true])

Substitutes the value at r[i] with value v, where v can also be null, deleting the
element in this case. See subsop in Chapter 8 for more information.

sumup (r)

Sums up all numeric values in register r. See sumup in Chapter 8 for more
information.

See also: addup, qsumup.

swap (r, a, b)

In register r, swaps the entries at index positions a and b, with a, b integers. The
function returns nothing.

See also: move, purge.

top (r)

With register r, the operator returns the element with the largest index. If r is empty,
it returns null.

See also: bottom.

type (r)

Returns the type of a register r, i.e. the string 'register'.

typeof (r)

Returns either the user-defined type of register p, or the basic type 'register'.

unique (r)

With a register r, the unique function removes multiple occurrences of the same
item, if present in r, and returns a new register. The total size of the new register is
equal to the number of the elements in the result. See unique in Chapter 8 for more
information.

values (r, i1 [, i2, ···])

Returns the elements from the given register r in a new register. This function is
equivalent to

 return reg(r[i1], r[i2], ···)

The total size of the new register is equal to the number of the elements in the result.

422 10 Structures

See also: ops, select, unpack.

whereis (obj, x)

Returns the indices for a given value x in register obj as a new regisrer, respectively,
dependent on the type of obj.

See also: has, member.

zip (f, r1, r2)

This function zips together two registers r1, r2 by applying the function f to each of
its respective elements. See Chapter 8 for more information. See also: map,
remove, select, subs.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. reg(1,
1) = reg(1) true, reg(1, 2) xsubset reg(1, 1, 2, 2, 3, 3) true.d d

r1 = r2

This equality check of two registers r1, r2 first tests whether r1 and r2 point to the
same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

r1 == r2

This strict equality check of two registers r1, r2 first tests whether r1 and r2 point to
the same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all entries in the registers are the same and are in the same
order, and returns true or false. In this case, the search is linear.

r1 ~= r2

This approximate equality check of two registers r1, r2 first tests whether r1 and r2
point to the same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all entries in the registers are approximately equal and are in
the same order, and returns true or false. In this case, the search is linear. See
approx for further information on the approximation check.

agena >> 423

r1 <> r2

This inequality check of two registers s1, s2 first tests whether s1 and s2 do not point
to the same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

c in r

Checks whether the register s contains the value c and returns true or false. The
search is linear. See also binsearch for binary search.

r1 intersect r2

Searches all values in register r1 that are also values in register r2 and returns them
in a new register. The search is quadratic. The total size of the new register is equal
to the number of the elements in the result. If r1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
try to copy them from r2. See also registers.numintersect.

r1 minus r2

Searches all values in register r1 that are not values in register sr2 and returns them
as a new register. The search is quadratic. The total size of the new register is equal
to the number of the elements in the result. If r1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
try to copy them from r2. See also registers.numminus.

r1 subset r2

Checks whether all values in register r1 are included in register r2 and returns true or
false. The operator also returns true if r1 = r2. The search is quadratic. The total size
of the new register is equal to the number of the elements in the result.

r1 union r2

Concatenates two registers r1 and r2 simply by copying all its elements - even if
they occur multiple times - to a new register. The total size of the new register is
equal to the number of the elements in the result. If r1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
try to copy them from r2. See also registers.numunion.

r1 xsubset r2

Checks whether all values in register r1 are included in register r2 and whether r2
contains at least one further element, so that the result is always false if r1 = r2. The
search is quadratic. The total size of the new register is equal to the number of the
elements in the result.

424 10 Structures

f @ r

In the first form, the operator maps a function f to all the values in register r. f
should be a univariate function and return only one value. The return is a register. If r
has metamethods or user-defined types, the return will also have them.

The operator actually calls function map.

Examples:

> << x -> x^2 >> @ reg(1, 2, 3):
reg(1, 4, 9)

> << x -> x > 1 >> @ reg(1, 2, 3):
reg(false, true, true)

See also: @ and $$ operators, map, reduce, remove, select, subs, times, zip.

f $ r

Returns all values in register r that satisfy a condition determined by function f. f
should be a univariate function and return at least one value. In the multivariate
case, all results but the first are ignored.

> << x -> x > 1 >> $ reg(1, 2, 3):
[2, 3]

If present, the function also copies the metatable and user-defined type of r to the
new register.

All values up to the current top pointer are evaluated, and the size of the returned
register is equal to the number of the elements in the return.

The operator actually calls function select.

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
unique, values, zip.

f $$ r

Checks whether at least one element in register r satisfies the condition defined by
function f and returns true or false. f should be a univariate function and return at
least one value. In the multivariate case, all results but the first are ignored.

> << x -> x < 1 >> $$ reg(1, 2, 3):
false

All values up to the current top pointer are evaluated.

agena >> 425

See also: @ operator, countitems, descend, map, remove, selectremove, subs,
unique, values, zip.

10.4.2 registers Library

This library provides generic functions for register manipulation. It provides all its
functions inside table registers.

registers.dimension (a:b [, c:d, ···] [, default])

registers.dimension (a:b [, c:d, ···] [, init = default])

In the first form, creates a register of any dimension with index ranges a:b etc. with a,
 b, etc. integers, and an optional default for all its entries. default must not be a
pair. The left-hand side values a, c, ... of the dimensions must always be 1.
In the second form the initialiser may be given as the option "init = default", which
allows to also use pairs as a default.

If the initialiser is a structure, i.e. table, set, pair, sequence or register, then individual
copies of the initialiser are created to avoid referencing to the same structure.

See also: registers.newtable, create register statements.

registers.extend (r, n)

Extends the given register r to - and not by - the given number of elements. All the
elements already residing in r are kept. If n is less or equal to the current top (see
size), the structure is left unchanged and false will be returned - otherwise returns
true.

See also: registers.reduce.

registers.isall (r, type)

Checks whether all elements in register r are of a given type. Eligible types that the
function accepts are 'number', 'integer' (numbers that are all integral), 'complex',
'string' and 'boolean'. Also supported are 'posint' (positive integers),
'positive' (positive numbers), 'nonnegint' (non-negative integers) and
'nonnegative' (non-negative numbers).

The function is at least fifteen times faster than checking structures with the satisfy
function.

426 10 Structures

registers.new ([bool,] a, b [, k])

registers.new ([bool,] f, a, b [, k [, ···]])

registers.new (n, init = default)

In the first form, if no Boolean bool is given as the very first argument, the function
creates a register reg(a, a+k, ···, b-k, b), with a, b, and k (the step size) being
numbers. The step size is 1 if k - a number - is not given. If any Boolean bool is given
as the very first argument, the function generates a linearly spaced register of k
numbers in the interval [a, b].

In the second form, if no Boolean bool is given as the very first argument, the
function returns a register reg(1~f(a), 2~f(a+k), ···, ((b-a)*1/k+1)~f(b)), with f a
function, a and b numbers. Thus, the function f is applied to all numbers between
and including a and b. If f requires two or more arguments, the second, third, etc.
argument must be passed after k. If any Boolean bool is given as the very first
argument, the function generates a linearly spaced register of k numbers in the
interval [a, b] with f applied to all its members.

The function uses the Kahan-Babuška summation algorithm to prevent round-off
errors in case the step size is non-integral.

In the third form, creates a register of n slots, pre-filled with default which may be of
any type.

Examples:

> registers.new(<< x, y -> x:x^2 + y >>, 1, 5, 1, 10):
reg(1:11, 2:14, 3:19, 4:26, 5:35)

> p := reg(0.1, 0.2, 0.1, 0.3, 1)

> registers.new(<< x -> x:p[x] >>, 1, size p):
reg(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

> registers.new(true, -4, 4, 6):
reg(-4, -2.4, -0.8, 0.8, 2.4, 4)

> registers.new(8, init = 0):
reg(0, 0, 0, 0, 0, 0, 0, 0)

registers.new also accepts functions that may return null. Example:

> registers.new(<< x -> if x % 3 = 0 then x else null fi >>, 0, 10):
reg(0, null, null, 3, null, null, 6, null, null, 9, null)

See also: map, tables.new, sets.new, sequences.new.

agena >> 427

registers.newreg (n)

Returns a register with n pre-allocated slots. n should be a non-negative integer.

The function is useful only if you have to pass a register initialiser as a function
argument, otherwise it is recommended to use the create register statement.

The function is written in Agena and included in the lib/library.agn file.

See also: registers.dimension.

registers.numintersect (a, b)

Returns the number of elements in the intersection of a and b, aka size(a intersect
b), without the overhead of generating the structure.

registers.numminus (a, b)

Returns the number of elements in the difference of a \ b, aka size(a minus b),
without the overhead of generating the structure.

registers.numunion (a, b)

Returns the number of elements in the union of a and b, aka size(a union b), without
the overhead of generating the structure.

registers.reduce (r, n)

Reduces register r to - and not by - to the first n given number of elements. All the
elements residing above are removed. If the current top pointer is greater than n, it
is reset to n.

See also: registers.extend.

registers.settop (r, n)

Sets the current position of the pointer to the top of register r to the given position n,
a non-negative integer. Values above this position cannot be altered by any
functions and operators. It returns true on success, and false otherwise. If the return
is false, the current position of the top pointer has not been changed.

See also: size.

428 10 Structures

10.5 Pairs

Summary of Functions:

Queries

has, in, notin, left, right, size, type, typeof.

Operations

copy, map.

Relational Operators

=, ==, ~=, <>.

The following functionality has been built into the kernel as unary operators:

copy (p)

The operator deep-copies the entire contents of a pair p into a new pair.

has (p, x)

Checks whether pair p contains element x. The function performs a recursive scan
so that it can find elements in deeply nested structures.

The function return true if x could be found in s, and false otherwise.

See also: descend, in, recurse, satisfy.

map (f, p [, ···])

Maps the function f on both elements of a pair p and returns a new pair. See map
in Chapter 8 for more information.

size (p)

Returns the number of items in a pair p, i.e. always returns 2.

type (p)

Returns the type of a pair p, i.e. the string 'pair'.

agena >> 429

typeof (p)

Returns either the user-defined type of the pair p, or the basic type 'pair'.

The following functionality has been built into the kernel as binary operators.

p1 = p2

This equality check of two pairs p1, p2 first tests whether p1 and p2 point to the same
pair reference in memory. If so, it returns true and quits.

If not, the operator then checks whether the left-hand side of p1 and the left-hand
side of p2 are equal, and the same with both right-hand sides, and returns true or
false.

p1 == p2

With pairs, the == operator acts exactly as the = operator.

p1 ~= p2

With pairs, the ~= operator compares the left-hand side of p1 and the left-hand
side of p2 for approximate equality, and the same with both right-hand sides. The
return is either true or false. See approx for further details.

p1 <> p2

This inequality check of two pairs p1, p2 first tests whether p1 and p2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether p1 and p2 do not contain the same items,
and returns true or false.

c in p

Checks whether the number c fits into the closed interval with borders denoted by
the numeric elements of pair p, and returns true or false.

c notin p

Checks whether the number c does not fit into the closed interval with borders
denoted by the numeric elements of pair p, and returns true or false.

430 10 Structures

10.6 numarray - Numeric C Arrays

10.6.1 Introduction

The numarray package implements arrays of the C data types of either double,
unsigned char, unsigned 2-byte and signed or unsigned 4-byte integers. The
unsigned char type also supports bit fields.

The arrays implemented by this package are called numarrays for short.

Since numbers stored to numarrays consume less space, numarrays may be useful
if a large amount of numbers have to be processed, but the amount of
random-access memory of your system is limited.

While any element in a sequence, for example, occupies 24 bytes of memory, a
number in a numeric stack takes only eight bytes, and a character in a character
stack only one byte.

Also, numarrays are useful to store binary data. Operations on numarrays, however,
are usually slower than those on Agena's native structures: tables, pairs, sequences
or registers - so you will trade speed for memory.

Internally, numarrays are userdata structures that also support various
metamethods.

You can create numarrays, assign and read numbers, resize arrays, store them to
binary files, and read from files.

Functions to convert arrays to Agena's native structures, and vice versa, are
provided, as well, see numarray.toseq, numarray.toreg or numarray.toarray.

To create an array of unsigned chars, use numarray.uchar, of signed 64-bit
doubles use numarray.double, of 16-bit unsigned integers use numarray.ushort, of
32-bit unsigned integers use numarray.uint32 and of 32-bit signed integers use
numarray.int32. The number of entries to be stored must be given when calling
these three procedures. When creating arrays, all slots are automatically filled with
zeros. Array indices count from 1, not 0. You can pass negative indices to access
values from the end of an array.

Example: Create an array of five 8-byte floating point numbers, i.e. ordinary Agena
real numbers:

> a := numarray.double(5);

Determine the size, here we have five elements:

agena >> 431

> size a:

5

The array prints as:

> a:

double(5)

Arrays can be converted to sequences and registers with numarray.toseq and
numarray.toreg. So to quickly check what is in array a, we can just type:

> numarray.toseq(a):

seq(0, 0, 0, 0, 0)

Set the first element to number 10:

> a[1] := 10

> numarray.toseq(a):

seq(10, 0, 0, 0, 0)

Agena's standard indexing functions save and read numbers. So, for example, a[1]
:= -1 stores the number -1 to index 1 of the array a. a[1] reads the value stored at
index 1 of the array a. Alternatively, numarray.setitem and numarray.getitem save
and read numbers, respectively. Furthermore, numarray.include (bulk-assigns)
numbers.

Get the element at index 1:

> a[1]:

10

The numarray.resize function extends or shrinks arrays. If we want to extend the
array to store ten elements then issue, preserving the values already stored in it:

> numarray.resize(a, 10):
10

> numarray.toseq(a):

seq(10, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Functions numarray.setbit, numarray.getbit, numarray.iterate support bit fields
with unsigned char arrays.

numarray.whereis searches for numbers, and numarray.iterate can sequentially
traverse arrays. Search for number 10 which resides at index 1 in array a:

> numarray.whereis(a, 10):

1

432 10 Structures

Search for number that is not in the array:

> numarray.whereis(a, -1):

null

> f := numarray.iterate(a):
procedure(01DA10C8)

> f(): # 1st element
10

> f(): # 2nd element

0

Repeat further seven times, and finally issue

> f(): # tenth element
0

> f(): # no more elements

null

numarray.toarray creates arrays from tables, sequences and registers.

> numarray.toarray([1, 2, 3]):

double(3)

numarray.write writes the contents of any array to a binary file.
numarray.readuchars reads a complete file of unsigned chars,
numarray.readushorts of unsigned 2-byte integers, numarray.readdoubles of
doubles, numarray.readlongdoubles of longdoubles (see long package) and
numarray.readintegers of signed integers with only one call. To open and close
these files, use binio.open and binio.close. Most other binio function, such as
binio.sync, binio.rewind, and binio.filepos, is supported, as well, with the exception
of the binio.read* procedures. The low-level numarray.read function is used by the
above mentioned numarray.read* functions.

The following metamethods exist: standard read and write indexing (see above), in
and notin operators, strict and approximate equality (=, ==, <>, ~=, ~<>
operators), size, zero, nonzero and tostring. To easily add further metamethods,
have a look at the end of the lib/numarray.agn source file.

The arrays can store status information or other data in a special registry table that is
available at pseudo-index position 0. You can use the index metamethod or
numarray.getitem to read from or write data into this table, e.g. n[0] or
numarray.getitem(n, 0).

Note that long doubles are not supported on ARM platforms.

agena >> 433

10.6.2 Functions

numarray.attrib (a)

Returns the type of numarray a, its current number of slots allocated and the
number of bytes occupied, in this order.

See also: typeof, numarray.used, numarray.getsize.

numarray.convert (f, a [,···])

Same as numarray.map, but processes in-place: Maps a function f on each
element in the numarray a and changes the entries accordingly, i.e. the array
elements will be transformed from a[1] to f(a[1]), etc. f must always return a
number.

numarray.cycle (a [, i [, p, [, true]]])

Like numarry.iterate, but cycles through the numarray a, restarting from the i-th
element which is 1 by default. For arguments p and true, see numarray.iterate.

numarray.double (n)

Creates a numarray of (signed) doubles (C double) with the given number of entries
n, with n an integer, and with each slot set to the number 0.

Initially, the number of elements can be zero or more, use numarray.resize to
extend the array before assigning values.

See also: numarray.int32, numarray.longdouble, numarray.uint32,
numarray.uchar, numarray.ushort.

numarray.getitem (a, i [, n])

With a any numarray, returns the value stored at a[i], where i, the index, is an
integer counting from 1. The function is provided to avoid the index metamethod
overhead.

If n is given, then besides a[i], the values a[i+1] ... a[i + n - 1] are also returned
as additional results. The default for n is 1.

See also: numarray.iterate, numarray.setitem, numarray.replicate,
numarray.subarray.

numarray.getbit (a, i)

Returns the bit at index position i of uchar array a. i starts from 1, the rightmost bit,
not zero.

434 10 Structures

The return is either 0 or 1.

See also: getbit, numarray.setbit, numarray.iterate.

numarray.getsize (a)

Returns the number of slots used by the numarray.

See also: numarray.attrib, numarray.used.

numarray.include (a, pos, b)

numarray.include (a, i, x)

In the first form, copies all values in the numarray b into the numarray a, starting at
index pos (a number) of a. The function returns nothing. Both numarrays must by of
the same type: either be uchar, integer, or double arrays. See also
numarray.setitem.

In the second form, inserts a new number x into an array. First, the array is enlarged
by one slot, all values starting at position i (thus including the value already stored
at a[i]) are pushed to open space and finally the number x is assigned to a[i].

The function returns nothing.

tables.isall (a, type)

Checks whether all elements in numeric double array a are of a given type. Eligible
types that the function accepts are 'integer' (numbers that are all integral),
'posint' (positive integers), 'positive' (positive numbers), 'nonnegint'

(non-negative integers) and 'nonnegative' (non-negative numbers).

The return is either true or false.

The function is at least four times faster than checking structures with the
numarray.satisfy function.

numarray.int32 (n)

Creates a numarray of signed 4-byte integers (C int32_t) with the given number of
entries n, with n an integer, and with each slot set to the number 0. Initially, the
number of elements can be zero or more.

See also: numarray.double, numarray.resize, numarray.uchar, numarray.uint32,
numarray.ushort.

agena >> 435

numarray.iterate (a [, i [, p, [, true]]])

Returns an iterator function that when called returns the next value in the numarray
userdata structure a, or null if there are no further entries in the structure.

If an index i is passed, the first call to the iterator function returns the i-th element in
the numarray list and with subsequent calls, the respective elements after index i.

You may also pass a positive integer step p to the iterator function: If given, then in
subsequent calls the p-th element after the respective current one will be returned,
equivalent to giving an optional step size in numeric for loops.

Bit Fields can be iterated one after the other by passing the fourth argument, the
Boolean value true. (You may set i and p to 1 each to traverse all bits.)

Example 1: C doubles

> a := numarray.double(3)

> for i to 3 do a[i] := i * Pi od

> f := numarray.iterate(a, 2): # return all values starting with index 2
procedure(01CDC200)

> f():
6.2831853071796

> f():
9.4247779607694

> f(): # no more values in a
null

Example 2: Bit Fields

> import numarray as n

> a := n.uchar(1)

> for i to 8 do n.setbit(a, i, 1) od

> n.get(a, 1):
255

> f := numarray.iterate(a, 1, 1, true) # iterate each bit, from the right

> f():

1

(etc.)

See also: numarray.cycle.

436 10 Structures

numarray.longdouble (n)

Creates a numarray of (signed) longdoubles (C long double) with the given number
of entries n, with n an integer, and with each slot set to the number 0. Check the
long package for further information.

Initially, the number of elements can be zero or more, use numarray.resize to
extend the array before assigning values.

See also: numarray.int32, numarray.double, numarray.uint32, numarray.uchar,
numarray.ushort.

numarray.map (f, a [,···] [, true])

Maps a function f on each element in the numarray a and returns a new numarray
with the mapped results, i.e. the new array includes the values f(a[1]), f(a[2]), etc. f
must always return a number.

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array, but saving memory.
After completion, the function returns the modified array.

See also: numarray.convert, numarray.subs.

numarray.purge (a, i [, bool])

Removes the value stored at a[i], shifting down other elements to close the space,
and by default reduces the size of the array by one slot. If the array already is of size
0, an error will be returned. The function returns the value deleted.

If bool is false, the size of the array is not reduced. Instead, the last entry of the array
is set to 0. Use numarray.resize if you want to finally shrink the array to its new smaller
size. Passing the false option may be useful to avoid memory re-allocation
overhead when deleting a lot of values at one time.

See also: numarray.include, numarray.setitem.

numarray.read (fh [, bufsize])

Reads data from the file denoted by its filehandle fh and returns a numarray
userdata structure of unsigned C chars.

The file must be opened before with binio.open and must finally be closed with
binio.close.

In general, the function reads in a limited amount of bytes per call. If only fh is
passed, the number of bytes read is determined by the environ.kernel('buffersize')
setting, usually 512 bytes.

agena >> 437

You can pass the second argument bufsize, a positive integer, to read less or
more bytes. Passing the bufsize argument may also be necessary if your platform
requires that an internal input buffer is aligned to a certain block size.

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call to numarray.read.

If the end of the file has been reached, or there is nothing to read at all, null will be
returned.

In case of an error, it quits with the respective error. Use one of the following
functions to read an entire file with only one call: numarray.readdoubles,
numarray.readintegers, numarray.readuchars.

numarray.readdoubles (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle fh and returns a
numarray of C doubles.

By default, the function internally uses an input buffer of environ.kernel('buffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, too.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is written in Agena (see lib/numarray.agn).

numarray.readintegers (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle fh and returns a
numarray of C (signed) int32_t's.

By default, the function internally uses an input buffer of environ.kernel('buffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, too.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is written in Agena (see lib/numarray.agn).

438 10 Structures

numarray.readlongdoubles (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle fh and returns a
numarray of C long doubles, see long package.

By default, the function internally uses an input buffer of environ.kernel('buffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function reads in the entire file with only one
call, too.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is written in Agena (see lib/numarray.agn).

numarray.readuchars (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle fh and returns a
numarray of C unsigned chars.

By default, the function internally uses an input buffer of environ.kernel('buffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, as well.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is written in Agena (see lib/numarray.agn).

numarray.readuint32 (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle fh and returns a
numarray of C unsigned uint32_t's.

By default, the function internally uses an input buffer of environ.kernel('buffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, too.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is written in Agena (see lib/numarray.agn).

agena >> 439

numarray.readushorts (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle fh and returns a
numarray of 16-bit C unsigned integers.

By default, the function internally uses an input buffer of environ.kernel('buffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, too.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is written in Agena (see lib/numarray.agn).

numarray.remove (f, a [, ···] [, true])

Returns all values in numeric array a that do not satisfy a condition determined by
function f and returns a new array, or null if the condition has not been satisfied at
all.

If f has only one argument, then only the function and the array are passed.

> numarray.remove(<< x -> x > 1 >>, a);

If the function has more than one argument, then all arguments except the first are
passed right after the name of a.

> numarray.remove(<< x, y -> x > y >>, a, 1): # 1 for y

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array if the given condition
has been satisfied at least once, but saving memory. After completion, the function
returns the modified array. If the result is null, then the array has not been changed.

See also: numarray.map, numarray.satisfy, numarray.select, numarray.subs.

numarray.replicate (a)

Copies the entire contents of numarray a into a new array and returns it.

See also: numarray.getitem, numarray.subarray.

numarray.resize (a, n)

The function re-sizes a numarray userdata structure a to the given number of entries
n. Thus you can extend or shrink a numarray. When extending, the function fills the
new array slots with zeros, while existing values are preserved. An array can be
reduced to zero entries, as well.

440 10 Structures

The function returns the new size, an integer.

numarray.satisfy (f, a [,···])

With any numarray a, checks each element by calling function f which should
return true or false. If at least one element in a does not satisfy the condition
checked by f, the result is false, and true otherwise.

See also: numarray.isall.

numarray.select (f, a [, ···] [, true])

Returns all values in numeric array a that satisfy a condition determined by function
f and returns a new array, or null if the condition has not been satisfied at all.

If f has only one argument, then only the function and the array are passed.

> numarray.select(<< x -> x > 1 >>, a);

If the function has more than one argument, then all arguments except the first are
passed right after the name of a.

> numarray.select(<< x, y -> x > y >>, a, 1): # 1 for y

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array if the given condition
has been satisfied at least once, but saving memory. After completion, the function
returns the modified array. If the result is null, then the array has not been changed.

See also: numarray.map, numarray.remove, numarray.satisfy, numarray.subs.

numarray.setbit (a, i, n)

Sets bit n at index position i of unsigned char array a. n must be either 0 or 1. i starts
from 1, the rightmost bit, not from position zero. The function returns nothing.

See also: setbit, numarray.getbit, numarray.iterate.

numarray.setitem (a, i, v)

With a any numarray, sets number v to a[i], where i, the index, is an integer
counting from 1. The function is provided to avoid the __index metamethod
overhead.

See also: numarray.include, numarray.purge.

agena >> 441

numarray.sort (a)

Sorts a numarray a in ascending order, in-place. The function returns nothing.

numarray.sorted (a)

Sorts a numarray a in ascending order, non-destructively, and returns a new array.

numarray.subarray (a, i, j)

With a any numarray, returns the subarray a[i to j], where i, j, the indices, are
integers counting from 1. The function is provided to avoid the index metamethod
overhead.

See also: numarray.getitem.

numarray.subs (x:v [, ···], a [, true])

Substitutes all occurrences of the value x in the numarray a with the value v. More
than one substitution pair can be given. The substitutions are performed sequentially
and simultaneously starting with the first pair.

> numarray.subs(1:3, 2:4, [1, 2, -1]):
[3, 4, -1]

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array, but saving memory.
After completion, the function returns the modified array.

You can check numbers for approximate instead of strict equality by passing the
new strict=false option.

See also: numarray.map, numarray.remove, numarray.select.

numarray.toarray (o [, option])

Writes all data in the table array, sequence or register o into a numarray and returns
it. By default, a double array will be returned (option 'double'); if the second
argument option is the string 'uchar', an unsigned char array is created; if it is the
string 'integer', an integer array will be returned.

If a value in o is not a number, zero is written to the array.

numarray.toreg (a)

Receives numarray a and converts it into a register of numbers, the return.

442 10 Structures

numarray.toseq (a)

Receives numarray a and converts it into a sequence of numbers, the return.

numarray.totable (a)

Receives numarray a and converts it into a table array of numbers, the return.

numarray.uchar (n)

Creates a numarray of unsigned 1-byte characters (C unsigned char) with the given
number of entries n, with n an integer, and with each slot set to the number 0.
Initially, the number of elements can be zero or more.

See also: numarray.double, numarray.int32, numarray.uint32, numarray.ushort,
numarray.resize.

numarray.uint32 (n)

Creates a numarray of unsigned 4-byte integers (C uint32_t) with the given number
of entries n, with n an integer, and with each slot set to the number 0. Initially, the
number of elements can be zero or more.

See also: numarray.double, numarray.resize, numarray.uchar, numarray.int32,
numarray.readuint32, numarray.uint32, numarray.ushort.

numarray.used (a)

Returns the estimated number of bytes consumed by the given array a.

See also: numarray.attrib, numarray.getsize.

numarray.ushort (n)

Creates a numarray of unsigned 2-byte integers (C int16_t) with the given number of
entries n, with n an integer, and with each slot set to the number 0. Initially, the
number of elements can be zero or more.

See also: numarray.double, numarray.int32, numarray.resize, numarray.uchar,
numarray.uint32.

numarray.whereis (a, what [, pos [, eps]])

Returns the index for a given value what in the numarray a. By default, the search
starts at the beginning of the array, but you may pass any valid position pos (a
positive integer) to determine where to start the search. The return is the index
position, a positive number, or null if what could not be found in a.

agena >> 443

By default, the function checks for exact equality to detect the existence of a value.
By passing the fourth argument eps, a non-negative number, the function also
compares the values approximately with the given maximum deviation eps. See
approx for more details.

The '__in' metamethod internally uses this function to check for the existence of
values.

numarray.write (fh, a [, pos, nvalues])

Writes unsigned chars, doubles, long doubles or integers stored in a numarray a to
the file denoted by its numeric file handle fh. The file must be opened with
binio.open and closed with binio.close.

The start position pos is 1 by default but can be changed to any other valid position
in the numarray.

The number of values (not bytes !) nvalues to be written can be changed by
passing an optional fourth argument, a positive number, and by default equals the
total number of entries in a, so the function can be called only once to write the
entire array. Passing the nvalues argument may also be necessary if your platform
requires internal buffers to be aligned to a particular block size. Depending on the
type of data stored in a, the function automatically computes the number of bytes
to be written.

The function returns the index of the next start position (an integer) for a further call,
to write the next bunch of data in a, or null, if the end of the array has been
reached. When the function returns null, then it also automatically flushes all
unwritten content to the file so that you do not have to call binio.sync manually if
you want to read the file subsequently.

No further information is stored to the file created, so you always must know the type
of data you want to read in later.

Example on how to write an entire array of 4,096 integers piece-by-piece:

> a := numarray.int32(4 * 1024);

> fd := binio.open('integer.bin');

> pos := 1;

> do # write 1024 values per each call
> pos := numarray.write(fd, a, pos, 1024)
> until pos = null;

> binio.close(fd);

Use binio.sync if you want to make sure that any unwritten content is physically
written to the file when calling numarray.write multiple times on one array.

444 10 Structures

If you want to add data to the end of a file later on, pass the 'a' option to
binio.open.

10.6.3 Metamethods

garbage collection'__gc'

qmdev operator'__qmdev'

mulup operator'__mulup'

qsumup operator'__qsumup'

sumup operator'__sumup'

nonzero operator'__nonzero'

zero operator'__zero'

strict equality operator =='__eeq'

equality operator ='__eq'

approximate equality ~= operator'__aeq'

formatting for output at the console'__tostring'

filled operator'__filled'

empty operator'__empty'

notin operator'__notin'

in operator'__in'

size operator, number of elements in a numarray'__size'

write operation, e.g. n[p] := value, with p any valid index'__writeindex'

read operation, e.g. n[p] or n[p to q], with p, q any valid
indices

'__index'

FunctionalityMetamethod

agena >> 445

10.7 llist - Linked Lists

The llist package is built-in and is available right after start-up of the interpreter.

10.7.1 Introduction and an Example

Tables and sequences are quite slow if you have to insert or delete a lot of
elements during an operation, for with each insertion or deletion, objects have to
be shifted upward or downward physically.

To avoid these costly operations, data can also be represented in containers, or
`nodes`, where "[e]ach node contains two fields: a "data" field to store whatever
element [...], and a "next" field which is a pointer used to link one node to the next
node.19" For example, if you would like to insert a new element at position n, the
address of the `next entry` of node n - 1 is changed to the address of the new
node containing the element to be inserted, and the `next entry` in the new node
is assigned the address of the node containing the original value at position n.

This speeds up write operations by dimensions; read operations, however, are
slower, for the linked list has to be traversed linearly. However, linked lists as
implemented in this package are around fifteen times faster even when
conducting a read operation with each write operation.

Metamethods exist to support printing, indexing, and indexed assignments; the size,
in, notin, =, and ~= operators are also supported.

Linked lists can contain nulls, i.e. putting null into the data field of a node does not
delete this node from the chain.

Linked list can store status information or other data in a special registry table that is
available at pseudo-index position 0. You can use the index metamethod or
llist.getitem to read from or write data into this table. Examples:

> print(a[0]); # print contents of status table

> print(llist.getitem(a, 0)); # dito

> a[0].cursor := 16; # assign 16 to status table key 'cursor'

> a[0, 'cursor'] := 16; # dito

For an example of how to use linked lists, see Chapter 6.27.

Note that the linked list implemented in this package always knows about the
position of the top and the bottom element - so read and write access to them is
always O(1).

446 10 Structures

19 For an excellent introduction on implementing linked lists, see "Linked List Basics", Copyright ©
1998-2001, Nick Parlante. This quote has been taken from his manual, page 4.

10.7.2 Functions

llist.append (l, obj [, ···])

Appends one or more elements obj which may be of any type, to the singly-linked
list l, in sequential order. There is no return.

See also: llist.prepend, llist.put.

llist.checkllist (l)

Checks whether its argument is a singly-linked list and issues an error otherwise. The
function returns nothing.

llist.dump (l)

Writes each element in the singly-linked list l to a sequence and then deletes it from
the list. The linked list thereafter is completely empty and cannot be used any
longer. It will be garbage collected later as soon as you delete the reference to it.
The return is the sequence.

The function can be used in case available memory is insufficient.

See also: llist.toseq.

llist.getitem (l, idx [, n])

Returns the item at index idx of the singly-linked list l. If the index does not exist, the
function returns null.

If idx is negative, the function returns the value stored at the -idx's position counting
from end of the list.

If n is given, then besides a[idx], the values a[idx + 1] ... a[idx + n - 1] are also
returned as additional results. The default is 1.

See also: llist.setitem.

llist.iterate (l [, n [, p]])

Returns an iterator function that when called returns the next value in the
singly-linked list l, which might also be null if one or more nulls are included in the
linked list, or null if there are no more entries in the list. Also returns null if the linked list
is empty.

If an index n is passed, the first call to the iterator function returns the n-th element in
the list and with subsequent calls, the respective elements after index n.

agena >> 447

You may also pass a non-negative integer p to the iterator function: In this case, the
next consecutive p elements in the list are skipped before determining and
returning a value.

Example: Since the iterator can return null even if the end of the list has not yet
been reached, we use a counter:

> L := llist.list(1); llist.append(L, null); llist.append(L, 2);

> f := llist.iterate(L);

> c := 0;

> while c++ < size L do
> print(f())
> od;
1
null
2

The function can also process ulists.

See also: ipairs.

llist.list ([···])

The function creates a new singly-linked list and optionally stores all of the given
elements in it. The return is a userdata of user-type 'llist'.

llist.prepend (l, obj [, ···])

Prepends an element obj, and optionally further elements, which may be of any
type, to the singly-linked list l. There is no return.

See also: llist.append, llist.put.

llist.purge (l [, n])

The function removes the element at position n from the linked list l. All the
successors of the element to be deleted are `shifted` downwards. The function
returns the value deleted, but issues an error if there is no element (i.e. node) at
index n.

If idx is negative, the function deletes the value stored at the -idx's position
counting from end of the list.

If n is not given, then the last, i.e. top node is deleted; this is equal to llist.purge(l,
size l).

The function can also process ulists.

448 10 Structures

llist.put (l, n, obj)

The function inserts the given element obj into singly-linked list l at position n. The
original element at position n is not deleted - it and all of its successors are `shifted`
to open space. The function returns nothing, and issues an error if the index is
out-of-range.

If idx is negative, the function inserts the value at the -idx's position counting from
end of the list.

The function can also process ulists.

See also: llist.append, llist.prepend.

llist.replicate (l)

The function creates a copy of the singly-linked list l and returns a new linked list.
However, if an element in l is a structure, it is not deep-copied.

llist.setitem (l, idx, obj)

Stores obj, which may be of of any type, to position idx of the singly-linked list l,
overwriting the existing value. If size l > idx + 1 and the index does not yet exist,
the function simply quits without an error. If idx = size l + 1, then the call is
equivalent to llist.append. The function returns nothing.

If idx is negative, the function sets value to the -idx's position counting from the end
of the list.

See also: llist.getitem.

llist.toseq (l)

The function creates a new sequence and copies all elements in the singly-linked
list l into it, in sequential order. The return is the sequence. If there are no elements
in l, an empty sequence will be returned. If the list includes nulls, they are ignored.

llist.totable (l)

The function creates a new table and copies all elements in the singly-linked list l
into it, in sequential order. The return is the table. If there are no elements in l, an
empty table will be returned. If the list includes nulls, the resulting table will contain
holes.

agena >> 449

10.7.3 Unrolled Singly-Linked Lists

The llist package also supports unrolled singly-linked lists. You will find the respective
functions in the `package` table ulist.

Unrolled singly-linked lists (ulists) internally consist of a singly-linked list storing
sequences of the actual values in each of its nodes. Various administrative
information - the current number of sequences (i.e. nodes), the current and the
maximum number of values in each sequence - is stored in a `registry` table at
pseudo-index 0. However, this internal structure is hidden from the user, and you
can use the same indices as you would do when calling llist functions to read or
write values.

Insert and delete operations on ulists are twenty times faster when compared to
singly-linked lists, with only a small increase of memory consumption. Similarly,
simple read and write operations are 15 times faster.

Note that contrary to lllists, ulists cannot store null. The ulist package provides the
following metamethods:

ulist.isequal(K, L)= operatorEquality check
ulist.hasnot(L, v)notin operatorExistence check
ulist.has(L, v)in operatorExistence check
ulist.getsize(L)size operatorSize
ulist.setitem(L, k, v)L[k] := v, etc.Saving values
ulist.getitem(L, k)L[k]Reading values
ulist.tostring(L)print function, colon utilityPretty printer
ulist alternativeulist metamethodFunctionality

The following ulist functions work like the llist functions of the same name, with the
exception of ulist.list:

ulist.append (ul, obj [, ···])

The function works like llist.append.

It is written in Agena and included in the lib/llist.agn file.

ulist.checkulist (ul)

Checks whether its argument is a ulist and issues an error otherwise. The function
returns nothing.

See also: ulist.isulist.

ulist.dump (ul)

The function works like llist.dump.

450 10 Structures

ulist.getitem (ul, idx [n])

The function works like llist.getitem.

ulist.getllist (ul, node)

Returns the sequence stored at node (a positive integer) of the underlying llist. If the
node does not exist, the function returns null.

ulist.getsize (ul)

Returns the number of items in a ulist.

ulist.has (ul, v)

Checks whether the ulist contains item v and returns true or false.

ulist.isulist (ul)

Checks whether its argument is a ulist and returns true or false.

See also: ulist.checkulist.

ulist.iterate (ul [, n [, p]])

The function works like llist.iterate.

It is written in Agena and included in the lib/llist.agn file.

See also: ipairs.

ulist.list (n [, fill])

The function creates a new unrolled singly-linked list and internally uses sequences
with a maximum size of n slots. The default for n is 128.

If the number fill is given, with 0 < fill < 1, each underlying sequence is filled to
the given percentage before a new one is created. The default is 0.75 for 75
percent. Reasonable values for fill may range between 0.5 to 0.75.

ulist.prepend (ul, obj [, ···])

The function works like llist.prepend.

It is written in Agena and included in the lib/llist.agn file.

ulist.purge (ul, n)

The function works like llist.purge, but also returns the element deleted.

It is written in Agena and included in the lib/llist.agn file.

agena >> 451

ulist.put (ul, n, obj)

The function works like llist.put.

It is written in Agena and included in the lib/llist.agn file.

ulist.setitem (ul, idx, value)

The function works like llist.setitem.

ulist.sort (ul [, f])

The function works like sort and returns nothing.

ulist.swap (ul, i, j)

Swaps the positions of ul[i] and ul[j] in-place. The function returns nothing.

ulist.tostring (ul)

Converts the contents of a ulist to a formatted string that can be output at the
prompt.

It is written in Agena and included in the lib/llist.agn file.

ulist.toseq (ul)

The function works like llist.totable but returns a sequence instead of a table.

See also: ulist.dump.

ulist.totable (ul)

The function works like llist.totable.

452 10 Structures

10.7.4 Doubly-Linked Lists

Finally, the llist package features doubly-linked lists. Read and write access to
elements in doubly-linked lists is twice as fast as for singly-linked lists.

You find the respective functions in the package table dlist.

The functions implemented for doubly-linked lists have the same name, work the
same and have the same syntax as those for singly-linked lists, which are available
in package table llist. Just replace the prefix `llist` with `dlist`.

dlist.append (l, obj [, ···])

Appends one or more elements obj which may be of any type, to the doubly-linked
list l, in sequential order. There is no return.

See also: dlist.prepend, dlist.put.

dlist.checkdlist (l)

Checks whether its argument is a doubly-linked list and issues an error otherwise. The
function returns nothing.

dlist.dump (l)

Writes each element in the doubly-linked list l to a sequence and then deletes it
from the list. The linked list thereafter is completely empty and cannot be used any
longer. It will be garbage collected later as soon as you delete the reference to it.
The return is the sequence.

The function can be used in case available memory is insufficient.

See also: dlist.toseq.

dlist.getitem (l, idx [, n])

Returns the item at index idx of the doubly-linked list l. If the index does not exist,
the function returns null.

If idx is negative, the function returns the value stored at the -idx's position counting
from end of the list.

If n is given, then besides a[idx], the values a[idx + 1] ... a[idx + n - 1] are also
returned as additional results. The default is 1.

See also: dlist.setitem.

agena >> 453

dlist.iterate (l [, n [, p]])

Returns an iterator function that when called returns the next value in the
doubly-linked list l, which might also be null if one or more nulls are included in the
linked list, or null if there are no more entries in the list. Also returns null if the linked list
is empty.

If an index n is passed, the first call to the iterator function returns the n-th element in
the list and with subsequent calls, the respective elements after index n.
You may also pass a non-negative integer p to the iterator function: In this case, the
next consecutive p elements in the list are skipped before determining and
returning a value.

Example: Since the iterator can return null even if the end of the list has not yet
been reached, we use a counter:

> L := dlist.list(1); dlist.append(L, null); dlist.append(L, 2);

> f := dlist.iterate(L);

> c := 0;

> while c++ < size L do
> print(f())
> od;
1
null
2

See also: ipairs.

dlist.list ([···])

The function creates a new doubly-linked list and optionally stores all of the given
elements in it. The return is a userdata of user-type 'dlist'.

dlist.prepend (l, obj [, ···])

Prepends an element obj, and optionally further elements, which may be of any
type, to the doubly-linked list l. There is no return.

See also: dlist.append, dlist.put.

dlist.purge (l [, n])

The function removes the element at position n from the doubly-linked list l. All the
successors of the element to be deleted are `shifted` downwards. The function
returns the value deleted, but issues an error if there is no element (i.e. node) at
index n.

454 10 Structures

If idx is negative, the function deletes the value stored at the -idx's position
counting from end of the list.

If n is not given, then the last, i.e. top node is deleted; this is equal to dlist.purge(l,
size l).

dlist.put (l, n, obj)

The function inserts the given element obj into doubly-linked list l at position n. The
original element at position n is not deleted - it and all of its successors are `shifted`
to open space. The function returns nothing, and issues an error if the index is
out-of-range.

If idx is negative, the function inserts the value at the -idx's position counting from
end of the list.

See also: dlist.append, dlist.prepend.

dlist.replicate (l)

The function creates a copy of the doubly-linked list l and returns a new linked list.
However, if an element in l is a structure, it is not deep-copied.

dlist.setitem (l, idx, obj)

Stores obj, which may be of of any type, to position idx of the doubly-linked list l,
overwriting the existing value. If size l > idx + 1 and the index does not yet exist,
the function simply quits without an error. If idx = size l + 1, then the call is
equivalent to dlist.append. The function returns nothing.

If idx is negative, the function sets value to the -idx's position counting from the end
of the list.

See also: dlist.getitem.

dlist.toseq (l)

The function creates a new sequence and copies all elements in the doubly-linked
list l into it, in sequential order. The return is the sequence. If there are no elements
in l, an empty sequence will be returned. If the list includes nulls, they are ignored.

dlist.totable (l)

The function creates a new table and copies all elements in the doubly-linked list l
into it, in sequential order. The return is the table. If there are no elements in l, an
empty table will be returned. If the list includes nulls, the resulting table will contain
holes.

agena >> 455

10.8 bags - Mulitsets

10.8.1 Introduction and Examples

A bag, also called a multiset, is a kind of Cantor set that stores the number of
occurrence along with each unique element.

Consider a bulk of orders of books where each order is reported individually. You
may only want to know how many times a book has been sold, instead of storing
each individual order (and maybe all its data) to finally count them. You may want
to save space and perform the count immediately as soon as the order has been
committed.

The package uses tables of the user-defined type 'bag' to implement multisets.

A sequence of orders might look like this:

> orders := seq(
> 'Programming in Lua', 'Moon Lander', 'Lost Moon',
> 'Programming in Lua', 'Moon Lander', 'Lost Moon',
> 'C von A bis Z');

> books := bags.bag(unpack(orders));

> books['Lost Moon']:
2

For a further order, just enter

> bags.include(books, 'Agena');

> books:
bag(Agena ~ 1, C von A bis Z ~ 1, Lost Moon ~ 2, Moon Lander ~ 2,
Programming in Lua ~ 2)

A customer has cancelled his previous orders:

> bags.remove(books, 'Agena'):

> books:
bag(C von A bis Z ~ 1, Lost Moon ~ 2, Moon Lander ~ 2, Programming in Lua ~
2)

456 10 Structures

10.8.2 Functions & Metamethods

The package also provides the following metamethods:

garbage collection'__gc'

formatting for output at the console'__tostring'

minus operator'__minus'

intersect operator'__intersect'

union operator'__union'

filled operator'__filled'

empty operator'__empty'

notin operator'__notin'

in operator'__in'

size operator, number of characters currently stored'__size'

write operation, e.g. n[p] := value, with p the index'__writeindex'

read operation, e.g. n[p], with p an index'__index'

FunctionalityMetamethod

The functions provided by the package are:

bags.attrib (b)

Returns the number of occurrence of all unique elements in the bag b and also the
accumulated number of all occurrences of these elements in it. For example, the
multiset bag('Curiosity' ~ 2, 'Skycrane' ~ 1) results to 2, 3.

See also: bags.getsize.

bags.bag ([···])

The function creates a new bag and optionally stores all of the given elements in it.

See also: sykcrane.bagtable.

bags.bagtoset (b)

The function returns all of the unique elements in b as a set.

bags.getsize (b)

Returns the number of occurrence of all unique elements in the bag b . without the
overhead of calling bags.attrib. For example, the multiset bag('Curiosity' ~ 2,
'Skycrane' ~ 1) results to 2.

See also: bags.attrib.

agena >> 457

bags.include (b, obj [, ···])

The function inserts all of the given elements obj, etc. into bag b.

The function returns nothing.

See also: bags.minclude, tables.include.

bags.minclude (b, obj)

The function inserts all of the given elements in the sequence obj into bag b. The
function should be used instead of bags.include if the number of elements to be
inserted exceeds Agena's argument stack.

The function returns nothing.

See also: bags.include.

bags.remove (b, obj [, ···])

The function removes all of the given elements obj, etc. from bag b. If the number
of counts of the removed element reaches 0, the element will be deleted from the
bag.

The function returns nothing.

There are metamethods for conducting some sort of arbitrary Cantor set operations
on bags. Try out the binary operators union (for union), minus for difference set,
intersect for intersection, in and notin for searching an object, plus support of the
size, empty and filled operators.

If you would like to iterate a bag, you can use conventional for/in loops, for
example, using the bag in the previous chapter:

> for i, j in books do print(i, j) od
Programming in Lua 2
C von A bis Z 1
Lost Moon 2
Moon Lander 2

458 10 Structures

10.9 bimaps - Bi-directional Maps

As a plus package, the bimaps package is not part of the standard distribution and
must be activated with the import statement, i.e. import bimaps.

10.9.1 Introduction and Examples

The bimaps package implements a bi-directional map through tables. It is
intended to hold items, i and j, that have a 1-to-1 relationship and allows to look up
item j from table i and look up i from table j.

Examples:

> import bimaps

> l, r := bimaps.bimap()

> l.foo := 1

> l.bar := 2

> l.spam := 'eggs'

> l:
[bar ~ 2, foo ~ 1, spam ~ eggs]

> r:
[1 ~ foo, 2 ~ bar, eggs ~ spam]

> l = r:
true

10.9.2 Functions and Metamethods

The functions are:

bimaps.bimap ([tbl])

Creates two tables representing a bi-directional map. You can initialise the bimap
by passing an optional table tbl with pre-defined values.

bimaps.attrib (bm)

Returns administrative information for bimap bm, see environ.attrib for details.

bimaps.entries (bm)

Returns all entries in bimap bm, without invoking any metamethods.

See also: bimaps.indices.

agena >> 459

bimaps.indices (bm)

Returns all indices in bimap bm, without invoking any metamethods.

See also: bimaps.entries.

bimaps.rawget (bm [, k])

Returns the underlying table in bimap bm, without invoking any metamethods, if no
index k is given - or if k is given, returns entry bm[k] without invoking any
metamethods.

The package also provides the following metamethods:

formatting for output at the console'__tostring'

filled operator'__filled'

empty operator'__empty'

notin operator'__notin'

in operator'__in'

size operator, number of bi-directional pairs'__size'

write operation, e.g. n[p] := value, with p any valid index'__writeindex'

read operation, e.g. n[p], with p any valid table index'__index'

FunctionalityMetamethod

460 10 Structures

10.10 heaps - Priority Queues

As a plus package, the heaps package is not part of the standard distribution and
must be activated with the import statement, i.e. import heaps.

10.10.1 Introduction and Examples

The package implements skew heaps, `emulated` binary heaps and AVL trees
which for example can be used as priority queues. A skew heap is a mostly
unbalanced binary tree, usually avoiding costly reshuffles with each insert, whereas
binary heaps and AVL trees are usually balanced - with extra cost at insertion.

The exact amortized complexity O(n) of all operations on a skew heap is known to
be log(n, Phi), and the one for AVL and binary heaps is log(n, 2).

The package provides constructors (avl.new, skew.new, binary.new),
metamethods (see table below), functions to insert new and replace existing values
(avl.include, skew.include, binary.include), to remove the entry with the smallest
index (avl.remove, skew.remove, binary.remove), and iterators (avl.iterate,
skew.iterate, binary.iterate) that traverse the heaps in an ordered fashion -
depending on the sorting method chosen at heap creation, which by default is in
ascending order of the indices.

Usage is:

> import heaps;

All the functions to work with skew heaps reside in the `skew` table, those for binary
heaps are in table `binary`, and those for AVL trees in table `avl`.

The package operations on binary heaps and AVL trees are at least 25 times faster
than on skew heaps.

> h := binary.new()

> binary.include(h, 2, 'world')
> binary.include(h, 1, 'hello')
> binary.include(h, 10, 'everybody')

> k1, v1 := binary.remove(h)
> k2, v2 := binary.remove(h)
> k3, v3 := binary.remove(h)

> print(v1, v2, v3)
hello world everybody

> binary.include(h, 2, "world"); binary.include(h, 1, "hello");
> binary.include(h, 10, "everybody");

> f := binary.iterate(h);

agena >> 461

> f():
1 hello

> f():
2 world

> f():
10 everybody

The skew heap functions have the same syntax and work the same.

10.10.2 Metamethods

The package provides the following metamethods for all three heap types:

filled operator'__filled'

empty operator'__empty'

notin operator'__notin'

in operator'__in'

size operator, number of key~value pairs in the heap'__size'

skew heaps and AVL trees only: write operation, e.g. n[p] :=
value, with p any valid non-null index

'__writeindex'

read operation, e.g. n[p], with p any valid non-null index'__index'

FunctionalityMetamethod

10.10.3 Binary Heap Functions

binary.entries (h)

The function returns all entries in heap h in a new table. For the ordering, see
binary.iterate.

See also: binary.indices.

binary.include (h, k, v)

Inserts a new key~value pair into heap h. The key k and value v must be non-null.
The function returns nothing.

See also: binary.remove.

binary.indices (h)

The function returns all indices in heap h in a new table. For the ordering, see
binary.iterate.

See also: binary.entries.

462 10 Structures

binary.iterate (h)

The factory returns an iterator that with each call returns a key~value pair from
heap h, in an ordered fashion.

The ordering is determined by the comparison function passed to binary.new,
which by default is a `less than` comparison, so that the iterator returns the values
in ascending order of its indices.

binary.new ([comparison])

Creates an empty binary heap with the default comparison method for various
operations the `less than` relation, i.e.

<< k1, k2 -> k1 and type k1 = type k2 and k1 < k2 >>.

You might pass another comparison function to be used.

binary.remove (h)

Removes the key~value pair with the smallest key and returns the key and the value
removed. If the key does not exist, the function just returns null.

See also: binary.include.

binary.reorder (h)

The function deletes all obsolete datasets in binary heap h - to free memory.

10.10.4 AVL Tree Functions

The AVL tree functions are:

avl.attrib (h)

The function returns administrative information about an AVL tree: maximum height
(key maxheight), number of key~value pairs currently included (key length) and the
balance factor (key balancefactor).

avl.entries (h)

The function returns all entries in the AVL tree h in a new table, in ascending order of
its respective indices.

See also: avl.indices.

agena >> 463

avl.getmax (h)

The function returns the largest key along with its associated value from AVL tree h.
The function does not remove the data from h.

See also: avl.getmin, getminmax, avl.getroot.

avl.getmin (h)

The function returns the smallest key along with its associated value from AVL tree h.
The function does not remove the data from h.

See also: avl.getmax, avl.getminmax, avl.getroot.

avl.getminmax (h)

The function returns the smallest and largest key along with their associated values
from AVL tree h. The function does not remove the data from h.

See also: avl.getmax, getminmax, avl.getroot.

avl.getroot (h)

The function returns the key along with its associated value from the root node of
AVL tree h. The function does not remove the data from h.

avl.include (h, k, v)

Inserts a new key~value pair into AVL tree h. The key k must be non-null; if v is null
then the function will call avs.remove(h, k). The function returns nothing.

See also: avl.remove.

avl.indices (h)

The function returns all indices in AVL tree h in ascending order and returns them in a
new table.

See also: avl.entries.

avl.iterate (h)

The factory returns an iterator that with each call returns a key~value pair from AVL
tree h, in ascending order of its indices.

avl.new ()

Creates an empty AVL tree.

464 10 Structures

avl.remove (h)

avl.remove (h, k)

In the first form, removes the key~value pair with the smallest key and returns the
key and the value removed.

In the second form, deletes the given key~value pair from the tree.

If the key does not exist or the tree is empty, the function just returns null.

See also: avl.include.

10.10.5 Skew Heap Functions

The skew heap functions are:

skew.entries (h)

The function returns all entries in heap h in a new table. For the ordering, see
skew.iterate.

See also: skew.indices.

skew.height (h, k)

Returns the height of a key k in skew heap h, with 0 depicting that the key is in the
root node.

skew.include (h, k, v)

Inserts a new key~value pair into the skew heap h. The key k and value v must be
non-null. The function returns nothing.

See also: skew.remove.

skew.indices (h)

The function returns all indices in heap h in a new table. For the ordering, see
skew.iterate.

See also: skew.entries.

agena >> 465

skew.iterate (h)

The factory returns an iterator that with each call returns a key~value pair from
heap h, in an ordered fashion.

The ordering is determined by the comparison function passed to skew.new, which
by default is a `less than` comparison, so that the iterator returns the values in
ascending order of its indices.

skew.new ([comparison])

Creates an empty skew heap with the default comparison method for various
operations the `less than` relation, i.e.

<< k1, k2 -> k1 and type k1 = type k2 and k1 < k2 >>.

You might pass another comparison function to be used.

skew.remove (h)

Removes the key~value pair with the smallest key from heap h and returns the key
and the value removed. If the key does not exist, the function just returns null.

See also: skew.include.

skew.reorder (h)

The function balances skew heap h internally by popping the node with the highest
priority and then re-inserting it. This is just for maintenance, you do not have to run
this function before executing any other package function.

466 10 Structures

10.11 rbtree - Red-Black Trees

As a plus package, the rbtree package is not part of the standard distribution and
must be activated with the import statement, i.e. import rbtree.

The package allows to create binary search trees for numbers and assures that
when inserting a number, all its elements are in ascending order thereafter. The
package has been added primarily to guarantee that the internal red-black tree C
implementation works and is safe, otherwise it might be of use only in some special
situations.

The package provides the constructor rbtree.new, functions to insert new and
remove existing values - rbtree.include, rbtree.remove -, an iterator rbtree.iterate
that traverses the tree and some other helpful functions.

Usage is:

> import rbtree;

Create a new red-black tree a:

> a := rbtree.new();

Try to insert numbers 1 to 10 in descending order:

> for i from 10 downto 1 do
> rbtree.include(a, i)
> od;

All the elements in a are in ascending order:

> rbtree.entries(a):
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Check whether ten is in the tree, and whether eleven is, as well:

> 10 in a, 11 in a:
true false

Alternatively, use rbtree.find to search any number:

> rbtree.find(a, 0):
false

Is the structure empty or filled ?

> empty a, filled a:
false true

agena >> 467

Remove ten from a:

> rbtree.remove(a, 10);

The current number of elements in a now is:

> size a:
9

Iterate through the entire tree:

> f := rbtree.iterate(a);

> f():
1

> f():
2

etc.

10.11.1 Metamethods

The package provides the following metamethods for all three heap types:

pretty-printer'__tostring'

filled operator'__filled'

empty operator'__empty'

notin operator'__notin'

in operator'__in'

size operator'__size'

FunctionalityMetamethod

10.11.2 Functions

rbtree.entries (t)

The function returns all the entries in tree t in a new table, in the same order as
currently represented by the tree, that is ascending.

See also: rbtree.iterate.

rbtree.find (t, x)

Searches for number x in tree t and returns two results: A Boolean indicating
whether it has been found, and the height of the number in the tree, which is 0 on
failure.

See also: in operator.

468 10 Structures

rbtree.include (t, x)

Inserts number x into the tree t. Returns true on success and false otherwise (which
should not happen).

See also: rbtree.remove.

rbtree.iterate (t)

Returns an iterator function that when called returns one element after another from
red-black tree t. If there are no more elements left, the iterator function returns null.

Example usage:

> f := rbtree.iterate(t);

> while x := f() do
> print(x)
> od;
...

The traversal has been finished, there is no more element left.

> f():
null

See also: rbtree.entries.

rbtree.min (t)

Returns the smallest value in the tree, in O(1) time.

See also: rbtree.max, rbtree.minmax.

rbtree.minmax (t)

Returns the smallest and largest value in the tree, in O(1) time.

See also: rbtree.max, rbtree.min.

rbtree.max (t)

Returns the largest value in the tree, in O(1) time.

See also: rbtree.min, rbtree.minmax.

agena >> 469

rbtree.new ()

The function creates a new red-back tree.

See also: rbtree.include.

rbtree.remove (t, x)

Deletes an element from the tree and returns true on success and false if the
element to be deleted could not be found in the tree.

See also: rbtree.include.

470 10 Structures

10.12 bfield - Bit Fields

The package provides lean, low-level functions to work with memory-saving bit
fields. The functions are generally faster than those implemented in the memfile
package.

Typical usage:

Create a bit field of at least ten bits, which is internally rounded up to 16 bits, as 16
is a multiple of eight whereas ten is not:

> m := bfield.new(10);

The field is by default pre-filled with zeros. If you want to preset other values, like 255
to set all bits to 1, enter:

> m := bfield.new(10, 0xff);

The actual size of the field is:

> size m:
16

Get some bits:

> m[1], m[9]:
1 1

Set some bits to zero:

> m[1] := 0; m[9] := 0;

> m[1], m[9]:
0 0

The package provides the following metamethods:

garbage collection'__gc'

formatting for output at the console; returns binary
representations

'__tostring'

zero operator, checks whether all field bits are set to zero'__zero'

size operator, number of bits in the field'__size'

write operation, e.g. n[p] := value, with p the index, counting
from 1; sets a bit, not a byte

'__writeindex'

read operation, e.g. n[p], with p an index counting from 1;
reads a bit, not a byte

'__index'

FunctionalityMetamethod

agena >> 471

The bit field functions are:

bfield.clearbit (bitfield, n)

Clears a bit, i.e. sets absolute bit position n in the bitfield to 0. n counts from 1.

The function returns nothing.

See also: bfield.flipbit, bfield.getbit, bfield.setbit, bfield.setbitto, bfield.setbyte.

bfield.flipbit (bitfield, n)

Flips the bit stored at absolute bit position n in the bitfield: if the current bit is 1, it is
set to 0, and vice versa. n counts from 1.

The return is the bit value after flipping, either 1 or 0.

See also: bfield.clearbit, bfield.setbit.

bfield.getbit (bitfield, n)

Returns the bit stored at absolute bit position n in the bitfield. n counts from 1.

The return is either 1 or 0.

See also: bfield.clearbit, bfield.setbit.

bfield.getbyte (bitfield, pos [, option])

From bitfield, returns the byte at position pos, with pos > 0. The return is an integer
in the range [0, 255].

See also: bfield.getbit, bfield.getbytes.

bfield.new (n, [, val])

Creates a bit field of at least n bits. If val is not given, then every byte in the field is
set to zero. If val - a non-negative integer preferably in the range [0, 255] - is given,
then every byte in the field is filled with it.

The number of bits actually allocated is always a multiple of 8, i.e. the field is filled
up to whole bytes.

See also: bfield.resize.

472 10 Structures

bfield.resize (bitfield, n [, val])

Resizes the bitfield to exactly n bits, with n > 0. It can grow or shrink a bit field and
in the latter case preserves the remaining content. If the bit field is to be enlarged,
the function fills the new space with zeros if the third argument val is not given,
otherwise the added bytes are set to the non-negative integer val, which should be
in the range [0, 255].

The size of the modified bit field is always a multiple of 8.

See also: bfield.new.

bfield.setbit (bitfield, n)

Sets absolute bit position n in the bitfield to 1. n counts from 1. To clear a bit, use
bfield.clearbit.

The function returns nothing.

See also: bfield.clearbit, bfield.flipbit, bfield.getbit, bfield.setbyte.

bfield.setbitto (bitfield, n, val)

Sets absolute bit position n in the bitfield to 1 the val, a non-negative integer
preferably in the range [0, 255]. n counts from 1.

The function returns nothing.

See also: bfield.clearbit, bfield.getbit, bfield.setbyte.

bfield.setbyte (bitfield, pos, val)

Sets val, a non-negative integer preferably in the range [0, 255] into bitfield at
byte position pos, with pos > 0.

The function returns nothing.

See also: bfield.getbyte, bfield.setbit.

agena >> 473

10.13 tuples - Closures Storing Data

The package provides functions to work with closures that store any kind of data.

Data stored in closures usually are called `upvalues`. Depending on the platform,
the increase in speed when reading or writing upvalues is zero to nine percent
compared to tables, with generally less memory required.

To store data in a closure, call tuples.tuple:

> t := tuples.tuple(10, 20, 30);

To return all values, just pass no arguments.

> t():
10 20 30

To retrieve an item at a position, issue

> t(1):
10

or use square brackets, which is much faster:

> t[1]:
10

A tuple cannot be extended or shrunk, but values can be replaced by using the
notation:

> t[1] := 0;

The package provides the following metamethods:

returns all elements in the first tuple that are not in the second
one

'__minus'

returns the intersection of two tuples'__intersect'

checks whether an element is not part of a tuple'__notin'

checks whether an element is stored in a tuple'__in'

nonzero operator, checks whether all elements in the tuple
are non-zeros

'__nonzero'

zero operator, checks whether all tuple elements are set to
zero

'__zero'

size operator, number of elements in a tuple'__size'

write operation, e.g. n[p] := value, with p the index, counting
from 1

'__writeindex'

read operation, e.g. n[p], with p an index counting from 1'__index'

FunctionalityMetamethod

474 10 Structures

formatting for output at the console'__tostring'

~= approximate equality operator'__aeq'

== equality operator'__eeq'

= equality operator'__eq'

returns a tuple with all the elements of the first and the
second tuple

'__union'

FunctionalityMetamethod

There is no __gc method for tuples are collected like functions.

The functions are:

tuples.getitem (a, i)

With any tuple, returns the value at a[i], where i, the index, is an integer counting
from 1. The function has been provided to avoid the index metamethod overhead.

See also: tuples.setitem.

tuples.getsize (a)

Returns the number of values stored in tuple a.

tuples.map (f, a [, ···] [, true])

Like map, applied on tuple a.

tuples.remove (f, a [, ··· [, inplace=true])

Like remove, applied on tuple a.

tuples.select (f, a [, ··· [, inplace=true])

Like select, applied on tuple a.

tuples.setitem (a, i, v)

With any tuple, sets value v to a[i], where i, the index, is an integer counting from 1.
The function has been provided to avoid the index metamethod overhead.

tuples.subs (x:v [, ···], a [, true])

Like subs, applied on tuple a.

agena >> 475

tuples.toreg (a)

Puts all elements in tuple a into a register and returns it.

tuples.toseq (a)

Puts all elements in tuple a into a sequence and returns it.

tuples.totable (a)

Puts all elements in tuple a into a table and returns it.

tuples.tostring (a)

"Pretty-prints" tuple a, returning a string including the number of elements in a.

tuples.tuple ([a [,···]])

Creates a tuple with all the given arguments, limited to 60 entries. The return is a
closure. The function can create an empty tuple, as well, if you should need one.

tuples.unpack (a)

Similar to unpack, returning all elements in a tuple.

476 10 Structures

10.14 lookup - Lookup Tables

The package implements simple lookup tables, accompanied by functions to insert
and delete values, modify its entries and inspect them. Technically, lookup tables
have been implemented as userdata storing size information and the actual Agena
table that contains all the actual data.

Example session:

Create a new lookup table:

> a := lookup.new();

Insert some values:

> lookup.include(a, 'abc', 1, 2, 3, 4)

> lookup.include(a, 'xyz', -1, -2, -3, -4)

Inspect the lookup table:

> lookup.gettable(a):
[abc ~ [1, 2, 3, 4], xyz ~ [-1, -2, -3, -4]]

Check what we have at index 'xyz', in two different ways:

> lookup.gettable(a, 'xyz'), a['xyz']:
[-1, -2, -3, -4] [-1, -2, -3, -4]

Get all the indices:

> lookup.indices(a):
[xyz, abc]

Check whether the value -1 is in one of the subtables:

> -1 in a:
true

Traverse the table:

> lookup.next(a, null):
xyz [-1, -2, -3, -4]

> lookup.next(a, 'xyz'):
abc [1, 2, 3, 4]

> lookup.next(a, 'abc'):
null

See also function lookup.traverse.

agena >> 477

Map a function on all elements, in-place:

> lookup.map(<< x -> 2*x >>, a):
[abc ~ [2, 4, 6, 8], xyz ~ [-2, -4, -6, -8]]

Substitute values, also in-place:

> lookup.subs(2:0, -2:0, a):
[abc ~ [0, 4, 6, 8], xyz ~ [0, -4, -6, -8]]

Get the number of all indices and of all table values:

> lookup.getsizes(a):
2 8

Delete the entry indexed by 'xyz':

> lookup.purge(a, 'xyz'):
[0, -4, -6, -8]

> lookup.gettable(a), lookup.getsizes(a):
[abc ~ [0, 4, 6, 8]] 1 4

lookup.gettable allows to modify the table via the table reference returned. If you
add or delete new values via self-written functions, do not forget to set the new sizes
for the number of indices and entries:

> lookup.setsizes(a, 1, 4); # one key, four values

10.14.1 Metamethods

The package provides the following metamethods for all three heap types:

pretty-printer'__tostring'

filled operator'__filled'

empty operator'__empty'

notin operator'__notin'

in operator'__in'

size operator'__size'

read-access indexing'__index'

FunctionalityMetamethod

478 10 Structures

10.14.2 Functions

lookup.getsizes (a)

Returns the number of indices in lookup table a and the total number of elements in
all its subtable entries, in this order.

See also: lookup.setsizes.

lookup.gettable(a [, k])

When given just one argument a, the lookup table, returns a reference to its internal
table data structure. If k is given, returns the index entry a[k].

lookup.include (a, k, v0 [, v1, ···])

The function sets values into lookup table a: a[k] := [v0, v1, ···] and returns nothing.

See also: lookup.purge.

lookup.indices (a [, true])

The function returns all indices in lookup table a. The result is unsorted when given
just one argument.

If true is given as a second argument, only indices with integral keys are returned, in
ascending order.

See also: lookup.next.

lookup.iterate (a [, key])

Returns an iterator function that when called returns one key ~ value pair after
another from lookup table a. If there are no more elements left, the iterator function
returns null.

If key is given, the function starts iteration with the key ~ value pair following key in
the chain. key is null by default, meaning an initial key is determined internally to
traverse the whole lookup table.

The order in which the indices are enumerated is not specified, even for numeric
indices.

Example usage:

> a := lookup.new();

> lookup.include(a, 'abc', 1, 2, 3, 4)

> lookup.include(a, 'xyz', -1, -2, -3, -4)

agena >> 479

> f := lookup.iterate(a);

> while x := [f()] do
> break when empty x;
> print(x)
> od;

See also: lookup.next.

lookup.map (f, a, [, ···] [, true])

Maps a function f to all the values in lookup table a, in-place and traversing also
nested subtables. For more information, see the description of map in Chapter 8,
with the "inplace=true" and "descend=true" options set.

See also: lookup.subs.

lookup.new ([la [, lh]])

Creates a new lookup table (a userdata value) with la pre-allocated slots in the
array part and lh slots in the hash part. By default, la and lh are both zero.

See also: new.include.

lookup.next (a [, index [, sentinel]])

Allows a programme to traverse all fields of lookup table a. Its second argument is
an index in the structure.

The function returns the next index of the structure and its associated value. When
called with null as its second argument, next returns an initial index and its
associated value. When called with the last index, or with null in an empty structure,
lookup.next returns null.

If the second argument is absent, then it is interpreted as null. In particular, you can
use lookup.next(t) to check whether a table is empty. However, it is recommended
to use the filled operator for this purpose.

If the third optional argument sentinel is given, and if lookup.next during traversal
encounters an element that equals this sentinel, the function just returns null, and
you may start iterating the structure again from its beginning.

The order in which the indices are enumerated is not specified, even for numeric
indices.

See also: lookup.indices.

480 10 Structures

lookup.purge (a, k)

The function deletes entry a[k] and returns the subtable just deleted. If a[k] is already
unassigned, returns null.

See also: lookup.include.

lookup.setsizes (a, lk [, lv])

Sets the number lk of indices and the total number of elements lv in lookup table
a. If lv is not given the total number of elements is not changed.

See also: lookup.getsizes.

lookup.subs (x:v [, ···], a [, true])

Substitutes all occurrences of the value x in the subtables of lookup table a with the
value v, destructively. More than one substitution pair can be given. The
substitutions are performed sequentially and by default simultaneously starting with
the first pair. The function traverses nested structures.

For more information, see the description of map in Chapter 8, with the
"inplace=true" and "descend=true" options set.

See also: lookup.map.

agena >> 481

482 10 Structures

Chapter Eleven

Numbers

agena >> 483

484 11 Numbers

11 Numbers

11.1 Mathematical Functions

The mathematical operators and functions explained in this chapter work on both
real numbers as well as complex numbers, except if indicated otherwise.

For the sake of speed, basic arithmetic functions have been implemented as
operators, whereas all other mathematical functions are implemented as Agena
library functions (implemented either in C or Agena). While functions can be
overwritten with self-defined versions, operators cannot be overwritten.

Summary of Operators and Functions:

Basic Arithmetic Operators

+, -, *, /, /*, &+, &-, &*, &/, &\, foreach, math.accu, math.fdim,
math.kbadd, math.koadd.

Relational Operators

=, ==, <, >, <=, >=, <>, |, approx.

Integer Division

\, %, drem, iqr, modf, symmod, math.cld, math.fld, math.modiv,
math.modulus, math.nearmod.

Exponentiation

^, **, antilog2, antilog10, cube, exp, exp2, exp10, expx2, frexp, ldexp,
math.expminusone, math.iscube, math.issquare, square, squareadd.

Roots

cbrt, hypot, hypot2, hypot3, hypot4, invsqrt, proot, pytha, root, sqrt,
math.isqrt, fastmath.hypotfast, fastmath.sqroot, fastmath.sqrtfast.

Logarithms

ilog2, ln, log, log2, log10, math.ceillog2, fastmath.lbfast, math.lnplusone,
math.xlnplusone.

agena >> 485

Trigonometric Functions

cas, cos, cot, csc, sec, sin, tan, math.cosd, math.cotd, math.quadrant,
math.redupi, math.sincos, math.sind, math.tand, fastmath.sincosfast,
math.wrap.

Inverse Trigonometric Functions

arccos, arccsc, arccot, arcsec, arcsin, arctan, arctan2, arctanh.

Hyperbolic Functions

cosh, coth, csch, sech, sinh, tanh.

Inverse Hyperbolic Functions

arccosh, arccsch, arccoth, arcsech, arcsinh, arctanh.

Sign

sign, signum, math.copysign, math.flipsign, math.gammasign,
math.mulsign, math.signbit.

Miscellaneous

erf, erfc, erfcx, erfi, inverf, inverfc, fma, sinc, cosc, tanc, math.agm,
math.fib, math.fibinv, math.gcd, math.isfib, math.lcm, math.max,
math.min, math.rectangular, math.relerror, math.triangular, muladd.

Miscellaneous Complex Functions

argument, bea, conjugate, cosxx, flip, polar.

Gamma, etc.

beta, binomial, fact, gamma, lngamma, math.fall, math.lnfact,
math.pochhammer.

Bessel Functions

besselj, bessely, calc.bessel0, calc.bessel1.

Rounding Functions

ceil, entier, int, mdf, round, xdf, math.rint.

486 11 Numbers

Numbers

frac, frexp, ++, --, +++, ---, math.compose, math.decompose,
math.eps, math.epsilon, math.exponent, math.fraction, math.frexp,
math.mantissa, math.ndigits, math.nextafter, math.nextmultiple,
math.nextpower, math.nthdigit, math.tohex, math.uexponent, math.ulp.

Numeric Checks

even, finite, float, in, infinite, inrange, isint, isnegative, isnegint, isnonneg,
isnonnegint, isnonposint, isnumber, isnumeric, isposint, ispositive,
nan, odd, math.fpclassify, math.isinfinity, math.isminuszero,
math.isnormal, math.isordered, math.ispow2, math.issubnormal.

Range Reduction and Conversion

abs, ||, heaviside, math.branch, math.chi, math.chop, math.clip,
math.lnabs, math.norm, math.normalise, math.piecewise, math.ramp,
math.rectangular, math.rempio2, math.unitise, math.unitstep, math.wrap.

Random Numbers

math.random, math.randomseed.

Bases and Conversion

math.convertbase, math.norm, math.tobinary, math.todecimal,
math.tohex, math.toradians, math.tosgesim.

Primes

math.congruentprime, math.isprime, math.nextprime, math.prevprime.

Bitwise Operators, Bit and Byte Twiddling

&&, ~~, ||, ^^, <<<, >>>, <<<<, >>>>, implies, nand, nor, xnor,
xor, getbit, getbits, getnbits, setbit, setbits, setnbits, math.inttofpb,
bytes.numhigh, bytes.numlow, bytes.gethigh, bytes.getlow,
bytes.numwords, math.fpbtoint, bytes.leadzeros, bytes.leastsigbit,
bytes.mostsigbit, bytes.onebits, bytes.reverse, bytes.setdouble,
bytes.sethigh, bytes.setnumhigh, bytes.setlow, bytes.setnumlow,
bytes.setnumwords, bytes.tobytes.

Boolean Operators

and, implies, nand, nor, not, or, xnor, xor

agena >> 487

11.1.1 Operators and Functions

x + y

The operator adds two numbers; returns a number. Complex numbers are
supported.

See also: addup, sumup, factory.count, math.accu, math.kbadd, inc operator
described in Chapter 4.6.8.

x - y

The operator subtracts two numbers; returns a number. Complex numbers are
supported.

See also: math.fdim, dec operator described in Chapter 4.6.8.

x * y

The operator multiplies two numbers; returns a number. Complex numbers and
Booleans are supported. A Boolean operand represents 1 for true, and 0 for false or
fail.

See also: mul operator described in Chapter 4.6.8.

x / y

The operator divides two numbers; returns a number. Complex numbers are
supported.

See also: recip,math.cld, math.fld, div operator in Chapter 4.6.8.

x \ y

The operator performs an integer division of two numbers, and returns a number.

The integer division is defined as: x \ y = sign(x) * sign(y) * entier(| |).
x
y

See also: %, /, iqr, math.cld, math.fld, intdiv operator in Chapter 4.6.8.

x &+ y

The operator adds two signed or unsigned 32-bit numbers; returns a number.
Complex numbers are supported, as well. By default, the operator internally
calculates with unsigned 32-bit integers. You can change this to signed integers by
calling environ.kernel with the signedbits option.

See also: bytes.add32, factory.count, math.accu, math.koadd.

488 11 Numbers

x &- y

The operator subtracts two signed or unsigned 32-bit numbers; returns a number.
Complex numbers are supported, as well. By default, the operator internally
calculates with unsigned 32-bit integers. You can change this to signed integers by
calling environ.kernel with the signedbits option.

See also: bytes.sub32, math.fdim.

x &* y

The operator multiplies two signed or unsigned 32-bit numbers; returns a number.
Complex numbers are supported. By default, the operator internally calculates with
unsigned 32-bit integers. You can change this to signed integers by calling
environ.kernel with the signedbits option.

See also: bytes.mul32.

x &/ y

The operator divides two signed or unsigned 32-bit numbers; returns a number.
Complex numbers are supported. By default, the operator internally calculates with
unsigned 32-bit integers. You can change this to signed integers by calling
environ.kernel with the signedbits option. See also: bytes.div32.

x *% y

The operator multiplies two numbers and divides the result by 100; returns a
number, the percentage.

x /% y

The operator divides two numbers and multiplies the result by 100; returns a
number, the ratio.

x %% y

The operator computes the percentage change from the number x to the number
y and returns a number. It is equivalent to y /% x - 100.

x +% y

The operator adds the given percentage y to x.

x -% y

The operator subtracts the given percentage y from x.

agena >> 489

z roll r

The binary operator rotates a two-dimensional vector, represented by the complex
number z, through the angel r (given in radians) counterclockwise and returns the
new complex number z*exp(I*r). To convert degrees to radians, multiply by Pi/180.
If z is just a number, it is internally converted to the complex number z + 0*I.

See also: conjugate, flip.

x % y

The modulus operator conducts the operation x % y = x - entier()*y. The return is
x
y

always non-negative.

The function may return surprising results with |x|<1, so calling math.invmod with
the reciprocal x-1 might be an alternative. With large |x|, you might use
math.mulmod or math.powmod.

See also: \, drem, everyth, iqr, symmod, hashes.fibmod, hashes.fibmod2,
math.modulus, math.wrap, mod operator in Chapter 4.6.8.

x symmod y

The symmetric modulus operator evaluates the remainder of a division x/y (with x, y
two Agena numbers). The result has the same sign as the numerator x. Specifically,
the return value is x - q * y, where q is the quotient x/y, rounded towards 0 to the
next integer. The function works like the C function fmod.

See also: \,%, drem, iqr, math.invmod, math.modulus, math.wrap.

x ^ y

The operator performs an exponentiation of real or complex x with a rational power
y. With numbers, if x is negative and y non-integral, it returns undefined.

See also: ^ operator, antilog2, antilog10, proot, root, square, squareadd.

x ** y

The operator exponentiates the real or complex number x with the integer power y.
Depending on the platform and with small y, the operator is at least 50 % faster
than the ^ operator. If y is undefined or infinity, undefined will be returned. !

See also: cube, square, squareadd.

x ! y

The operator creates a complex number with real part x and imaginary part y, with
x and y numbers.

490 11 Numbers

x !! y

The operator returns a complex number z in Cartesian notation a + I*b for
magnitude/modulus x and argument/phase angle y. x and y must be numbers.
The result is equivalent to z = x * cis(y).

See also: ||, abs, argument, cabs, cartesian, cis, polar.

z squareadd c

For numeric or complex z, c, computes z^2 + c, preventing round-off errors. Note
that the operation comes at the expense of speed and in most real-world situations
the results will not be better.

See also: **, fma, square.

|x|

The operator computes the absolute value of the number or complex number x,
i.e. abs(x). The return in both cases is a number.

See also: |-, abs, cabs, calc.eucliddist, math.lnabs, math.fdim.

x |- y

The operator computes the absolute difference of the two numbers x and y, i.e.
abs(x - y). The return is a number.

See also: |-, abs, cabs, calc.eucliddist, math.fdim.

x && y

Bitwise `and` operation on two numbers x and y. By default, the operator internally
calculates with unsigned 32-bit integers. You can change this to signed integers by
calling environ.kernel with the signedbits option. See also: environ.kernel in
Chapter 14.2. See also: bytes.and32.

+++ x

Returns the next representable number larger than x. If given a variable, the
operator does not change its value. See also: ---, math.nextafter.

--- x

Returns the next representable number smaller than x. If given a variable, the
operator does not change its value. See also: +++, math.nextafter.

agena >> 491

~~ x

Bitwise 32-bit complementary operation on the number x, i.e. bitwise NOT, flipping
all the bits representing x. The operator returns signed results only, regardless of the
environ.kernel/signedbits setting. See also: bytes.not32.

x || y

Bitwise `or` operation on two numbers x and y. By default, the operator internally
calculates with unsigned 32-bit integers. You can change this to signed integers by
calling environ.kernel with the signedbits option. See also: environ.kernel in
Chapter 14.2.

See also: bytes.or32.

x ^^ y

Bitwise 32-bit `exclusive-or` operation on two numbers x and y. By default, the
operator internally calculates with unsigned 32-bit integers. You can change this to
signed integers by calling environ.kernel with the signedbits option. See also:
environ.kernel in Chapter 14.2.

See also: bytes.xor32.

x <<< y

Bitwise left-shift operation (multiplication by 2, i.e. x <<< y = x*2y). By default, the
operator internally calculates with signed 32-bit integers. You can change this to
signed integers by calling environ.kernel with the signedbits option. If y >=
environ.kernel('nbits'), returns 0. Please note that the results may vary across
platforms with overflows and that shift by negative y are undefined. Shift by zero is
the identity shift.

See also: >>>, environ.kernel, bytes.shift32.

x >>> y

Bitwise right-shift operation (division by 2, i.e. x >>> y = x/2y). The operator by
default calculates with unsigned 32-bit integers internally. You can change this to
signed integers by calling environ.kernel with the signedbits option. If y >=
environ.kernel('nbits'), returns 0. Please note that the results may vary across
platforms with overflows and that shift by negative y are undefined. However, if x is
negative and y positive, an arithmetic right-shift is accomplished, thus preserving
the sign of x. A shift by zero is the identity shift.

See also: <<<, environ.kernel, bytes.shift32.

492 11 Numbers

x <<<< y

Returns the number x rotated a given number of bits y to the left. Internally it uses
unsigned 32-bit integers by default. You can change this to signed integers by
calling environ.kernel with the signedbits option.

See also: >>>>, environ.kernel, bytes.rotate32.

x >>>> y

Returns the number x rotated a given number of bits y to the right. Internally it uses
unsigned 32-bit integers by default. You can change this to signed integers by
calling environ.kernel with the signedbits option.

See also: <<<<, environ.kernel, bytes.rotate32

x in y

Checks whether the number x is part of the interval defined by the pair y consisting
of two numbers. The operator returns true or false. For a much faster check, see
inrange operator.

x | y

The operator compares two finite numbers x, y, determines whether x is less than y,
x is exactly equal to y, or x is greater than y, and returns -1, 0, or 1 respectively.

If at least one of the operators is infinite or undefined, the function returns
undefined.

The operator is twice as fast as sign. See also: ~|, signum.

To build a piece-wise function, for example the absolute function, you may enter:

> my_abs := proc(x) is
> case x | 0
> of -1 then return -x
> else
> return x
> esac
> end;

x ~| y

The operator compares two finite numbers x, y, determines whether x is
approximately equal to y, x is less than y, or x is greater than y, and returns 0, -1, or
1 respectively. See also: | operator.

agena >> 493

abs (z)

If z is a number, the abs operator returns the absolute value of z. With a complex
number z = x + I*y, it returns the distance between it and the origin as a number,
i.e. .x2 + y2

See also: ||, |-, argument, cabs, math.lnabs, polar.

antilog2 (z)

The operator computes , i.e. 2 raised to the power of the number or complex2z

number z.

See also: ^and ** operators, antilog10, log2.

antilog10 (z)

The operator computes , i.e. 10 raised to the power of the number or complex10z

number z.

See also: ^and ** operators, antilog2, log10.

approx (x, y [, eps])

Compares the two numbers or complex values x and y and checks whether they
are approximately equal. If eps is omitted, Eps is used.

The algorithm uses a combination of simple distance measurement (|x-y| eps)[

suited for values `near` 0 and a simplified relative approximation algorithm
developed by Donald H. Knuth suited for larger values (|x-y| eps * max(|x|,[

|y|)), that checks whether the relative error is bound to a given tolerance eps.

The function returns true if x and y are considered equal or false otherwise. If both a
and b are infinity, the function returns true. The same applies to a and b being
-infinity or undefined.

See also: math.eps, math.epsilon.

arccos (x)

Returns the inverse cosine operator (x in radians). Complex numbers are supported.

arccosh (x)

Returns the inverse hyperbolic cosine of x (in radians). The function is implemented
in Agena and included in the lib/library.agn file.

494 11 Numbers

arccsc (x)

Returns the inverse cosecant of x (in radians). The function works on both numbers
and complex values. The function is implemented in Agena and included in the
lib/library.agn file.

arccsch (x)

Returns the inverse hyperbolic cosecant of x (in radians). The function works on
both numbers and complex values. The function is implemented in Agena and
included in the lib/library.agn file.

arccot (x)

Returns the inverse cotangent of x (in radians). The function works on both numbers
and complex values. The function is implemented in Agena and included in the
lib/library.agn file.

arccoth (x)

Returns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values. With real numbers, returns undefined if x 1.[

arcsec (x)

Returns the inverse secant of x (in radians). The operator works on both numbers
and complex values.

arcsech (x)

Returns the inverse hyperbolic secant of x (in radians). The function works on both
numbers and complex values. The function is implemented in Agena and included
in the lib/library.agn file.

arcsin (x)

Computes the inverse sine operator (in radians). Complex numbers are supported.

arcsinh (x)

Returns the inverse hyperbolic sine of x (in radians). The function works on both
numbers and complex values. See also: math.arcsinh.

arctan (x)

Computes the inverse tangent operator (in radians). Complex numbers are
supported. See also: arctan2.

agena >> 495

arctan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers or complex numbers. See also: arctan.

arctanh (x)

Returns the inverse hyperbolic tangent of x (in radians). The function works on both
numbers and complex values. The function is implemented in Agena and
included in the lib/library.agn file.

argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
number. If z is a number, the function returns 0 if z 0, and otherwise.m ✜

See also: abs, cabs, polar.

bea (z)

The operator takes the complex number z = x!y and returns the complex number
sin(x)*sinh(y) + I*cos(x)*cosh(y). This function may be mathematically useless, but it
creates beautiful fractals. With numbers, it returns undefined.

See also: cosxx, flip.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return
may be a number or complex value. The Beta function is defined as: Beta(x, y) =

, with special treatment if x and y are integers or are equal.
✄x&✄y
✄(x+y)

binomial (n, k)

Returns the binomial coefficient = as a number, preventing internal
n
k

n!
k!(n−k)!

numeric overflow. n, k may also be negative integers, or floats of any sign. See also:
math.lnbinomial.

besselj (n, x)

Returns the Bessel function of the first kind. The order is n given as the first argument,
the argument x as the second argument. The return is a number. The function works
on both numbers and complex values. (OS/2 and DOS do not support complex
numbers).

See also: bessely, calc.bessel0, calc.bessel1.

496 11 Numbers

bessely (n, x)

Returns the Bessel function of the second kind. The order n is given as the first
argument, the argument x as the second argument. The return is a number. The
function works on both numbers and complex values. (OS/2 and DOS do not
support complex numbers).

See also: besselj, calc.bessel0, calc.bessel1.

cabs (z [, option])

If z is a number, the cabs function returns the absolute value of z as a number
(default) or abs(z) + I*0 if any option is given.

If z is a complex number z = x + I*y, contrary to the abs operator, it returns the real
and imaginary absolute value, i.e. .x + I & y

See also: ||, |-, abs, argument, polar.

cartesian (x, y)

The function returns a complex number z in Cartesian notation a + I*b for
magnitude/modulus x and argument/phase angle y. x and y must be numbers.
The result is equivalent to z = x * cis(y).

See also: ||, abs, argument, cabs, cis, polar, !! operator.

cas (x)

Returns the `casine` of the number or complex number x the efficient way, i.e.

sin(x) + cos(x) = sin(x+). It is written in Agena and included in the lib/library.agn2
✜
4

file.

cbrt (x)

Returns the cubic root of the number or complex number x. With complex x, it is
equal to x^(1/3), but not to root(x, 3).

See also: ^ operator, root.

ceil (x)

The function rounds upwards to the nearest integer larger than or equal to the
number or complex number x. See the entier operator for a function that rounds
downwards to the nearest integer. For the definition of ceil, see entier.

See also: entier, floor, int, round, math.rint.

agena >> 497

cis (x)

The operator returns the complex exponential function exp(I*x) = cos(x) + I*sin(x) for
any real or complex argument x. It is around 33 % faster than the equivalent
expression exp(I*x). Note the equality abs(x) * cis(argument(x)) = x.

See also: polar.

conjugate (z)

The operator returns the conjugate x-I*y of the complex value z=x+I*y. If z is of
type number, it is simply returned.

See also: flip.

cos (x)

The operator returns the cosine of x (in radians). Complex numbers are supported.

See also: math.cosd, math.cospi, math.sincos.

cosc (x)

The function returns the un-normalised cardinal cosine of x (in radians), i.e. cos(x)/x,
with cosc(0) = undefined. Complex numbers are supported.

See also: math.rectangular, sinc, tanc.

cosh (x)

The operator returns the hyperbolic cosine of x (in radians). Complex numbers are
supported. See also: sinh, tanh, math.sinhcosh.

cosxx (z)

The operator takes the complex number z = x!y and returns the complex number
cos(x)*cosh(y)+I*sin(x)*sinh(y). It represents FRACTINT's buggy cos function till v16
where the imaginary part of the result had the wrong sign. This function may be
mathematically useless, but it creates beautiful fractals. With the number z, it returns
cos(z).

See also: cos, bea, flip.

cot (x)

Returns the cotangent -tan as a number (in radians). The function is(✜
2 + x)

implemented in Agena and included in the lib/library.agn file. The function works on
both numbers and complex values. See also: math.cotd.

498 11 Numbers

coth (x)

Returns the hyperbolic cotangent as a number (in radians). The function is
1

tanh(x)

implemented in Agena and included in the lib/library.agn file. The function works on
both numbers and complex values.

csc (x)

Returns the cosecant as a number (in radians). The function is implemented in
1

sin(x)

Agena and included in the lib/library.agn file. The function works on both numbers
and complex values. See also: math.cscd.

csch (x)

Returns the hyperbolic cosecant as a number (in radians). The function is
implemented in Agena and included in the lib/library.agn file. The function works on
both numbers and complex values.

cube (x)

The operator raises the number or complex number x to the power of 3. See also:
**, ^, square operators.

drem (x, y)

Evaluates the remainder of an integer division x/y (with x, y two Agena numbers),
but contrary to symmod, rounds the internal quotient x/y to the nearest integer
instead of towards zero. The function actually is a wrapper to C's remainder.

See also: \,%, iqr, modf, symmod, math.invmod, math.modulus.

entier (x)

The operator rounds the number x downwards to the nearest integer. For complex
x, the return is:

re = real(x) - entier(real(x)) and im = imag(x) - entier(imag(x)),
then entier(x) = int(real(x)) + I*int(imag(x)) + X , where

X =

0 if a+b < 1
1 if a+b ë 1 . a ë b
I if a+b ë 1 . a < b

Also: ceil(x) = -entier(-x). (With numbers, the function internally calls C's floor.)

See also: ceil, floor, frac, int, mdf, round, xdf, fastmath.floor, math.rint.

agena >> 499

erf (x [, y])

Returns the error function of x. It is defined by erf(x) = . The function
2
✜
¶

t=0

x

e−t^2

works on both numbers and complex values. If two numbers or complex numbers
x, y are given, computes the integral of the Gaussian distribution from x to y, with
erf(x, y) = erf(y) - erf(x).

See also: erfc, erfcx, erfi, inverf.

erfc (x)

Returns the complementary error function of x, a number or complex value. It is
defined by erfc(x) = 1 - erf(x). The return is a number or complex value.

See also: erf, erfcx, erfi, inverfc.

erfcx (x)

Implements the Scaled Complementary Error Function erfcx(x) = exp(x^2)*erfc(x),
with x a number or complex number and - depending on the type of x - a numeric
or complex result.

See also: erfc, erfcx, erfi, inverfc.

erfi (z)

Computes the imaginary error function erfi(z) = -I*erf(I*z) for real or complex z. The
type of return depends on the type of z.

See also: erf, erfc, erfcx, inverfc.

even (x)

Checks whether the number x is even. The operator returns true if x is even, and
false otherwise. With non-integral numbers, the operator returns false. With the
complex value x, the operator returns fail. See also: odd.

exp (x)

Exponential function; the operator returns the value ex, with e Euler's number
2.71828... Complex numbers are supported. See also: antilog2, antilog10, cis,
exp2, exp10, expx2, math.expminusone.

500 11 Numbers

exp2 (x)

The function returns 2x with x any (complex) number. See also: ^ and antilog2
operators, exp, exp10.

exp10 (x)

The function returns 10x with x any (complex) number. See also: ^ and antilog10
operators, exp, exp2.

expx2 (x [, sign])

Computes either if sign 0, or if sign < 0 while suppressing errorex^2 m e -x^2

amplification that would occur from the in-exactness of the exponential argument
. x may be a number or complex number, while sign must be a number. Byx2

default, sign is positive.

fact (n)

Returns the factorial of n, i.e. the product of the values from 1 to n. n may be a
non-negative integer or a negative or positive rational number that is non-integral,
otherwise the function returns undefined. The function is implemented in Agena
and included in the lib/library.agn file. It features a defaults remember table
(rotable) which you may extend by adding new defaults to your agena.ini file (see
rtable.defaults and Appendix A6).

See also: math.dblfact, math.lnfact, math.trifact, math.fall, math.pochhammer.

finite (x)

Checks whether the number or complex number x is neither infinity nor undefined!

(C NaN). The operator returns true or false.

See also: even, float, infinite, nan, odd, math.isinfinity, math.isordered.

flip (z)

The operator takes the complex number z and returns the new complex number
imag(z)!real(z), i.e. the real and imaginary parts are swapped. With numbers,
always returns 0.

See also: bea, conjugate, cosxx.

floor (x)

The function rounds downwards to the nearest integer larger than or equal to the
number or complex number x. It works like the entier operator.

agena >> 501

See also: fastmath.floor.

float (x)

Checks whether the number x is a float, i.e. not an integer, and returns true or false.

With complex numbers, if returns true if the real part is integral and the imaginary
part is zero, and false otherwise.

If x is not a (complex) number, the operator returns fail. With +/-infinity and
undefined, returns false.

See also: finite, integral, isint.

fma (x, y, z)

Performs the fused multiply-add operation (x * y) + z, with the intermediate result
not rounded to the destination type, to improve the precision of a calculation. x, y,
and z must be numbers or complex numbers. Note that the operation takes more
time than with basic arithmetic and that in many real-world situations there are no
better results. See also: squareadd and muladd operators.

frac (x)

Returns the fractional part of the number x, i.e. x - int(x), thus preserving the sign.
With complex numbers a + I*b, returns frac(a) + I*frac(b).

See also: entier, int, modf.

frexp (x)

Returns the mantissa m and the exponent e of the number x such that x = m2e. e is
an integer, and the value of m is in the range [0.5, 1) (or zero when x is zero). The
operation is bijective, i.e. ldexp(frexp(x)) = x. With complex x, returns m and e both
for the real and the imaginary part.

See also: frexp10, ilog2, ldexp, math.exponent, math.frexp, math.mantissa.

frexp10 (x)

Returns the mantissa m and the exponent e of the number x such that x = m10e. e
is an integer, and the value of m is in the range [0, 1). Since floats are represented
with base 2, and not base 10, the operation is not bijective, i.e. ldexp(frexp(x)) x.!

With complex x, returns m and e both for the real and the imaginary part. See also:
frexp.

502 11 Numbers

foreach (start, stop [, step], f, n)

The operator traverses a numeric range, starting with start (a number) and
stopping at stop (a number) with step size step, applies a univariate function f on
each intermediate value and sums them all up. The operator allows to omit the
step size - defaulting to one in this case. The sum is initialised to n and the operator
applies Kahan-Babuška summation:

> # Pi approximation by Indian mathematician and astronomer
> # Madhava of Sangamagrama, 14th century AD:

> sqrt(12)*foreach(0, 25, << k -> (-3)^(-k)/(2*k + 1) >>, 0):
3.1415926535898

See also: addup, reduce, sumup, times, calc.fsum, stats.sumdata.

gamma (x)

The gamma function ✄ x. x may be a number or complex value.

See also: invgamma, lngamma, math.gammasign.

heaviside (x [, z])

The Heaviside function. Returns 0 if x < 0, 1 if x > 0, and z if x = 0, where z defaults
to undefined. The function is implemented in Agena and included in the
lib/library.agn file.

See also: calc.smoothstep, math.clip, math.ramp, math.rectangular,
math.unitise, math.unitstep.

hypot (x, y)

Returns with x, y numbers, complex numbers or a mix of them. With x, yx2 +y2

numbers, it is the length of the hypotenuse of a right triangle with sides of length x
and y, or the distance of the point (x, y) from the origin. The function is slower but
more precise than using sqrt along with square, avoiding over- and underflows and
treating subnormal numbers accordingly. The return is a number or complex
number.

See also: hypot2, hypot3, hypot4, invhypot, pytha, root, sqrt, calc.eucliddist.

hypot2 (x)

Returns the number or complex number , with x a number or complex1 + x2

number. The function is slower but more precise than using sqrt along with square,
avoiding over- and underflows and treating subnormal numbers accordingly.

agena >> 503

See also: hypot, hypot3, hypot4, root, sqrt.

hypot3 (x)

Returns the number , with x a number or complex number. The function is1 − x2

slower but more precise than using sqrt along with square, avoiding over- and
underflows and treating subnormal numbers accordingly.

See also: hypot, hypot2, hypot4, root, sqrt.

hypot4 (x, y)

Returns the number , with x, y numbers, complex numbers or a mix ofx2 − y2

them. The function is slower but more precise than using sqrt along with square,
avoiding over- and underflows, treating subnormal numbers accordingly and
internally computing with 80-bit precision.

See also: hypot, hypot2, hypot3, pytha4, root, sqrt.

ilog2 (x)

Extracts the exponent of the number or complex number x (i.e. the integer part of
the base-2 logarithm of the positive number x) and returns it as the number
entier(log2(x)).

See also: frexp, ilog10, ln, log, log2, log10, math.ceillog2, math.ispow2.

ilog10 (x)

Extracts the exponent of number x and returns it as the number entier(log10(x)).

See also: ilog2, log10.

implies (x, y)

With two booleans, the function computes not(x) or y; with numbers returns:

(~~x) || y.

infinite (x)

Checks whether the number or complex number x is infinity. The operator returns!

true or false.

See also: even, float, finite, nan, odd, math.isinfinity, math.isordered.

504 11 Numbers

inrange (x, a, b)

The operator checks whether x is part of the closed interval [a, b] and returns true or
false. All arguments must be numbers.

See also: in operator.

int (x)

Rounds x to the nearest integer towards zero. The operator also supports complex
numbers. To round a float to a given decimal place, use xdf. To get the fractional
part of a number, call frac.

See also: \ operator, ceil, entier, float, iqr, mdf, modf, round, math.rint, xdf.

integral (x)

Checks whether the number x is an integer, i.e. not a float, and returns true or false.

With complex numbers, if returns true if the real part is integral and the imaginary
part is zero, and false otherwise.

If x is not a (complex) number, the operator returns fail. With +/-infinity and
undefined, returns false.

See also: finite, float, isint, multiple.

inverf (x)

Computes the inverse error function erf-1(x), where x is a number.

See also: erf, inverfc.

inverfc (x)

Computes the inverse complimentary error function erfc-1(x), where x is a number.

See also: erfc, inverfc.

invgamma (x)

Computes the inverse gamma function 1/gamma(x), where x is a number.

See also: gamma, lngamma.

agena >> 505

invhypot (x, y)

Computes 1/ = 1/hypot(x, y), is 35 % faster than the naive 1/hypotx2 + y2

approach and is protected against underflow and overflow.

See also: hypot.

invsqrt (x)

Returns the inverse square root of numeric or complex x, i.e. 1/sqrt(x).

See also: sqrt.

iqr (x, y)

Computes both the integer quotient and the integer remainder - rounded toward
zero - of the number x divided by the number y and returns them. If x or y are not
integers, the function returns undefined twice. The function is equivalent to the
Agena representation:

iqr := proc(x :: number, y :: number) is
 if float(x) or float(y) then
 return undefined, undefined
 else
 return x \ y, x symmod y
 fi
end;

See also: \ and % operators, drem, modf, math.cld, math.fld, math.invmod,
math.modulus, symmod.

iscomplex (···)

Checks whether the given arguments are all of type complex and returns true or
false.

isint (···)

Checks whether all of the given arguments are integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: float, integral.

isnegative (···)

Checks whether all of its arguments are negative numbers and returns true or false.
If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isnegative, isnonneg, ispositive.

506 11 Numbers

isnegint (···)

Checks whether all of the given arguments are negative integers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnonnegint, isposint, isnegative, ispositive.

isnonneg (···)

Checks whether all of its arguments are zero or positive numbers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive.

isnonnegint (···)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function returns
fail.

isnonposint (···)

Checks whether all of the given arguments are zeros or negative integers and
returns true or false. If at least one of its arguments is not a number, the function
returns fail.

isnumber (···)

Checks whether the given arguments are all of type number and returns true or
false.

isnumeric (···)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

See also: numeric.

isposint (···)

Checks whether all of its arguments are positive integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isnonposint.

agena >> 507

ispositive (···)

Checks whether all of its arguments are positive numbers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isposint, isnegative, isnonneg.

ldexp (m, e)

Returns m2e (e should be an integer, and m must be a number).

See also: frexp.

ln (x)

Natural logarithm of x with the base e1. If x is non-positive, the operator returns
undefined. Complex numbers are supported.

See also: exp, log, log2, log10.

lngamma (x)

Computes ln ✄ x. If x is a non-positive number, the operator returns undefined.
Complex numbers are supported.

See also: gamma, invgamma, calc.Psi, math.gammasign.

log (x, b)

The operator returns the logarithm of the number or complex number x to the base
b, with b a number or a complex number.

See also: ln, log2, log10.

log2 (x)

Returns the base-2 logarithm of the number or complex number x.

See also: antilog2, ilog2, ln, log, log10, math.ceillog2.

log10 (x)

Returns the base-10 logarithm of the number or complex number x.

See also: antilog2, ilog10, ln, log, log2.

508 11 Numbers

mdf (x [, n])

Rounds up the number x at its n-th decimal place and returns a number. If x is
positive, rounds towards ; if x is negative, rounds towards . The default of n is+∞ −∞
2. With complex x, rounds both the real and imaginary parts.

See also: entier, int, round, xdf.

modf (x)

Returns two numbers, the integral part of the number x and its fractional part. The
integral part is rounded towards zero. Both the integral and fractional part of the
return have the same sign as x. The sum of the two values returned equals x. The
function actually is a wrapper to C's modf. With complex x, returns the integral and
fractional parts for both its real and the imaginary part.

See also: \, %, frac, entier, int, symmod, mod assignment statement.

muladd (x, y, z)

The operator computes x*y + z with extended internal precision, with x, y, z all
numbers. See also: fma.

multiple (x, y [, option])

Checks whether numeric or complex x is a multiple of numeric y, i.e. whether x/y
evaluates to an integral, and returns true or false.

Also returns true with x = 0 and any non-zero y.

If y is zero, undefined or +/-infinity, the function returns fail.

With complex x, returns true if both real(x)/y and imag(x)/y evaluate to the same
integral, or if real(x)/y evaluates to an integral and imag(x) is zero.

By passing the optional third argument true, a tolerant check is done, with
subnormal x or y first converted to zero, and a subsequent approximate equality
check to the nearest integer of x/y. The tolerance value internally used is the value
of DoubleEps at the time of the function call.

In most cases, it may suffice to just call integral(x/y), which is twice as fast as this
function.

nan (x)

Checks whether the number or complex number x evaluates to undefined (NaN).
The operator returns true or false.

agena >> 509

See also: finite, float, math.isordered.

x nand y

The operator returns the bitwise complement Boolean `and`, a signed integer:
~~(x && y).

See also: bytes.nand32.

x nor y

The operator returns the bitwise complement Boolean `or`, a signed integer:
~~(x || y).

See also: bytes.nor32.

nonzero (x)

Checks whether the number or complex number x is neither 0 nor 0+0*I,
respectively. The operator returns true or false.

See also: zero.

odd (x)

Checks whether the number x is odd. The operator returns true if x is odd, and false
otherwise. With non-integral numbers, the operator returns false. With the complex
value x, the operator returns fail.

See also: even.

polar (z)

Transforms the complex number z in Cartesian notation or the number z to polar
form and returns two numbers: the magnitude (modulus) and the argument (phase
angle), in this order. If z is a number and is zero, or if z is complex and its real and
imaginary parts equal zero, the function returns zero twice.

See also: ||, abs, argument, cabs, cartesian, cis, !! operator.

proot (x, n)

Returns the principal n-th root of the number or complex value x. n must be a
positive integer. The principal n-th root in the complex domain is the first root found
starting from the positive real axis going counter-clockwise.

See also: cbrt, hypot, hypot2, hypot3, hypot4, root, sqrt.

510 11 Numbers

pytha (a, b)

Computes the Pythagorean equation c2 = a2 + b2, without undue underflow or
overflow and treating subnormal numbers accordingly, for numbers a, b. The
function internally computes in 80-bit precision instead of 64-bit precision. Please
note that all these features take the function almost twice the time to complete as
the naive x**2 + y**2 approach.

See also: hypot, squareadd.

pytha4 (a, b)

Computes a2 - b2, without undue underflow or overflow and treating subnormal
numbers accordingly, for numbers a, b. The function internally computes in 80-bit
precision instead of 64-bit precision. Please note that all these features take the
function almost twice the time to complete as the naive x**2 - y**2 approach.

See also: hypot, squareadd.

qmdev (o)

The operator computes the sum of the squared deviations of each observation oi in
the sequence, register, userdata or table o, from its arithmetic mean , i.e. ✙

(oi -)2✟
i =1

n

✙

The return should be divided either by the number of elements n in the distribution o
to calculate its population variance, or by n - 1 to compute its sample variance.

The Knuth-Welford algorithm used by the operator tries to prevent round-off errors as
much as possible.

See also: stats.issorted, stats.sd, stats.var.

recip (x)

Returns the inverse 1/x of a number or complex number x.

See also: /, fastmath.reciprocal.

root (x [, n])

Returns the non-principal n-th root of the number or complex value x. n must be an
integer and is 2 by default. Note, that since the function computes the
non-principal root, with complex x, root(x, n) x^ (1/n). In the complex domain, the!

function returns the n-th root of x whose argument is nearest to the argument of x.

agena >> 511

See also: argument, cbrt, hypot, hypot2, hypot3, hypot4, proot, sqrt.

round (x [, d])

Rounds the number x to its d-th digit, using the round-half-up method. The return is a
number. If d is omitted, the number is rounded to the nearest integer. If d is positive,
the function rounds to the d-th fractional digit. If d is negative, it rounds to the d-th
integral digit. round treats positive and negative values symmetrically, and is
therefore free of sign bias. With complex numbers x=a+I*b returns round(real(a), d)
+ I*round(imag(a), d).

The following Agena code explains the algorithm used:

round := proc(x, d) is
 d := d or 0; # assign zero if d is null
 return int((10^d)*x + sign(x)*0.5) * (10^(-d))
end;

See also: ceil, entier, int, mdf, xdf, math.rint.

scalbn (x, n)

Just an alias for ldexp.

sec (x)

Returns the secant as a number (in radians). The function is implemented in
1

cos(x)

Agena and included in the lib/library.agn file. The function works on both numbers
and complex values. See also: math.secd.

sech (x)

Returns the hyperbolic secant as a number (in radians). The function is
implemented in Agena and included in the lib/library.agn file. The function works on
both numbers and complex values.

sign (x)

Determines the sign of the number or complex value x. The result of the operator is
determined as follows:

� 1, if real(x) > 0 or real(x) = 0 and imag(x) > 0
� -1, if real(x) < 0 or real(x) = 0 and imag(x) < 0
� 0 otherwise, even for -0.

If x is undefined, sign returns undefined.

See also: math.copysign, math.flipsign, math.mulsign, signum, | operator.

512 11 Numbers

signum (x)

Determines the sign of the number or complex value x. x may also be a Boolean.

If x is a number, the result of the operator is determined as follows:

� 1, if x 0m
� -1 otherwise.

With complex x, the operator returns x/|x|.

If x is undefined, signum returns undefined.

With Booleans, returns

� 1, if x is true,
� -1 otherwise, i.e. false or fail.

See also: math.copysign, math.mulsign, abs, sign, | operator.

sin (x)

The operator returns the sine of x (in radians). Complex numbers are supported.

See also: math.sincos, math.sind, math.sinpi.

sinc (x)

The operator returns the un-normalised cardinal sine of x (in radians), i.e. sin(x)/x,
with sinc(0) = 1. Complex numbers are supported.

See also: cosc, math.rectangular, tanc.

sinh (x)

The operator returns the hyperbolic sine of x (in radians). Complex numbers are
supported.

See also: cosh, tanh, math.sinhcosh.

sqrt (x)

Returns the square root of x.

If x is a number and negative, the operator returns undefined.

With complex numbers, the operator returns the complex square root, in the range
of the right halfplane including the imaginary axis.

agena >> 513

See also: cbrt, hypot, hypot2, hypot3, invsqrt, proot, root, fastmath.sqroot,
fastmath.sqrtfast.

square (x)

The operator squares the number or complex number x and returns x**2.

See also: **, ^, cube operators, math.issquare, squareadd.

tan (x)

The operator returns the tangent of x (in radians). Complex numbers are supported.

Note that due to internal argument reduction and resulting slight round-off errors,
the function cannot properly detect poles - so instead of undefined the function will
return a rather big value.

See also: math.tand, math.tanpi.

tanc (x)

The operator returns the un-normalised cardinal tangent of x (in radians), i.e.
tan(x)/x, with tanc(0) = 1. Complex numbers are supported.

See also: cosc, math.rectangular, sinc.

tanh (x)

The operator returns the hyperbolic tangent of x (in radians). Complex numbers are
supported.

See also: cosh, sinh.

xdf (x [, n])

Rounds down the number x at its n-th decimal place towards zero and returns a
number. This is equivalent to truncating a float at its n-th decimal place. The default
of n is 2.

With complex x, rounds both the real and imaginary parts.

See also: entier, int, round, mdf.

514 11 Numbers

x xnor y

With numbers, the operator returns the bitwise complement Boolean `xor`, a signed
integer: ~~(x ^^ y). With Booleans, returns not(x xor y), sometimes also called
`if-and-only-if` (iff). See also: bytes.xnor32.

x xor y

With Booleans, returns x <> y. With non-booleans: returns the first operand if the
second operand evaluates to null, otherwise the second operand will be returned.

See also: ^^, bytes.xor32.

zero (x)

Checks whether the number or complex number x is 0 or 0+0*I, respectively. The
operator returns true or false.

See also: nonzero.

agena >> 515

11.1.2 math Library

This library is an interface to the standard C math library. It provides all
miscellaneous functions inside the table math.

math.accu ([init [, method]])

Returns a factory that gets a number with each call, adds it to an internal
accumulator, and returns the accumulated sum. If the iterator is called with no
argument, the current accumulated sum will be returned.

The function can be used if high accuracy numeric addition is needed. The initial
value of the accumulator is 0. If init, a number, is given, the accumulator is set to
init instead.

The function automatically takes care of storing and processing internal correction
values - so the user does not have to worry about this.

By default, Neumaier summations is used. By passing a method (of type string), you
may use an alternative algorithm to add numbers:

no auto-correction'raw'

Kahan-Ozawa summation'ozawa'

Neumaier summation, good accuracy and performance (default)'neumaier'

Kahan-Babuška-Neumaier compensated summation, used in the
Julia programming language

'kbn'

classic Kahan summation, lowest accuracy but fastest'kahan'

Kahan-Babuška summation, highest accuracy but slowest'babuska'

algorithmmethod

See also: addup, factory.count, math.kbadd, math.koadd, sumup.

math.agm (a, g)

Approximates the arithmetic–geometric mean of two real or complex numbers a, g,
that is the mutual limit of the sequence:

 a0 := a; g0 := g
 an+1 := (an + gn); gn+1 := 1

2 an &gn

The return is a number or complex number - depending of the type of a and g -
between the geometric and arithmetic mean of a and g, thus between a and g, as
well. When calling the function, numbers and complex numbers can be mixed.

See also: stats.amean, stats.gmean.

516 11 Numbers

math.bintodec (s)

Converts a string s representing a binary value to a (decimal) number. The string
may or may not start with '0b' or '0B', and also may contain a sign, a fractional part
or a `p exponent` part.

If the value represented by s is too big, the function will return undefined.

Example: math.bintodec('-0b1111.1111') -15.9375. e

See also: math.convertbase, math.hextodec, math.octtodec, math.tohex,
tonumber

math.branch (x [, d [, subs]])

Returns its argument x - a number - if x is non-negative, otherwise returns 0. By
passing any non-negative optional number d (the `direction`), the return is the
same.

By passing any non-positive optional number d, returns x if it is negative, otherwise
returns 0.

If x should be undefined, you can return any other number by passing the optional
argument subs, which is undefined by default.

See also: math.clip, math.wrap, end of Chapter 11.1.2 for a comparison chart.

math.ceillog2 (x)

Returns the smallest exponent to 2 equals or greater than x, i.e. ilog2(x - 1) + 1,
where x is a positive integer. If x= 1, the result is 0; if x < 1, undefined will be
returned.

See also: ilog2, math.ceilpow2.

math.ceilpow2 (x)

Finds the smallest power of 2 greater than or equal to x, where x is a non-negative
integer. If x = 0, the result is 1; if x < 0, undefined will be returned. Examples:
math.ceilpow2(3) 4 = 22, and math.ceilpow2(8) 8 = 23.e e

The function returns fail if x .m 231

See also: ilog2, math.ceillog2, math.floorpow2, math.ispow2.

agena >> 517

math.chi (x [, a [, b]])

The piecewise indicator function, is defined as follows:

� math.chi(x, a, b) simplifies to 1 if a < x < b; to 0 if x < a < b or if a < b < x; and
to -math.chi(x, b, a) if b < a. Otherwise math.chi(x, a, b) simplifies to sign(x - a)/2
-sign(x - b)/2;

� math.chi(x) simplifies to math.chi(x, 0, 1);
� math.chi(x, a) simplifies to math.chi(x, a, 1).

See also: math.clip, math.piecewise.

math.chop (x [, eps [, method [, n]]])

Shrinks a number or complex number x more or less near zero to exactly zero, using
one of many methods, passed as an integer. The default for eps is Eps. The
standard method is 0 for hard shrinking. n is used in the SmoothGarrote method.

|x| eps[

|x| eps>

0
sign(x) x2 −eps2

"Hyperbola"5

any xx2n+1/(x2n + eps2n)
"SmoothGarrote"; with n ,d ∞

goes to "Hard" shrinking
4

|x| eps[

|x| eps>

0
x - eps2/x

"PiecewiseGarrote"3

|x| eps[

|x| eps>

0
sign(x) (|x| - eps)

"Soft", performs soft shrinking1

|x| eps[

|x| eps>

0
x

"Hard", performs hard shrinking0

DomainValueCommentmethod

Method 2 has not been implemented. The function is a port of Mathematica's
Chop function.

See also: math.clip, math.unitise, math.zeroin.

math.cld (x, y)

Returns the largest integer less than or equal to the real quotient of the numbers x
x
y

and y.

See also: \ operator, math.fld.

518 11 Numbers

math.clip (x [, a [, b [, f]]])

math.clip (x, a)

In the first form, returns x clipped to be between a and b. The return is x if ,a [x [b

a if x < a, and b if x > b. By default a = -1, b = +1. If function f is given which
should return one numeric result, then if x is not in [a, b], the result of f(x) will be
returned.

In the second form, returns x clipped to be between -a and +a, -a if x < a and +a if
x > +a.

See also: calc.sigmoid, heaviside, math.branch, math.chi, math.chop,
math.rectangular, math.unitise, math.wrap, end of Chapter 11.1.2 for a
comparison chart.

math.compose (coeffs [, b])

Takes a table, sequence or register of coefficients coeffs and a base b and returns
the composed number. In coeffs, the highest-order digit as the first element and
the lowest-order digit as the last element. By default, the base is 10. The function
does not take care of potential overflows. It is the complement to
math.decompose.

math.congruentprime (n [, a [, b]])

Determines whether integer n is a prime number congruent to a modulo b - or in
other words: a prime of the form bn + a, and returns it; otherwise for n, returns the
next prime number congruent to a modulo b. By default, a is 3 and b is 4.

The function is implemented in Agena and included in the lib/library.agn file.

See also: math.nextprime.

math.convertbase (s, a, b [, anything])

Converts a number s or a number represented as a string s from base a to base b.
a and b must be integers in the range 1 to 36. The number in s must be an integer
of any sign. Floats are not allowed. The return is a string. The function is
implemented in Agena and included in the lib/library.agn file.

If you pass any fourth argument, then the function internally does not call optimised
functions, if appropriate, such as math.hextodec or strings.strtoul to speed up
results.

See also: math.decompose, math.bintodec, math.hextodec, math.octtodec,
math.ndigits, strings.strtoul.

agena >> 519

math.copysign (x, y)

Returns a number with the magnitude of x and the sign of y, i.e. abs(x) * sign(y). If y
is 0, then its sign is considered to be 1. It is a plain binding to C's copysign function
and does not post-process its result.

See also: math.flipsign, math.mulsign, math.signbit, sign, signum.

math.cosd (x)

Takes x in degrees and returns its cosine in radians.

See also: cos, math.cospi, math.cscd, math.cotd, math.secd, math.sind,
math.tand.

math.cospi (x)

Returns cos(*x) for number x with better precision than calling the respective✜
standard operator.

See also: cos, math.cosd, math.sincos, math.sincospi, math.sinpi, math.tanpi.

math.cotd (x)

Takes x in degrees and returns its cotangent in radians.

See also: cot, math.cosd, math.cscd, math.secd, math.sind, math.tand.

math.cscd (x)

Takes x in degrees and returns its cosecant in radians.

See also: csc, math.cosd, math.cotd, math.secd, math.sind, math.tand.

math.dblfact (n)

Returns the double factorial n!! = n(n - 2)(n - 4)...3*1 for non-negative integer n.

See also: fact, math.fall, math.lnfact, math.trifact.

math.dd (x)

Converts a number x representing a sexagesimal number in TI-30 DMS format into
its decimal representation, and returns a number. For example: 10.3045
representing 10°30'45'' returns 10.5125.

The function is implemented in Agena and included in the lib/library.agn file.

520 11 Numbers

See also: math.dms, math.splitdms, math.todecimal, math.tosgesim.

math.decompose (x [, b])

Splits an integer x to the base b into its digits and returns them in a sequence, with
the highest-order digit as the first element and the lowest-order digit as the last
element. Any sign of x is ignored. By default, the base is 10, but you may choose
any other positive base.
Example:

> b := 256;

> math.decompose(15 * b^2 + 7 * b + 1, 256):

seq(15, 7, 1)

See also: math.compose, math.convertbase, math.ndigits.

math.dirac (x [, eps])

The Dirac delta function, also known as the impulse function, returns 0 for all
numbers x other than 0, and infinity if x = 0, iff eps is set to zero which is the default.

If eps is set to any positive value x, returns 1/(2*eps)*exp(-|x|/eps) even if x = 0.

math.dms (x)

Converts a number representing a decimal number x into its TI-30 sexagesimal DMS
representation and returns a number. For example: 10.5125 returns 10.3045,
representing 10°30'45''.

See also: math.dd, math.splitdms, math.todecimal, math.tosgesim.

math.eps ([x [, option]])

The function returns the machine epsilon, the relative spacing between the number
|x| and its next larger number in the machine’s floating point system. If no
argument is given, x is set to 1.

On x86 machines and with Agena numbers, i.e. C doubles, eps(1) and eps() return
2.2204460492503e-016 = 2-52, and eps(2) returns 4.4408920985006e-016 = 2-51.

When given any second argument, the function computes a `mathematical`
epsilon value that is also dependent on the magnitude of its argument x. It can be
used in difference quotients, etc., for it prevents huge precision errors with
computations on very small or very large numbers. The mathematical epsilon with
respect to x is equal to x* sqrt(math.eps(x)).

See also: math.epsilon, math.nextafter.

agena >> 521

math.epsilon (x [, method])

math.epsilon (f, x [, ···] [, iters=n])

In the first form, by default returns the relative spacing between |x| and its next
larger number on the machine’s floating point system, taking into account the
magnitude of its argument. In this case, the function works like math.eps with the
true option set, but is 20 percent faster. If |x| < 1, you may choose a constant
epsilon value yourself, e.g. Eps.

In the first form, you may choose between different methods to determine an epsilon
value, where ulp = math.nextafter(x, infinity) - x:

cbrt(ulp) * (x +cbrt(ulp))3
sqrt(ulp) * (x +sqrt(ulp))2

x * cbrt(ulp)1
x * sqrt(ulp)0 (default)

FormulaMethod

With methods 0 and 1, the function returns ulp if x = 0 before returning the result.
This prevents a generated epsilon value of exactly zero.

In the second form, by passing a function f and an argument x, the function
determines an epsilon value by taking the function value f(x) into account, using a
divided difference table. If f is multivariate, pass its further arguments tight after x.

math.expminusone (x)

Returns a value equivalent to exp(x) - 1, with x a number. It is computed in a way
that is accurate even if x is near 0, since exp(~0) and 1 are nearly equal.

The function can be used, for example, in financial mathematics, to calculate
small daily interest rates, among other things.

See also: expx2, math.lnplusone.

math.exponent (x)

Returns the exponent e of a number x such that math.mantissa(x) * 2e equals x.
The result is identical to the second result returned by frexp. The function is around
20 percent faster but returns correct results only if your system supports IEEE 754
floating-point numbers, whereas frexp always works regardless of the internal
representation.

See also: frexp, math.mantissa, math.uexponent.

522 11 Numbers

math.fall (x, n)

The falling factorial function computes x*(x - 1)*(x - 2)* ... *(x - n + 1), with x a
number and n an integer. If n is negative, the rising factorial function (Pochhammer
function) is computed.

See also: fact, math.dblfact, math.lnfact, math.pochhammer, math.trifact.

math.fdim (x, y [, a])

The function returns x - y if its argument x, a number, is greater than or equal y, else
it returns a, which is 0 by default.

math.fib (n)

Returns the n-th Fibonacci number, with n a non-negative integer. If n > 76, the
function returns fail since the result is too large to be accurately represented. The
defaults are: math.fib(0) = 0 and math.fib(1) = 1; with all other values computed
by math.fib(n) := math.fib(n - 2) + math.fib(n - 1).

See also: math.fibinv.

math.fibinv (n)

For any non-negative integer n returns the index i of the Fibonacci number with fib(i)
<= n < fib(i + 1). The function is implemented in Agena and included in the
lib/library.agn file.

See also: math.fib.

math.fld (x, y)

Returns the largest integer less than or equal to the real quotient of the numbers x
x
y

and y.

See also: \ operator, math.cld.

math.flipsign (x, y)

Returns the number x with its sign flipped if y (a number) is negative. For example,
abs(x) = flipsign(x, x).

See also: math.copysign, math.signbit, sign.

agena >> 523

math.floorpow2 (x)

Finds the largest power of 2 less than or equal to x, where x is a non-negative
integer. If x < 2, the result is x. If x < 0, undefined will be returned. Examples:
math.floorpow2(3) 2 = 21, and math.floorpow2(8) 8 = 23.e e

The function returns fail if x .m 231

See also: ilog2, math.ceillog2, math.ceilpow2, math.ispow2.

math.fpclassify (x)

For the given number x, returns

� 0 if x is undefined (= constant math.fp_nan),
� 1 if x is infinite, i.e. +/-infinity (= constant math.fp_infinite),
� 2 if x is subnormal (= constant math.fp_subnormal,
� 3 if x is zero (= constant math.fp_zero),
� 4 if x is normal (= constant math.fp_normal), including irregular values .m 252

Thus, for example, `ordinary` numbers are represented by results greater than 2.

The function returns fail if it could not determine the type of floating-point number
(of C type double). It is a platform-independent port of C's fpclassify.

See also: math.isnormal, math.issubnormal.

math.fraction (x [, err])

Given a number x, this function outputs two integers and a number: the numerator
n, the denominator d, and the accuracy epsilon, such that x := n / d to the
accuracy epsilon := | (x - n/d) / x | err. [

The error err should be a non-negative number, and by default is 0.

The function is implemented in Agena and included in the lib/library.agn file.

See also: div package.

math.frexp (x [, option])

Returns the sign s, the mantissa m and the exponent e of the number x, in this
order, such that s*m*2e = x. The sign is -1 if x is negative (including -0) and 1
otherwise. The mantissa is a float in the range [0.5, 1) except for x = 0, where the
result is 0. The exponent is a negative or positive integer or zero.

If any option is given, then instead of the sign the sign bit s will be returned: 1 if x is
negative or -0, and 0 otherwise. In this case x = signum(-s) * m*2e.

524 11 Numbers

The function works correctly only on IEEE 754-compliant systems.

See also: frexp, ldexp, ilog2, math.exponent, math.mantissa.

math.gammasign (x [, y [, ...]])

When only x is given, returns the sign of the gamma function, i.e. -1 if x < 0 and
odd(entier(x)), and 1 otherwise.

If further numbers are given, the signs of the gamma function of respective
arguments are multiplied with each other, so the result is
math.gammasign(x)*math.gammasign(y)*math.gammasign(...).

See also: beta, gamma, math.beta, math.gamma.

math.hamming (x, y)

Computes the Hamming distance of two integers x, y considered as binary values,
that is, as sequences of bits. See also: strings.bigrams.

math.gcd (x, y)

Returns the greatest common divisor of the numbers x and y as a number. If x or y
is not an integral, 1 will be returned. The function is implemented in Agena and
included in the lib/library.agn file.

See also: math.lcm.

math.hextodec (s)

Converts a string s representing a hexadecimal value to a (decimal) number. The
string may or may not start with '0x' or '0X', and also may contain a sign, a fractional
part or a `p exponent` part.

If the value represented by s is too big, the function will return undefined.

Example: math.hextodec('0x-F.Fp0') -15.9375. e

See also: math.convertbase, math.octtodec, math.tohex, strings.strtoul,
tonumber.

math.invmod (a [, m])

Computes the modular multiplicative inverse of an integer a modulo m and returns
an integer x such that a x = 1 (mod m). The function avoids overflow and underflow.

agena >> 525

m is 257 by default. If m is not prime or zero, then not every non-zero integer a has a
modular inverse - in this case the function returns undefined.

See also: % operator, math.mulmod, math.powmod.

math.iscube (n)

Checks if a given integer n is a perfect cube, i.e. if cbrt(n)^3 = n.

See also: cbrt, cube, math.issquare.

math.isfib (n)

Checks whether the non-negative integer n is a Fibonacci number.

See also: math.fib, math.fibinv.

math.isinfinity (x)

Returns -1 if its numeric argument x is -infinity, +1 if x is +infinity, or 0 if neither.

See also: finite, infinite.

math.isirregular (x)

Checks whether a number or complex number can be represented exactly on your
system. It returns:

� false if |x| < 252: a number with decimal places can internally be represented
as a number with decimal places, but not necessarily itself. With n < 52, the
spacing between two subsequent representable numbers is the fraction 2n-52.

� fail if 252 253+1: representable numbers are exactly the integers; spacing[x [
between representable numbers is exactly 1.

� true if |x| > 253+1: an integer mostly cannot be exactly represented; with n >
52, spacing is the integer 2n-52.

With complex x, checks whether at least the real or imaginary part evaluates to
false or fail - according to the rule mentioned above - and returns that; otherwise if
both parts evaluate to true, returns true.

math.isminuszero (x)

Returns true if x is -0 (minus zero) and false otherwise. See also: math.signbit.

526 11 Numbers

math.isnormal (x)

Returns true returns true if a number is neither +0, -0, +infinity, -infinity, undefined
nor subnormal. The result is equal to the expression math.fpclassify(x) =
math.fp_normal.

With complex x, returns math.isnormal(real(x)) and math.isnormal(imag(x)).

See also: finite, math.isminuszero, math.issubnormal.

math.isordered (x, y)

Returns false if at least one of its arguments x and y - two numbers - is undefined,
and true otherwise. See also: nan.

math.ispow2 (x)

Checks whether a given non-negative number x is a power of base 2 (x = 2log2(x))
and returns true or false. Also returns false if x is negative.

The function returns fail if its argument is infinity or undefined.!

math.isprime (x)

Returns true, if the the given 4-byte signed integer x is a prime number, and false
otherwise. Note that you have to take care yourself that x is an integer and is less
than the largest integer representable on your system.

See also: math.nextprime, math.prevprime.

math.isqrt (x)

Returns the integer square root of the number x: the largest integer m such that
m*m x.[

math.issquare (n)

Checks if a given integer n is a perfect square, i.e. if sqrt(n)^2 = n. Any power of
two is a perfect square, for example n = 1, 4, 9, 16, 25, 36, 49, etc.

See also: sqrt, square, cube, math.iscube, math.ispow2.

math.issubnormal (x)

Checks whether the number x is subnormal, i.e. whether internally the leading digit
of its mantissa is 0. The function returns true or false. Subnormal numbers are very
close to zero, have reduced precision and lead to excessive CPU usage. They are
in the range [-2.2250738585072009e-308, -4.9406564584124654e-324] and
[4.9406564584124654e-324, 2.2250738585072009e-308]. 0, undefined and

agena >> 527

+/-infinity are not subnormal. Please note that the next representable number after
0 (towards +) is subnormal.∞

With complex x, returns math.issubnormal(real(x)) or math.issubnormal(imag(x)).

See also: math.normalise, math.smallestnormal, math.two54,
math.zerosubnormal.

math.kbadd (x, y [, cs, ccs])

The function adds x and y using Kahan-Babuška round-off error prevention and
returns three numbers: the uncorrected sum of x and y plus the updated values of
the correction variables cs and ccs. The optional correction variables cs and ccs
should be 0 at first invocation, and the values of the previously returned correction
variables otherwise - if cs, ccs are not given, they default to 0.

After the last summation add cs and ccs to the uncorrected sum to have a
corrected final result as shown in the following example:

> s, cs, ccs -> 0;

> for i in [Pi, 2*Pi, 3*Pi, 4*Pi] do
> s, cs, ccs := math.kbadd(s, i, cs, ccs)
> od;

> print(s + cs + ccs); # the final corrected result

Kahan-Babuška summation is generally more accurate than Kahan-Ozawa
summation, but slower. See also: addup, sumup, math.koadd.

math.koadd (x, y [, q])

The function adds x and y using Kahan-Ozawa round-off error prevention and
returns two numbers: the sum of x and y plus the updated value of the correction
variable q. The optional correction variable q should be 0 at first invocation, and the
previously returned correction variable otherwise - if q is not given, it defaults to 0.

The following algorithm used is:

math.koadd := proc(s :: number, x :: number, q) is
 local sold, u, v, w, t;
 q := optnumber(q, 0);
 v := x - q;
 sold := s;
 s := s + v;
 if abs(x) < abs(q) then
 x, q := -q, x
 fi;
 u := (v - x) + q;
 if abs(sold) < abs(v) then
 sold, v := v, sold
 fi;
 w := (s - sold) - v;
 q := u + w;

528 11 Numbers

 return s, q

end;

A typical usage should look like:

x, q -> 0;
y := 0.1;
while x < 1 do
 x, q := math.koadd(x, y, q) # add 0.1 in each step
od;
print(s + q);

See also: addup, sumup, math.accu, math.kbadd, stats.sumdata.

math.largest

This constant represents the largest positive number representable in Agena. It is
computed during start-up and may be different from the setting returned by
environ.system, the latter statically compiled into the Agena binary. The smallest
negative number (nearest to) is the negative of this constant, i.e. - math.largest.−∞

See also: math.lastcontint, math.smallest.

math.lastcontint

This constant represents the largest integer i on the floating-point system such that i -
1 <> i. In other words: The constant represents the largest integer value that can be
stored in an Agena number without loss of precision. On 32-bit systems (and higher),
it is equal to 253 = 9,007,199,254,740,992.

See also: math.largest.

math.lcm (x, y)

Returns the least common multiple of to numbers x and y as a number. The
function is implemented in Agena and included in the lib/library.agn file.

See also: math.gcd.

math.lnabs (x)

Returns ln(abs(x)) for numeric or complex x. With complex numbers, takes care of
underflows.

math.lnbinomial (n, k)

Returns the natural logarithm of the binomial coefficient

ln = ln = lngamma(n + 1) - lngamma(k + 1) - lngamma(n - k + 1)
n
k

n!
k!(n−k)!

agena >> 529

avoiding overflows.

See also: binomial, long.lnbinomial, math.lnfact.

math.lnfact (n)

Returns ln(fact(n)) for any non-negative integer n. With n < 512, the result is taken
from a look-up table, with all arguments the result is equal to lngamma(n + 1).

See also: fact, math.dblfact, math.fall, math.lnbinomial, math.trifact.

math.lnplusone (x)

Returns a value equivalent to ln(1 + x), with x a number. It is computed in a way
that is accurate even if x is near zero.

It can be used, for example, in financial calculations, when computing small daily
interest rates.

Example: ln(1.0000000000000001) 0, math.lnplus1(0.0000000000000001) e e
1e-016.

See also: math.expminusone.

math.logs (x, b)

The iterated logarithm of x, log*(x) (for `log star`) returns the number of times the
logarithm function to a given base b must be iteratively applied on x until the result
reaches or drops below 1. If x <= 1, returns 0. The algorithm is equivalent to:

> logs := proc(x, b) is
> for i from 0 while x > 1 do
> x := log(x, b)
> od;
> return i
> end;

math.mantissa (x)

Returns the mantissa m of a number x such that m * 2^math.exponent(x) equals
x. The result is identical to the first result returned by frexp, and is in the range [0.5, 1)
(or zero when x is zero). The function is around 20 percent faster but returns correct
results only if your system supports IEEE 754 floating-point numbers, whereas frexp
always works regardless of the internal representation.

See also: frexp, math.exponent, math.significand.

math.max (x [, ···])

Returns the maximum value among its arguments of type number.

530 11 Numbers

math.min (x [, ···])

Returns the minimum value among its arguments of type number.

math.modulus (x, y)

The function is a plain binding to the C `%` modulus operator. Both its arguments
must be integers. The return is an integer. If y = 0, the function returns undefined.

See also: % operator, bytes.mod32, drem, hashes.fibmod, hashes.fibmod2, iqr,
symmod, math.invmod, math.nearmod.

math.morton (x, y)

Interleaves the bits of integers x and y, so that all of the bits of x are in the even
positions and y in the odd; the function can be used to linearising 2D integer
co-ordinates, combining x and y into a single integer that can be compared
easily. It has the property that a number is usually close to another if their x and y
values are close.

math.mulmod (a, b, n)

Performs modular multiplication: a*b % n = ((a % n)*(b % n)) % n, avoiding overflow
and underflow. The function is suited to process large a, b. If n is zero, the function
returns undefined. If |ab| < 1, the function internally calls math.invmod.

See also: % operator, math.invmod, math.powmod.

math.mulsign (x, y)

Multiplies, not copies, its first argument with the sign of its second, and returns x *
signum(y).

See also: math.copysign, math.flipsign, math.signbit, sign, signum.

math.ndigits (x [, b])

Returns the number of integer digits - without decimal places - in the number x to
the base b. By default, b is 10.

If b is -10, counts the number of decimal places (fractional digits) in x, where x is
considered to be of base 10. This feature is experimental and not fail-safe.

See also: math.decompose, math.nthdigit.

agena >> 531

math.nearbyint (x)

Returns x rounded to the nearest integer, returns the same result as round(x, 0) does
but is implemented differently and 5 % faster. The function has been included for C
math library compatibility reasons only.

See also: int, math.rint, math.trunc.

math.nearmod (x, m)

Returns the closest value to the given number x divisible by the given modulus m,
equivalent to round(x/m) * m. See also: %, math.modulus.

math.nextafter (x, y)

Returns the next machine floating-point number of x in the direction toward y.

See also: +++ and --- operators, math.eps, math.ulp.

math.nextmultiple (n, b)

Returns the next multiple of an integer n to the given base b, towards +infinity if b is
positive, and towards -infinity, if b is negative.

math.nextpower (x, base [, option])

By default returns the smallest power of base greater than x. If the third argument is
true, then the smallest power of base greater than or equal to x will be returned.

math.nextprime (x)

Returns the smallest prime greater than the given 4-byte signed integer x.

See also: math.congruentprime, math.prevprime, math.isprime.

math.norm (x, a1:a2 [, b1:b2])

Converts the number x in the scale [a1, a2] to one in the scale [b1, b2]. The second
and third arguments must be pairs of numbers. If the third argument is missing, then
x is converted to a number in [0, 1]. The return is a number.

See also: linalg.scale, math.wrap, stats.scale.

532 11 Numbers

math.normalise (x [, option])

Checks whether its numeric argument x is subnormal and in this case normalises it,
i.e. returns a non-zero normalised value x*264 that is close to x; otherwise returns its
argument x unaltered. If any option is given, the unsigned high 4-byte word of the
result will be returned, too.

With complex x, normalises both its real and imaginary part if necessary and returns
the complex number math.normalise(real(x)) + I*math.normalise(imag(x)); the
option is not supported in this case.

It is useful to prevent excessive CPU usage with values very close to zero.

For more information, see math.issubnormal.

See also: math.zeroin, math.zerosubnormal.

math.nthdigit (x, n)

Returns the n-th digit of the number x, with n an integer. To evaluate an integer digit,
n should be positive; for a decimal place, n should be negative.

The function is written in Agena and included in the lib/library.agn file.

See also: math.ndigits.

math.octtodec (s)

Converts a string s representing an octal value to a (decimal) number. The string
may or may not start with '0o' or '0O', and also may contain a sign, a fractional part
or a `p exponent` part.

If the value represented by s is too big, the function will return undefined.

Example: math.octtodec('-0o17.74') -15.9375. e

See also: math.convertbase, math.bintodec, math.hextodec, math.tohex,
tonumber.

math.piecewise (cond1, f1, cond2, f2, ..., condn, fn [, fotherwise])

Evaluates a piecewise-continuous function. cond1, etc. are relations evaluating to
Booleans, and f1, etc. numeric expressions. The arguments are checked from left to
right and as soon as a condition condk is met, piecewise returns the respective
value fk. If no condition meets, the function returns fotherwise, and undefined if
not given.

agena >> 533

The implementation is far from perfect as all of its arguments are evaluated before
executing the procedure. Better use the Boolean operator and and or, for
example:

� math.piecewise(x < 2, -1, x < 3, 1, infinity) and
� x < 2 and -1 or x < 3 and 1 or infinity

are equivalent, but the latter is around 15 times faster due to application of the
McCarthy Rule.

See also: math.chi, math.clip.

math.pochhammer (x, n)

Computes the Pochhammer function (rising factorial), where both x and n are real
numbers. It returns the number:

✄(x + n)

✄(x)

See also: fact, math.fall.

math.powmod (x, p, m)

Performs modular exponentiation and returns x^p % m, avoiding overflow and
underflow with large x, p. If m is zero, the function returns undefined.

See also: math.invmod, math.mulmod.

math.prevprime (x)

Returns the largest prime less than the given 4-byte signed integer x.

See also: math.nextprime, math.isprime.

math.quadrant (x)

This function returns the quadrant of an angle x given in radians and returns an
integer in [1, 4].

math.ramp (x)

For number x, gives x if x > 0 and 0 otherwise.

See also: heaviside, math.rectangular.

534 11 Numbers

math.random ([m [, n]])

When called without arguments, returns a pseudo-random float with uniform
distribution in the range [0,1).

When called with two integers m and n, math.random returns a pseudo-random
integer with uniform distribution in the range [m, n].

The call `math.random(n)`, for a positive n, is equivalent to `math.random(1, n)`.
The call `math.random(0)` produces an integer with all bits (pseudo) random.

This function uses the xoshiro256** algorithm to produce pseudo-random 64-bit
integers, which are the results of calls with argument 0. Other results (ranges and
floats) are unbiased extracted from these integers.

Agena initialises its pseudo-random generator with the equivalent of a call to
math.randomseed with no arguments, so that math.random should generate
different sequences of results each time the program runs.

See also: strings.random.

math.randoms ([m [, n]] [, option])

This function creates random numbers as Agena did before version 2.27.10.

When called without arguments, returns a pseudo-random real number in the
range (0,1). It can generate up to 2 * environ.maxlong unique random numbers in
this interval.

When called with a number m, math.random returns a pseudo-random integer in
the range [1, m].

When called with two numbers m and n, math.random returns a pseudo-random
integer in the range [m, n].

If option, any Boolean, is given, then the sequence of values returned should be
arbitrary, otherwise it is always the same unless math.randomseed is called with
other values.

See also: math.randomseed, skycrane.dice.

math.randomseed ([x, y])

When called with at least one argument, the integer parameters x and y are joined
into a 128-bit seed that is used to reinitialize the pseudo-random generator; equal
seeds produce equal sequences of numbers. The default for y is zero.

agena >> 535

When called with no arguments, Lua generates a seed with a weak attempt for
randomness.

This function returns the two seed components that were effectively used, so that
setting them again repeats the sequence.

To ensure a required level of randomness to the initial state (or contrarily, to have a
deterministic sequence, for instance when debugging a program), you should call
math.randomseed with explicit arguments.

math.randomseeds ([x, y])

Sets x and y as the `seeds` for the pseudo-random generator, as Agena did
before version 2.27.10: equal seeds produce equal sequences of numbers. x and
y must both be positive integers. It returns two new settings. The function does not
check for x= 0x464fffff and y = 0x9068ffff.

If called without arguments, the function returns the current seeds.

See also: math.random.

math.rectangular (x [, pi])

math.rectangular (x [, a [, b [, pi]]])

In the first form, computes the rectangular pulse function for number x:

math.rectangular(x) =

1 if x < 0.5
0.5 if x = 0.5
0 if x > 0.5

In the second form, a represents the rising edge, and b the falling edge of the
rectangular pulse function. By default, a = -0.5 and b = +0.5. The function then
returns 0 if x < a or x > b; 0.5 if (x = a or x = b) and a <> b, and 1 otherwise.
If pi is the Boolean value true, the function computes the box distribution Pi(x):

Pi(x) =

1 if x < 0.5
undefined if x = 0.5

0 if x > 0.5

See also: heaviside, math.clip, math.ramp, math.triangular, math.unitise, sinc.

math.redupi (x)

Subtracts the nearest integer multiple of from its numeric argument x. ✜

See also math.wrap.

536 11 Numbers

math.relerror (a, b)

Computes the relative error |b - a|/|a|, handling case of undefined and infinity.

math.rempio2 (x [, option])

Conducts an argument reduction of x into the range |y| < and returns y = x -
✜
2

N* . If any option is given, then the function also returns N, or actually the last three
✜
2

digits of N. The number of operations conducted are independent of the exponent
of the input.

The function is 60 percent faster than math.wrap, but returns a result different from x

if its argument |x| is already in the range .. .
✜
4
✜
2

This function is just a port to the underlying C function rem_pio2 which is used to
compute sines, cosines and tangents.

See end of Chapter 11.1.2 for a comparison chart.

math.rint (x)

Rounds a (complex) float to a (complex) integer according to the current rounding
method which you can query and set with environ.kernel/rounding.

See also: ceil, entier, int, mdf, round, xdf, math.nearbyint.

math.secd (x)

Takes x in degrees and returns its secant in radians.

See also: math.cosd, math.cotd, math.cscd, math.sind, math.tand, sec.

math.signbit (x)

Checks whether the number x has its sign bit set and returns true or false. It is a
plain binding to C's copysign function. For example, although -0 = 0,
math.signbit(-0) true and math.signbit(0) false. e e

See also: math.copysign, math.flipsign, math.isminuszero, sign.

math.significand (x)

Returns the mantissa of number x in a normalised form, in the range[1, 2), with
math.significand(x) = 2*math.mantissa(x) = ldexp(x, -ilog2(x)). If x is 0, the return is
0.

agena >> 537

See also: math.uexponent.

math.sincos (x)

Returns both the sine and cosine for number or complex x as two numbers or
complex numbers. The function is around 10 to 15 % faster than calling the sin and
cos operators separately.

See also: cos, sin, math.sincosfast, math.sincospi.

math.sincospi (x [, option])

Returns both sin(*x) and cos(*x) for number x with better precision than calling the✜ ✜
respective standard operators. If option is true, than the tangent, i.e. tan(*x) is✜
returned, too.

See also: math.sincos, math.sinpi, math.cospi, math.tanpi.

math.sind (x)

Takes x in degrees and returns its sine in radians.

See also: sin, math.cosd, math.cscd, math.cotd, math.secd, math.sinpi,
math.tand.

math.sinhcosh (x)

For number x, returns both the hyperbolic sine and hyperbolic cosine as two
numbers. The function is around 30 to 35 % faster than calling the sinh and cosh
operators separately.

With complex x, returns complex results.

See also: cosh, sinh.

math.sinpi (x)

Returns sin(*x) for number x with better precision than calling the respective✜
standard operator.

See also: sin, math.cospi, math.sincos, math.sincospi, math.sind, math.tanpi.

math.smallest

This constant represents the smallest positive number representable in Agena. It is
computed during start-up and is different from the setting returned by
environ.system, the latter statically compiled into the Agena binary.

538 11 Numbers

See also: math.largest.

math.smallestnormal

This constant denotes the smallest positive normal number representable on your
system.

math.splitdms (x)

Splits the number x representing a sexagesimal number in TI-30 DMS format into its
parts and returns three numbers: the degrees, minutes, and seconds. For example:
-10.3045 represents -10°30'45''.

The function is implemented in Agena and included in the lib/library.agn file.

See also: math.dd, math.dms, math.todecimal, math.tosgesim.

math.tand (x)

Takes x in degrees and returns its tangent in radians.

See also: tan, math.cosd, math.cotd, math.cscd, math.secd, math.sind,
math.tanpi.

math.tanpi (x)

Returns tan(*x) for number x with better precision than calling the respective✜
standard operator.

See also: tan, math.cospi, math.sincos, math.sincospi, math.sinpi, math.tand.

math.tocomplex (x)

Converts number x to the complex number x + I*0. When given a complex
number, it is simply returned.

math.todecimal (h [, m [, s]])

Converts a sexagesimal time value given in hours h, minutes m and seconds s into
its decimal representation. The optional arguments m and s default to 0. If a
sexagesimal value is negative, then h should be negative, while m and s should be
non-negative.

Example:

> math.todecimal(12, 30, 1): # half past noon and one second
12.500277777778

agena >> 539

See also: clock.todec, math.todms, math.tosgesim.

math.todms (x)

Converts a number in DMS notation to its decimal representation, e.g. 10.3045,
representing 10°30'45'', returns 10.5125.

See also: math.todecimal.

math.tohex (x)

Converts a non-negative integer x in the range [0, 255] to its hexadecimal
representation, returned as a 2-character string.

See also: math.convertbase, math.hextodec.

math.toradians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s, in radians. The
optional arguments m and s default to 0.

math.tosgesim (d)

Converts a decimal time value given by the number d into its sexagesimal
representation and returns three numbers: the hours, minutes, and seconds.

Example:

> math.tosgesim(12.500277777778):
12 30 1

The function is written in Agena and included in the lib/library.agn file.

See also: math.dms, math.todecimal, math.todms.

math.triangular (x)

math.triangular (x [, a [, b]])

In the first form, computes the triangular function of base length 1 for number x:

math.triangular(x) =

1 − |2x| if x < 0.5
0 if x m 0.5

In the second form, by passing a left and a right border a, b, the function returns
non-zero values in this range, and 0 otherwise, with a = -0.5 and b = +0.5 the
defaults. Thus, the general formula used by the function is:

math.triangular(x, a, b) := max(0, 1 - |2*(x - offset)/d|),

540 11 Numbers

where d := |b - a| and offset := a + d/2.

See also: heaviside, math.branch, math.clip, math.rectangular, math.unitise,
math.wrap, sinc.

math.trifact (n)

Returns the triple factorial n!!! = n(n - 3)(n - 6)...3 for non-negative integer n.

See also: fact, math.dblfact, math.fall, math.lnfact, math.trifact.

math.trunc (x)

Returns x rounded to the nearest integer towards zero, returns the same result as
int(x). The function has been included for C math library compatibility reasons only.

See also: math.nearbyint.

math.two54

The constant represents 254, a value with which subnormal numbers can be
multiplied in order to become normal. See also: math.issubnormal.

math.uexponent (x [, option])

Computes the unbiased base-2 exponent of number x, i.e. returns
math.exponent(x) - 1, except for x = 0 and subnormal numbers where the result is
-1023, and for x = undefined or x = infinity returns 1024.!

If any option is given, then returns sign(x)*math.uexponent(x), but for x =
undefined returns 0x401= 1025, for x = -infinity returns -1024, and for x = infinity
returns +1024. Due to the definition, returns 0 for x = 0 and subnormal x.

See also: bytes.getunbiased, math.significand, frexp.

math.ulp (x [, eps])

Computes the unit of least precision (ULP), the spacing between floating-point
numbers, for number x, as a measure of accuracy in numeric calculations. It is
equivalent to math.nextafter(x, infinity) - x.

If eps is given, the function also returns the number of ULPs - an integer - between x
and x + eps.

agena >> 541

math.unitise (x [, eps])

Returns 0 if its number argument x is zero or close to zero, and 1 otherwise:

� 0 if |x| eps,[

� 1 if |x| > eps.

With complex numbers x = a + I*b, returns

� 0 if |a| eps and |b| eps,[[

� 1 if |a| > eps and |b| > eps.

By default, eps is set to the constant Eps.

See also: heaviside, math.clip, math.rectangular, math.unitstep, math.zeroin.

math.unitstep (x [, eps])

For number x, gives 0 for x < 0 and 1 otherwise.

See also: heaviside, math.unitise.

math.wrap (x [, a [, b]])

Conducts a range reduction of the number x to the interval [a, b) and returns a
number. If x [a, b), x is simply returned.c

In the second form, if a is not given, a is set to and b to . If a is given but not b,−✜ +✜
a is set to -a and b to +a, so a should be positive.

The result is equivalent to:

> dec x, a;
> dec b, a;
> a + (b + x symmod b) symmod b:

See also: % operator, math.branch, math.clip, math.norm, math.redupi,
math.rempio2, zx.reduce, end of Chapter 11.1.2 for a comparison chart.

math.xlnplusone (x)

Computes x - ln(1 + x) in a way that is accurate even if x is near zero. The algorithm
is ten percent faster than simply returning x - math.lnplusone(x).

math.zeroin (x [, eps])

Returns 0 if for number x we have: |x| DoubleEps, and returns x otherwise. With a[

complex number x, returns 0+I*0 if its magnitude |x| DoubleEps or sets its[

respective parts to zero if their respective absolute values are less or equal to

542 11 Numbers

DoubleEps. Otherwise just returns x. If eps is given, then this threshold is used instead
of DoubleEps.

See also: math.chop, math.normalise, math.zerosubnormal.

math.zerosubnormal (x)

Checks whether its numeric argument x is subnormal and in this case returns 0,
otherwise returns its argument x. It is useful to prevent excessive CPU usage in case
of arguments very close to zero. Note that result retains the sign of x.

With complex x, returns the complex number math.zerosubnormal(real(x)) +
I*math.zerosubnormal(imag(x)).

For more information, see math.issubnormal, math.normalise, math.zeroin.

Comparison of some clipping functions:

> gdi.plotfn([<< x -> math.rempio2(x) >>,
> << x -> math.wrap(x) >>,
> << x -> math.clip(x) >>,
> << x -> zx.reduce(x) >> ,
> << x -> math.branch(x) >>],
> -4, 4, -4, 4,

> colour=['red', 'navy', 'green', 'black', 'maroon']);

agena >> 543

11.1.3 fastmath Library

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.g. import fastmath.

The library provides procedures to approximate mathematical functions in the real
domain. Despite its name, the package functions may not necessarily be faster
than the standard functions and operators implemented in Agena.

fastmath.cosfast (x)

Approximates cos(x) for number x, and returns a number. It is around 40 percent
faster than cos.

See also: cos.

fastmath.floor (x)

Works like the entier operator or the floor function, that are rounding downwards to
the next integer, but is eight percent faster than floor (entier is always faster). The
function may not be portable across platforms.

fastmath.hypotfast (x, y)

Returns the hypotenuse of the two numbers x and y; the return is a number. The
function is sixty percent faster than hypot, but prone two round-off errors.

fastmath.invroot (x [, degree [, n [, xhalf]]])

Approximates the inverse root 1/root(x, degree) using the Quake III method, and
returns a number. x is the radicand, degree the degree-th root which by default is 2.
n is the number of iterations to be conducted and by default is 2^degree. xhalf is
the internal equivalent of x, 0.5*x by default. The greater the degree, the less
accurate is the result.

See also: fastmath.reciprocal, fastmath.sqroot.

fastmath.invsqrt (x)

Approximates the inverse square root 1/sqrt(x), using Quake’s Fast Inverse Square
Root method and returns a number. It is five percent faster than the inverse of the
sqrt operator.

544 11 Numbers

fastmath.lbfast (x)

Approximates log2(x) for number x, and returns a number. It is around a third faster
than log2. If x <= 0, the result will be wrong.

See also: log2.

fastmath.reciprocal (x)

Approximates the reciprocal of its argument x of type number. The return is a
number. The function is purely experimental.

See also: fastmath.invroot, fastmath.sqroot.

fastmath.sinfast (x)

Approximates sin(x) for number x, and returns a number. It is around 40 percent
faster than sin.

fastmath.sincosfast (x)

Returns both an approximation of the sine and cosine as two numbers. The function
is around 10 % faster than calling math.sincos.

fastmath.sqroot (x)

Roughly approximates the square root of its argument x of type number. The returns
are two numbers: guesses computed using C doubles and floats, in this order. The
function is purely experimental.

See also: fastmath.invroot, fastmath.reciprocal, fastmath.sqrtfast.

fastmath.sqrtfast (x)

Approximates the square root of its argument x of type number. The function is
purely experimental.

See also: fastmath.sqroot.

fastmath.tanfast (x)

Approximates tan(x) for number x, and returns a number. It is around 40 percent
faster than tan.

See also: tan.

agena >> 545

11.2 bytes Library

The library provides procedures for bit and byte twiddling.

11.2.1 General Functions

bytes.bcd (n)

Returns the Binary coded decimal (BCD) representation of the non-negative integer
n. From left to right, each decimal digit is converted to a four-bit representation (0 =
0b0000, 9 = 0b1001), and the resulting bit sequence is then returned as one
decimal integer, e.g. decimal 102 = 0001 0000 0010 BCD 258.e

By default, if only n is given, the function converts the decimal integer to BCD. If true
is passed as a second argument, n is converted from BCD to its decimal integer
representation.

bytes.castint (x, bits)

Casts number x to a C integer. The results may be platform-dependent.

int64_t-64
int32_t-32
int16_t-16
int8_t-8
uint64_t64
uint32_t32
uint16_t16
uint8_t8
Cast tobits

bytes.fpbtoint (x)

Converts a `floating point byte` generated by bytes.inttofpb back. This function is
used to evaluate numbers transported to the Lua/Agena virtual machine. Please
note that math.inttofpb(math.fpbtoint(x)) does not return x.

bytes.numhigh (x)

Returns the higher bytes of a number x as an integer. The function does not support
complex numbers.

See also: bytes.numwords, bytes.numlow.

546 11 Numbers

bytes.numlow (x)

Returns the lower bytes of a number x as an integer. The function does not support
complex numbers.

See also: bytes.numhigh, bytes.numwords, bytes.setlow.

bytes.numwords (x)

Returns both bytes.numhigh(x), bytes.numlow(x) plus the unbiased exponent (i.e.
math.exponent(bytes_numhigh(x)) - 1, except for x = 0 -> -1023) as three results,
in this order.

See also: bytes.setnumwords, hashes.squirrel64.

bytes.inttofpb (x)

Converts the integer x to a `floating point byte`, represented as (eeeeexxx), where
the real value is (1xxx) * 2^(eeeee - 1) if eeeee <> 0 and (xxx) otherwise. This
function is used to transport numbers to the Lua/Agena virtual machine.

See also: bytes.fpbtoint.

bytes.leadzeros (x)

Counts the number of leading zeros (clz) in the unsigned 32-bit integer x, and also
returns the modified value of x after this operation as a second result, where all bits
starting with the first non-zero bit in x are set to 1.

See also: bytes.leastsigbit, bytes.mostsigbit, bytes.onebits, bytes.trailzeros.

bytes.leastsigbit (x)

Returns the position of the least significant bit (lsb) in the unsigned 32-bit integer x,
here the smallest index of the first 1-bit, counting from bit index 1. If x = 0, returns 0.

See also: bytes.leadzeros, bytes.mostsigbit, bytes.onebits.

bytes.mostsigbit (x)

Returns the position of the most significant bit (msb) in the unsigned 32-bit integer x,
i.e. the largest index of a 1-bit, counting from bit index 1. If x = 0, returns 0.

See also: bytes.leadzeros, bytes.leastsigbit, bytes.mostsigbit.

agena >> 547

bytes.onebits (x)

Returns the number of bits set in the unsigned 32-bit integer x.

See also: bytes.leadzeros, bytes.mostsigbit.

bytes.optsize (n)

For a given number of bytes n, calculates the optimal number of bytes (places) in a
C `array` (e.g. a memfile, numarray or even a string) if it shall be aligned on the 4-
or 8-byte word boundary.

See also: strings.strlen.

bytes.pack (fmt, v1, v2, ···)

Returns a binary string containing the values v1, v2, etc. packed (that is, serialised in
binary form) according to the format string fmt.

The first argument to bytes.pack, bytes.packsize, and bytes.unpack is a format
string, which describes the layout of the structure being created or read.

A format string is a sequence of conversion options. The conversion options are as
follows:

 <: sets little endian
 >: sets big endian
 =: sets native endian
 ![n]: sets maximum alignment to n (default is native alignment)
 b: a signed byte (char)
 B: an unsigned byte (char)
 h: a signed short (native size)
 H: an unsigned short (native size)
 l: a signed long (native size)
 L: an unsigned long (native size)
 j: a lua_Integer
 J: a lua_Unsigned
 T: a size_t (native size)
 i[n]: a signed int with n bytes (default is native size)
 I[n]: an unsigned int with n bytes (default is native size)
 f: a float (native size)
 d: a double (native size)
 n: a lua_Number
 cn: a fixed-sized string with n bytes
 z: a zero-terminated string
 s[n]: a string preceded by its length coded as an unsigned integer with n

bytes (default is a size_t)

548 11 Numbers

 x: one byte of padding
Xop: an empty item that aligns according to option op (which is otherwise
ignored)

 ' ': (empty space) ignored

(A "[n]" means an optional integral numeral.) Except for padding, spaces, and
configurations (options "xX <=>!"), each option corresponds to an argument (in
bytes.pack) or a result (in bytes.unpack).

For options "!n", "sn", "in", and "In", n can be any integer between 1 and 16. All
integral options check overflows; bytes.pack checks whether the given value fits in
the given size; bytes.unpack checks whether the read value fits in a Lua integer.

Any format string starts as if prefixed by "!1=", that is, with maximum alignment of 1
(no alignment) and native endianness.

Alignment works as follows: For each option, the format gets extra padding until the
data starts at an offset that is a multiple of the minimum between the option size
and the maximum alignment; this minimum must be a power of 2. Options "c" and
"z" are not aligned; option "s" follows the alignment of its starting integer.

All padding is filled with zeros by bytes.pack (and ignored by bytes.unpack).

See also: bytes.packsize, bytes.unpack, math.ispow2.

bytes.packsize (fmt)

Returns the size of a string resulting from bytes.pack with the given format. The
format string cannot have the variable-length options 's' or 'z'.

bytes.reverse (x)

Reverses all the bits in the unsigned 32-bit integer x, flipping all bits from 0 to 1 and
vice versa. See also: bytes.swap.

bytes.setnumhigh (x, i)

The function sets the higher bytes of the number x to the unsigned 32-bit integer i,
and returns the new number. It does not support complex numbers.

See also: bytes.setnumlow, bytes.numhigh.

bytes.setnumlow (x, i)

The function sets the lower bytes of the number x to the unsigned 32-bit integer i,
and returns the new number. It does not support complex numbers.

agena >> 549

See also: bytes.setnumhigh, bytes.numlow.

bytes.setnumwords (hx, lx)

Returns the number (C double) x represented by the unsigned 32-bit integers hx
and lx, i.e. x = bytes.setnumwords(math.numhigh(x), math.numlow(x)).

See also: bytes.numwords.

bytes.swap (x)

Swaps all the bytes of the unsigned 4-byte integer x. The return is the new integer.

See also: bytes.reverse, bytes.swaplower, bytes.swapupper.

bytes.swaplower (x, n)

Swaps the lower n bytes of the unsigned 4-byte integer x; bytes above those will be
discarded. The return is the new integer. If n = 4, all bytes will be exchanged. If n is
zero or greater than 4, 0 will be returned.

See also: bytes.reverse, bytes.swap, bytes.swapupper.

bytes.swapupper (x, n)

Swaps the upper n bytes of the unsigned 4-byte integer x; bytes below those will be
discarded. The return is the new integer. If n = 4, all bytes will be exchanged. If n is
zero or greater than 4, 0 will be returned.

See also: bytes.reverse, bytes.swap, bytes.swaplower.

bytes.tobig (x [, order])

On Little Endian systems, converts the number x into its Big Endian representation
and returns it. On Big Endian platforms, just returns x unaltered. If order is 4, then the
function processes x as an unsigned 4-byte integer. If order is -4, the function treats
x as a signed 4-byte integer.

See also: bytes.tolittle, os.endian.

bytes.tobinary (x)

Converts a non-negative integer into its binary representation, a sequence of zeros
and ones.

See also: math.convertbase.

550 11 Numbers

bytes.tobytes (x [, nbytes [, false]])

If given no option, returns a sequence of eight bytes representing the number x in
Little Endian order, i.e. the least-significant byte is the first entry in the resulting
sequence. If nbytes is the number +4 or -4, x is a assumed to be an unsigned
4-byte integer or signed 4-byte integer, respectively, and a sequence of four bytes
representing x in Little Endian representation will be returned. If nybtes is +2 or -2, x
will be treated as an unsigned or signed 2-byte integer, with a sequence of two
bytes to be returned.

On Big Endian systems, conversion to Little Endian representation can be switched
off by passing a third argument, the Boolean value false.

See also: getbit, getbits, getnbits, bytes.tonumber.

bytes.tolittle (x [, order])

On Big Endian systems, converts the number x into its Little Endian representation
and returns it. On Little Endian platforms, just returns x unaltered. If order is 4, then
the function processes x as an unsigned 4-byte integer. If order is -4, the function
treats x as a signed 4-byte integer.

See also: bytes.tobig, os.endian.

bytes.tonumber (s)

Takes a sequence s of two, four or eight numbers representing bytes and converts it
into an Agena number. Regardless of your platform, the order of bytes in s is
assumed to be Little Endian.

If s contains eight bytes, it is assumed to represent a C unsigned double. If it
contains four bytes, an unsigned four-byte integer is assumed; and with two bytes,
an unsigned two-byte integer is assumed.

See also: bytes.tobytes.

bytes.trailzeros (x)

Counts the number of trailing zeros (ctz) in the unsigned 32-bit integer x, and also
returns the modified value of x after this operation as a second result, where all bits
starting with the least significant bit in x are set to 1.

See also: bytes.leadzeros, bytes.leastsigbit, bytes.mostsigbit, bytes.onebits.

agena >> 551

bytes.unpack (fmt, s [, pos])

Returns the values packed in string s (see bytes.pack) according to the format
string fmt. An optional pos marks where to start reading in s (default is 1). After the
read values, this function also returns the index of the first unread byte in s.

11.2.2 cast Functions

The bytes package provides the 'cast' userdata data structure representing an
Agena number as both a C double (i.a. Agena number) and its two higher and
lower 32-bit unsigned integer representations, along with functions to query and
assign its individual components.

Example:

> a := bytes.cast(-Pi):
cast(-3.1415926535898 : 3221823995, 1413754136)

> hx := bytes.gethigh(a):
3221823995

> hx >>> 31: # sign bit (1 = minus, 0 = plus)
1

> bytes.sethigh(a, hx && 0x7fffffff): # absolute value

3.1415926535898

bytes.cast ([x])

bytes.cast ([hx, lx])

Creates a userdata structure of type 'cast' that stores the Agena number 0 or x and
its integer representation as two unsigned 32-bit integers. Technically, the userdata
represents the C union (see source file src/sunpro.h):

typedef union {
 double value;
 struct {
 uint32_t lsw;
 uint32_t msw;
 } parts;
} ieee_double_shape_type;

typedef union {
 double value;
 struct {
 uint32_t msw;
 uint32_t lsw;
 } parts;
} ieee_double_shape_type;

Little-Endian platformsBig-Endian platforms

If no argument is given, then the userdata represents zero (0), alternatively you can
set it to number x (first form).

You may also initialise the userdata by passing both its unsigned 32-bit integer word
hx and unsigned 32-bit integer lower word lx (second form).

See also: bytes.getdouble, bytes.gethigh, bytes.getlow, bytes.getwords,
bytes.setdouble, bytes.setwords.

552 11 Numbers

bytes.getdouble (a)

Returns the floating point element of 'cast' userdata a, i.e. a number.

bytes.gethigh (a)

Returns the higher unsigned 32-bit integer representation of a number from 'cast'
userdata a.

See also: bytes.getlow, bytes.getwords.

bytes.getlow (a)

Returns the lower unsigned 32-bit integer representation of a number from 'cast'
userdata a.

See also: bytes.gethigh, bytes.getwords.

bytes.getunbiased (a)

Returns the unbiased exponent of the double x represented by 'cast' userdata a.
Equals math.exponent(x) - 1, except for x = 0 where the result is -1023. If |x| < 1,
the result is always negative.

See also: bytes.gethigh, bytes.getlow, bytes.getwords, math.uexponent.

bytes.getwords (a)

Returns both the higher and lower unsigned 32-bit integer representations of a
number from 'cast' userdata a.

See also: bytes.getdouble, bytes.gethigh, bytes.getlow.

bytes.setdouble (a, x)

Sets the floating point element of 'cast' userdata a and returns the higher and lower
unsigned 32-bit integer representations, in this order.

See also: bytes.setwords.

bytes.sethigh (a, hx)

Sets the higher unsigned 32-bit integer element hx of 'cast' userdata a. The return is
the corresponding floating point representation, i.e. a number.

See also: bytes.setdouble, bytes.setlow.

agena >> 553

bytes.setlow (a, lx)

Sets the lower unsigned 32-bit integer element lx of 'cast' userdata a. The return is
the corresponding floating point representation, i.e. a number.

See also: bytes.setdouble, bytes.sethigh.

bytes.setwords (a, hx, lx)

Sets the higher and lower unsigned 32-bit integer elements hx and lx of 'cast'
userdata a. The return is the corresponding floating point representation, i.e. a
number.

See also: bytes.setdouble, bytes.sethigh, bytes.setlow.

554 11 Numbers

11.2.3 IEEE754 Functions

The bytes package provides the 'ieee' userdata data structure representing an
Agena number as both a C double (i.a. Agena number) and its components sign
bit, biased exponent and high- and low-word mantissa. See bytes.ieee for details.

Example:

> exp10 := proc(x) is
> x *:= log2(10);
> local i := round(x);
> local f := bytes.ieee(0);
> bytes.setieee(f, expo = i + 1023);
> x -:= i;
> return bytes.getieee(f, 'double') *
> (1.0 + x*(0.69314718055994530941723212145818 +
> x*(0.24022650695910071233355126316333 +
> x*(0.055504108664821579953142263768622 +
> x*(0.0096181291076284771619790715736589 +
> x*(0.0013333558146428443423412221987996 +
> x*(0.00015403530393381609954437097332742 +
> x*(0.00001525273380405984028002543901201 +
> x*(0.0000013215486790144309488403758228288 +
> x*0.00000010178086009239699727490007597745)))))))))
>end;

bytes.ieee ([x])

bytes.ieee ([signbit, exponent, high_mantissa, low_mantissa])

Creates a userdata structure of type 'ieee' that stores the Agena number 0 or x and
allows read and write access to its components sign bit signbit, its biased
exponent, the high-word part of the mantissa high_mantissa and its low-word part
high_mantissa. Technically, the userdata represents the C union (see source file
src/sunpro.h).

typedef union {
 double v;
 struct {
 uint64_t mantissa_low : 32;
 uint64_t mantissa_high : 20;
 uint64_t exponent : 11;
 uint64_t sign : 1;
 } c;
} double_ieee754;

typedef union {
 double v;
 struct {
 uint64_t sign : 1;
 uint64_t exponent : 11;
 uint64_t mantissa_high : 20;
 uint64_t mantissa_low : 32;
 } c;
} double_ieee754;

Little-Endian platformsBig-Endian platforms

If no argument is given, then the userdata represents zero (0), alternatively you can
set it to number x (first form).

You may also initialise the userdata by passing both its sign bit, exponent, and the
high and low parts of the mantissa (second form).

agena >> 555

bytes.setieee (a, options)

Sets components in 'ieee' structure a. Accepted options are one or more pairs:

� 'double': any Agena number,
� 'signbit': the sign bit, 1 for minus, 0 for plus,
� 'expo': the biased exponent, an unsigned 4-byte integer,
� 'high': high-word part of the mantissa,
� 'low': low-word part of the mantissa.

Example:

> bytes.setieee(a, double=Pi, signbit=1); # sets -Pi to 'ieee' object a

bytes.getieee (a [, options])

Returns the components of 'ieee' structure a. If only a is given, then its five
components number, sign bit, exponent, mantissa high-word and mantissa
low-word are returned, in this order.

If one or more of the following strings are passed as options, then the requested
components will be returned in the order given by the user:

� 'double': any Agena number,
� 'signbit': the sign bit, 1 for minus, 0 for plus,
� 'expo': the biased exponent, an unsigned 4-byte integer,
� 'high': high-word part of the mantissa,
� 'low': low-word part of the mantissa.

Example:

> bytes.getieee(a, 'double', 'signbit'):
-3.1415926535898 1

Following are specialised functions for 'ieee' data:

bytes.setieeesignbit (a, bit [, option])

Sets the sign bit of ieee structure a to bit, which is either 1 for minus or 0 for plus. If
any option is given, the function returns the updated values for double, sign bit,
exponent, high and low-word mantissa, in this order.

bytes.setieeeexpo (a, e [, option])

Sets the biased exponent of ieee structure a to non-negative integer e. If any option
is given, the function returns the updated values for double, sign bit, exponent, high
and low-word mantissa, in this order.

556 11 Numbers

bytes.setieeehigh (a, hi [, option])

Sets the high-word of the mantissa of ieee structure a to non-negative integer hi. If
any option is given, the function returns the updated values for double, sign bit,
exponent, high and low-word mantissa, in this order.

bytes.setieeelow (a, lo [, option])

Sets the high-word of the mantissa of ieee structure a to non-negative integer lo. If
any option is given, the function returns the updated values for double, sign bit,
exponent, high and low-word mantissa, in this order.

bytes.setieeedouble (a, v [, option])

Sets the floating-point component in ieee structure a to Agena number v. If any
option is given, the function returns the updated values of the sign bit, exponent,
high and low-word mantissa in a, in this order.

bytes.getieeedouble (a)

Returns the floating-point component in ieee structure a, an Agena number.

agena >> 557

11.2.4 32-bit Integer Operations

The following functions process 32-bit signed and unsigned integers.

Please note, that by default, Agena including the functions listed below, work in
unsigned mode. You can switch to signed operations by issuing

> environ.kernel(signedbits = true);

on the command line or in a (library) file.

bytes.add32 (a, b [, ···])

Adds two or more numbers a, b, ... using 4-byte unsigned integer arithmetic. The
return is an integer.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbits = false).

See also: &+ operator.

bytes.sub32 (a, b [, ···])

Subtracts two or more numbers a, b, ... using 4-byte unsigned integer arithmetic. The
return is an integer.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbits = false).

See also: &- operator.

bytes.mul32 (a, b [, ···])

Multiplies two or more numbers a, b, ... using 4-byte unsigned integer arithmetic. The
return is an integer.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbits = false).

See also: &* operator.

bytes.muladd32 (a, b [, ···])

Multiplies two numbers a, b, and adds further numbers c, ... using 4-byte unsigned
integer arithmetic. The return is the integer a*b + c + ...

558 11 Numbers

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbits = false).

See also: bytes.add32, bytes.mul32.

bytes.div32 (a, b [, ···])

Divides two or more numbers a, b, ... using 4-byte unsigned integer arithmetic. The
return is an integer.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbits = false).

See also: &/ operator.

bytes.mod32 (a, b)

Takes the modulus a % b (with % the C modulus operator, not Agena's %), using
4-byte unsigned integer arithmetic. The return is an integer.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbits = false).

See also: math.modulus.

bytes.divmod32 (a, b)

Returns the quotient and remainder of the 4-byte division a/b.

See also: bytes.div32, bytes.mod32.

bytes.and32 (···)

Conducts a binary AND operation on all the arguments (none, one or multiple
signed or unsigned 32-bit integers) and returns an integer.

See also: && operators, bytes.interweave.

bytes.arshift32 (x, n)

Returns the 32-bit signed or unsigned integer x shifted n bits to the right. The number
n may be any representable integer. Negative displacements shift to the left.

agena >> 559

This shift operation is what is called arithmetic shift. Vacant bits on the left are filled
with copies of the higher bit of x, thus preserving the sign of x; vacant bits on the
right are filled with zeros. In particular, displacements with absolute values higher
than 31 result in zero or 0xFFFFFFFF (all original bits are shifted out).

See also: <<< and >>> operators, bytes.shift32.

bytes.extract32 (n, field [, width])

Returns the unsigned number formed by the bits field to field + width - 1 from n.
Bits are numbered from 0 (least significant) to 31 (most significant). All accessed bits
must be in the range [0, 31].

The default for width is 1.

Signed 32-bit integers n are not supported.

See also: bytes.replace32.

bytes.interweave (hx, lx [, option [, mask [, sh [, n]]]])

Takes two unsigned 4-byte words hx and lx and applies one of the following binary
operations on them: 'xor' (the default), 'and', 'or', see third argument option.

By passing a non-negative mask as the optional fourth argument, the mask is
applied to the intermediate result, the default is 0xFFFFFFFF.

If a fifth positive sh integer is given, the intermediate result is right-shifted sh bits; if sh
is a negative integer, it is left-shifted sh bits. If sh is 0 (the default), there is no shift.

If a sixth argument n is given, and if n is positive, the intermediate result is taken
modulus n. If n is negative, the Fibonacci modulus 2|n| is computed, see
hashes.fibmod2.

Thus:

� option = 'or': (((hx || lx) && mask) >>> sh) % n, if sh > 0,
� option = 'and': (((hx && lx) && mask) >>> sh) % n, if sh > 0,
� option = 'xor': (((hx ^^ lx) && mask) >>> sh) % n, if sh > 0,

and

� option = 'or': (((hx || lx) && mask) <<< |sh|) % n, if sh < 0,
� option = 'and': (((hx && lx) && mask) <<< |sh|) % n, if sh < 0,
� option = 'xor': (((hx ^^ lx) && mask) <<< |sh|) % n, if sh < 0.

560 11 Numbers

bytes.isint32 (n)

Checks whether the given number n is in the range of a signed or an unsigned
4-byte integer and returns true or false.

To check in which mode Agena is, check the environ.kernel/signedbits setting. It
should usually be unsigned.

If you are in unsigned mode, the argument should be in the range 0 ..
environ.kernel().maxulong = 0 .. 4'294'967'295.

If you are in signed mode, n should be in the range environ.kernel().minlong ..
environ.kernel().maxlong = -2'147'483'647 .. 2'147'483'647.

Example:

> environ.kernel().signedbits: # we are in unsigned mode (C uint32_t's).
false

> bytes.isint32(4'294'967'295):
true

> bytes.isint32(4'294'967'295 + 1):

false

bytes.mask32 (n)

Returns an integer with the first n bits set to one, e.g. bytes.mask32(3) 7.d

bytes.nand32 (···)

Conducts a binary complementary OR operation on all the arguments (none, one
or multiple signed 32-bit integers) and returns an integer. There is no `unsigned`
mode available, as the results would be of no use.

See also: nand.

bytes.nextbit (mask)

Gets and clears the next bit from the unsigned 4-byte mask, starting with the most
significant bit. The function returns the modified value of mask and the respective bit
position 0 .. 31.

agena >> 561

bytes.nor32 (···)

Conducts a binary complementary OR operation on all the arguments (none, one
or multiple signed 32-bit integers) and returns an integer. There is no `unsigned`
mode available, as the results would be of no use.

See also: nor.

bytes.not32 (x)

Conducts a binary NOT operation on the signed or unsigned 32-bit integer x and
returns an integer.

See also: ~~ operator.

bytes.numto32 (x)

Converts a number x to its signed or unsigned 4-byte integer representation. Note
that very large values (positive or negative) might overflow, e.g.
bytes.numto32(2^32+1) 1. The result may differ across platforms in overflowe

situations.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbits = false).

See also: math.uexponent.

bytes.or32 (···)

Conducts a binary OR operation on all the arguments (none, one or multiple signed
or unsigned 32-bit integers) and returns an integer.

See also: || operator, bytes.interweave.

bytes.parity32 (x)

Determines the parity of the unsigned 4-byte integer x, i.e. the number of 1-bits in x
modulo 2.

Returns 0 if x is of even parity, and 1 in case of odd parity.

See also: hashes.parity.

562 11 Numbers

bytes.replace32 (n, v, field [, width])

Returns a copy of n, an unsigned 32-bit integer, with the bits field to field + width
- 1 replaced by the value v.

Signed 32-bit integers n are not supported.

See bytes.extract32 for details about field and width.

bytes.rotate32 (x, n)

Rotates the bits in the 32-bit integer x n displacements to the right if n >= 0, or n
places to the left if n < 0. The return is a 32-bit integer.

Internally the function uses unsigned 32-bit integers by default. You can change this
to signed integers by calling environ.kernel with the 'signedbits' option.

See also: <<<< and >>>> operators.

bytes.shift32 (x, n)

Shifts the bits in the 32-bit integer x n displacements to the left if n < 0, and to the
right if n > 0.

Internally the function uses unsigned 32-bit integers by default. You can change this
to signed integers by calling environ.kernel with the 'signedbits' option.

See also: <<< and >>> operators, bytes.arshift32, bytes.interweave.

bytes.xnor32 (···)

Conducts a binary complementary exclusive-OR operation on all the arguments
(none, one or multiple signed 32-bit integers) and returns an integer. There is no
`unsigned` mode available, as the results would be of no use.

See also: xnor.

bytes.xor32 (···)

Conducts a binary exclusive-OR operation on all the arguments (none, one or
multiple signed or unsigned 32-bit integers) and returns an integer.

See also: ^^ operator, bytes.interweave.

agena >> 563

11.3 mapm - Arbitrary Precision Library

11.3.1 Introduction

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the import statement, e.g.
import mapm.

In OS/2 and DOS, the package is built into the binary executable and does not
need to be activated with import.

The package provides functions to conduct arbitrary precision mathematics with
real and complex numbers. It uses Mike's Arbitrary Precision Math Library, written by
Michael C. Ring.

Standard operators like +, -, *, /, \, ^, %, <, =, >, and unary minus are supported.

All function names in this library begin with the letter x.

The package uses its own kind of real and complex numbers which are different
from Agena numbers: use mapm.xnumber and mapm.xtonumber or
mapm.cnumber and mapm.xtocomplex, respectively, to convert between them.
Also, mapm numbers have a `use-defined` type: `xnumber` for real numbers and
`cnumber` for complex ones.

By default, the precision is set to 17 digits, but you can change this any time with
the mapm.xdigits function, see example below.

It is always advised to pass numbers as strings if possible. This is because Agena
uses C doubles which are not 100 % precise.

11.3.2 Real Domain

Let us start with examples from the real domain:

> import mapm;

> mapm.xdigits(100); # precision set to 100 digits

> a := mapm.xnumber('0.5');

> type(a), typeof(a):
userdata, xnumber

> a*mapm.Pi:

1.57079632679489662

> b := mapm.xnumber(0.5):

0.50000000000000000

564 11 Numbers

> b*mapm.Pi:
1.57079632679489662

You cannot directly compare MAPM numbers with Agena numbers:

> a - b = 0:
false

> a - b = mapm.xnumber(0):
true

See also: The long package implementing 80-bit floating-point arithmetic,
described in Chapter 11.15.

The mathematical functions are:

un-normalised
cardinal tangent

mapm.xtancdivisionmapm.xdiv

tangentmapm.xtanhyperbolic cosecantmapm.xcsch
subtractionmapm.xsubcosecantmapm.xcsc

square rootmapm.xsqrt
hyperbolic
cotangent

mapm.xcoth

hyperbolic sine and
cosine

mapm.
xsinhcosh

cotangentmapm.xcot

hyperbolic sinemapm.xsinhhyperbolic cosinemapm.xcosh
sine and cosinemapm.xsincoscosinemapm.xcos

un-normalised
cardinal sine

mapm.xsinc
un-normalised
cardinal cosine

mapm.xcosc

sinemapm.xsincubic rootmapm.xcbrt

signmapm.xsign
hyperbolic inverse
tangent

mapm.
xarctanh

hyperbolic secantmapm.xsechsecantmapm.xsec

powermapm.xpow
4 quadrant inverse
tangent

mapm.
xarctan2(x, y)

multiplicationmapm.xmulinverse tangentmapm.xarctan

common logarithmmapm.xlog10
inverse hyperbolic
sine

mapm.xarcsinh

base-2 logarithmmapm.xlog2inverse sinemapm.xarcsin

logarithm of given
base

mapm.xlogarcsecantmapm.xarcsec

natural logarithmmapm.xlnarccosecantmapm.xarccsc
integer divisionmapm.xidivarcus cosinemapm.xarccos
factorialmapm.xfactorialadditionmapm.xadd

base-10
exponentation

mapm.xexp10
inverse hyperbolic
cosine

mapm.
xarccosh

base-2
exponentation

mapm.xexp2arc cosinemapm.xarccos

exponential functionmapm.xexpabsolute valuemapm.xabs
MeaningFunctionMeaningFunction

agena >> 565

seed setting, x a
string with digits

mapm.
xrandomseed(x)

cubemapm.xcube

random mapm
number (no arg.)

mapm.
xrandom()

sqrt(a2-b2) with
optional precision

mapm.xhypot4
(x, y [, prec])

squaremapm.xsquare
hypotenuse with
optional precision

mapm.xhypot
(x, y [, prec])

computes c*x^n
mapm.xterm
(c, x, n)

complementary
error function

mapm.xerfc

fused multiply-add
mapm.xfma
(x, y, z)

error functionmapm.xerf

hyperbolic tangentmapm.xtanhreciprocalmapm.xrecip

Most of the mapm functions accept a second argument - a non-negative integer -
giving the individual precision.

The package provides the following metamethods:

hyperbolic tangent'__tanh'tanh
hyperbolic cosine'__cosh'cosh
hyperbolic sine'__sinh'sinh
tangent'__tan'tan
cosine'__cos'cos
sine'__sin'sin
exponential function'__exp'exp
natural logarithm'__ln'ln
square root ()x'__sqrt'sqrt
cube (x^3)'__cube'cube
square (x^2)'__square'square
reciprocal'__recip'recip
sign'__sign'sign
absolute value'__abs'abs
not equalsn/a<>
less-or-equal'__le'<=
equals'__eq'=
less-than'__lt'<
unary minus'__unm'-
power with integer exponent'__ipow'**
power with any exponent'__pow'^
modulus'__mod'%
integer division'__intdiv'\
division'__div'/
multiplication'__mul'*
subtraction'__sub'-
addition'__add'+
DescriptionNameOperator

566 11 Numbers

conversion to a string, e.g. for the pretty printer'__tostring'n/a
garbage collection'__gc'n/a
odd number check'__odd'odd
even number check'__even'even
float truncation'__int'int
un-normalised cardinal sine'__sinc'sinc
hyperbolic tangent'__tanh'tanh
hyperbolic cosine'__cosh'cosh
hyperbolic sine'__sinh'sinh
arcus tangent'__arctan'arctan
arcus cosine'__arccos'arccos
arcus sine'__arcsin'arcsin
arcsecant'__arcsec'arcsec
DescriptionNameOperator

Other functions are:

n-th Chebyshev
polynomial of the
first kind at point x

mapm.xchebyt
(n, x)

converts an arbitrary
precision number to
a string

mapm.xtostringsignificant digits
mapm.
xdigitsin

converts an arbitrary
precision number to
an Agena number.
A second optional
argument n gives
the precision for this
specific number,
with n > 0.

mapm.
xtonumber

sets the number of
digits used in all sub-
sequent calcula-
tions. With no argu-
ment, returns the
current setting.
(default is 17)

mapm.xdigits

converts an Agena
number or a string
representing a
number to an
arbitrary precision
number

mapm.xnumber
comparison, returns
-1 if x < y, 0 if x = y,
and 1 if x > y

mapm.
xcompare(x, y)

negates a numbermapm.xneg
rounds downwards
to the nearest
integer

mapm.xround

modulusmapm.xmodtest for odd numbermapm.xisodd

check for an
integral

mapm.xisint
test for even
number

mapm.xiseven

reciprocalmapm.xinvfloor functionmapm.xfloor

exponent
mapm.
xexponent

ceil functionmapm.xceil

MeaningFunctionMeaningFunction

agena >> 567

Available constants with precision of 1,000 digits are:

'0.001mapm.thousandth
'0.01mapm.hundredth
'0.2mapm.fifth
'0.1mapm.tenth
'0.25mapm.quarter
'0.5mapm.half
1,000mapm.thousand
100mapm.hundred
50mapm.fifty
12mapm.twelve
11mapm.eleven
10mapm.ten
9mapm.nine
8mapm.eight
7mapm.seven
6mapm.six
5mapm.five
4mapm.four
3mapm.three
2mapm.two
1mapm.one

zero0
mapm.naught
mapm.nought

inverse1/ln(1 +)/25mapm.InvlnPhi
logarithm of Golden Ratioln(1 +)/25mapm.lnPhi

(1/((1 +)/2))25mapm.InvPhiSq
inverse Golden Ratio1/((1 +)/2)5mapm.InvPhi
Golden Ratio(1 +)/25mapm.Phi

1/ 2mapm.Invsqrt2
1/ln(2)mapm.Invln2
ln(2)mapm.ln2

 3mapm.sqrt3
2mapm.sqrt2

E = exp(1)mapm.E
4// 2✜mapm.InvPiSqO4
4/✜mapm.InvPiO4
1/(2)✜mapm.InvPi2

radians per degree/180✜mapm.PiO180
/4✜mapm.PiO4
/2✜mapm.PiO2

2✜mapm.Pi2
 ✜mapm.Pi

CommentValueConstant

568 11 Numbers

These constants have been defined in source file lib/mapm.agn.

11.3.3 Complex Domain

Let us start with some examples, as well:

> import mapm

The precision can be set with mapm.xdigits:

> mapm.xdigits(17); # precision set to 17 digits (the default)

For the complex domain, use mapm.cnumber to define complex numbers of
arbitrary precision. You can pass both two numbers, strings or real mapm numbers
to this function:

> x := mapm.cnumber(1, 2);

> y := mapm.cnumber(3, 4);

Addition:

> x + y:
mapm.cnumber(4.00000000000000000, 6.00000000000000000)

Convert the result to a complex Agena number:

> mapm.ctocomplex(ans):
4+6*I

Determine the absolute value, the return is a real mapm number:

> abs(x):
2.23606797749978970

Get the natural logarithm:

> ln(x):
mapm.complex(0.80471895621705019, 1.10714871779409050)

Get real and complex part of the previous calculation, to be returned as real
mapm numbers:

> real(ans), imag(ans):
0.80471895621705019 1.10714871779409050

Most of the operators support complex mapm numbers. If you use binary operators
or complex mapm functions with two arguments, always pass complex mapm
numbers - with the exception of the ** operator, you cannot mix operands or
arguments of different types.

agena >> 569

The metamethods (operators) are:

conversion to a string, e.g. for the pretty printer'__tostring'n/a
garbage collection'__gc'n/a
un-normalised cardinal sine'__sinc'sinc
hyperbolic tangent'__tanh'tanh
hyperbolic cosine'__cosh'cosh
hyperbolic sine'__sinh'sinh
arcus tangent'__arctan'arctan
arcus cosine'__arccos'arccos
arcus sine'__arcsin'arcsin
arcsecant'__arcsec'arcsec
hyperbolic tangent'__tanh'tanh
hyperbolic cosine'__cosh'cosh
hyperbolic sine'__sinh'sinh
tangent'__tan'tan
cosine'__cos'cos
sine'__sin'sin
exponential function'__exp'exp
natural logarithm'__ln'ln
square root ()x'__sqrt'sqrt
cube (x^3)'__cube'cube
square (x^2)'__square'square
reciprocal'__recip'recip
sign'__sign'sign
absolute value'__abs'abs
not equalsn/a<>
equals'__eq'=
unary minus'__unm'-
power with integer exponent (of type number)'__ipow'**
power with any exponent'__pow'^
division'__div'/
multiplication'__mul'*
subtraction'__sub'-
addition'__add'+
DescriptionNameOperator

There are also some few functions for mapm complex numbers. As with the
metamethods, all have been implemented in C for the sake of speed, with the
exception of mapm.carctan2 which Agena code you can find in the
lib/mapm.agn library file.

570 11 Numbers

un-normalised
cardinal tangent

mapm.ctanc

un-normalised
cardinal cosine

mapm.ccosc

un-normalised
cardinal sine

mapm.csinc

hyperbolic
cosecant

mapm.ccschcosecantmapm.ccsc

hyperbolic
cotangent

mapm.ccothcotangentmapm.ccot

hyperbolic secantmapm.csechsecantmapm.csec

fused multiply-add
operation

mapm.cfmasignificant digits
mapm.
xdigitsin

argument
(phase angle)

mapm.
cargument

sets the number of
digits used in all sub-
sequent calcula-
tions. With no argu-
ment, returns the
current setting.
(default is 17)

mapm.xdigits

4 quadrant
inverse tangent

mapm.
carctan2

converts an arbitrary
precision complex
number to two
strings representing
the real and
imaginary parts

mapm.ctostring

inverse hyperbolic
tangent

mapm.
carctanh

converts an arbitrary
precision complex
number to two
Agena numbers, the
real and imaginary
parts

mapm.
ctonumber

inverse hyperbolic
sine

mapm.
carcsinh

converts an arbitrary
precision complex
number to an
Agena complex
number

mapm.
ctocomplex

inverse hyperbolic
cosine

mapm.
carccosh

converts an Agena
number or a string
representing two
numbers to an
arbitrary precision
complex number

mapm.
cnumber

MeaningFunctionMeaningFunction

agena >> 571

11.4 mp - GNU Multiple Precision Arithmetic Library

As a plus package, the mp package is not part of the standard distribution and
must be activated with the import statement, i.e. import mp.

The mp library is a binding to the GMP library providing multiple functions to
conduct signed and unsigned integer arithmetic of arbitrary precision.

The package provides various metamethods for easy entry of calculations, too.

Signed and unsigned integers - `mpints` for short in this context - are represented
by mp userdata objects which can be passed to the functions and operators
described below.

OS/2, Solaris, Linux and UNIX users may have to install the original GMP 6.1 library
separately in order for this binding to work. The package is not available for Mac OS
X. In order for this binding to work on Intel CPUs, you may need at least a
Sandybridge processor.

> import mp

> a, b := mp.uint(1), mp.uint(2) # unsigned integers

> a + b:
mp(3)

> a, b := mp.sint(2), mp.sint(3) # signed integers

> a * b:
mp(6)

11.4.1 Creation of Signed and Unsigned Integers

mp.uint (n)

mp.uint (numstr [, base])

Creates an unsigned integer object (mpz_t GMP userdata object) from an unsigned
integer n, or a string numstr representing an unsigned integer.

If you pass a string you may indicate whether it is in decimal format by passing the
optional second argument 10, and if its is in hexadecimal encoding, pass 16,
which is the default.

See also: mp.sint, mp.setstring.

572 11 Numbers

mp.sint (n)

mp.sint (numstr [, base])

Like mp.uint, but creates a signed integer mpz_t GMP userdata object.

11.4.2 Signed and Unsigned Integer Arithmetic

The following operators and functions can be applied both on signed and unsigned
mpints:

mp.add (a, b)

Adds two mpints a, b, and returns a new mpint. Used by __add metamethod, i.e.:
mp.add(a, b) = a + b.

mp.subtract (a, b)

Subtracts two mpints a, b and returns a new mpint. Used by __sub metamethod, i.e.:
mp.subtract(a, b) = a - b.

mp.multiply (a, b)

Multiplies two mpints a, b and returns a new mpint. Used by __mul metamethod, i.e.:
mp.multiply(a, b) = a * b.

mp.divide (a, b)

Divides two mpints a, b and returns a new mpint. Used by __div metamethod, i.e.:
mp.divide(a, b) = a / b.

mp.addmul (r, a, b)

Multiplies two mpints a, b, adds the result to r and returns the updated value of r:
i.e.: mp.addmul(r, a, b) <=> r +:= a * b.

mp.submul (r, a, b)

Multiplies two mpints a, b, subtracts the result from r and returns the updated value
of r: i.e.: mp.submul(r, a, b) <=> r -:= a * b.

mp.modulus (r, a, b)

Computes the modulus of two mpints a, b and returns a new mpint. Used by __mod
metamethod, i.e.: mp.subtract(a, b) = a % b.

agena >> 573

mp.neg (a)

Returns -a, with a an mpint, as a new mpint. Used by __unm metamethod, i.e.
mp.neg(a) <=> -a.

mp.mul2exp (a, b)

Computes a * 2^b, with a, b mpints, and returns the result in a new mpint. The
operation is equivalent to a left shift by b bits.

mp.tdiv (a, b)

Returns both quotient and remainder of a / b, with a, b units, both rounded towards
zero.

mp.tdivq (a, b)

Divides two mpints a, b and returns the resulting quotient as a new mpint, rounded
towards zero.

mp.tdivr (a, b)

Divides two mpints a, b and returns the resulting remainder as a new mpint, rounded
towards zero.

mp.powm (a, b, c)

With three units, computes (a ^ b) % c and returns the result as a new mpint.

mp.root (a, n)

Computes the truncated integer part of the n-th root of a, with a an mpint, n a
number, and returns the result as a new mpint.

mp.log2 (a)

Like ilog2, but for mpint a.

11.4.3 Number Theoretic Functions

mp.testprime (a [, reps])

Checks whether mpint a is a prime and returns:

� 0 if a is no prime,
� 1 if a is probably prime,
� 2 if a is definitely prime.

574 11 Numbers

The accuracy of the result can be controlled by the optional second parameter
reps which by default is 15, with reasonable values between 15 and 50.

mp.nextprime (a)

Returns the next prime to mpint a, as a new mpint.

mp.gcd (a, b)

Returns the greatest common divisor of mpints a and b, as a new mpint.

mp.gcdext (s, t, a, b)

Returns the greatest common divisor of mpint a and mpint b and returns the result.

In addition the function sets mpints s and t to coefficients satisfying a*s + b*t =
(the return).

mp.lcm (a, b)

Returns the least common multiple of mpints a and b, as a new mpint.

mp.invert (a, b)

Computes the inverse of mpint a modulo mpint b and returns a mpint.

mp.jacobi (a, b)

Computes the Jacobi symbol (a/b) of the mpints a, b, which is defined only if b is
odd. The return is a new mpint.

mp.legendre (a, p)

Computes the Legendre symbol (a/p) of the mpints a, b, which is defined only if p is
an odd positive prime. The return is a new mpint.

mp.kronecker (a, b)

Computes the Jacobi symbol (a/b) for mpints a, b, with the Kronecker extension
(a/2)=(2/a) with odd a, and (a/2)=0 with even a. The return is a new mpint.

mp.remove (a, b)

Removes all occurrences of the factor a from b returns the result as a new mpint.

mp.factorial (n)

Returns the factorial of number n (_not_ mpint) as a new mpint.

agena >> 575

mp.fib (n)

Returns the n-th Fibonacci number, with n a number (_not_ mpint), and returns a
new mpint.

mp.lucas (n)

Sets the n-th Lucas number, with n a number (_not_ mpint), and returns a new
mpint.

mp.primorial (n)

Returns the primorial of number n (_not_ mpint), i.e. the product of all positive prime
numbers <= n. The return is a new mpint.

mp.binomial (n, k)

Computes the binomial coefficient n (an mpint) over k (a number) and returns the
result as a new mpint.

11.4.4 Bitwise Operations

mp.andint (a, b)

Conducts a bitwise-and, `a and b`, with a, b mpints, and returns the result as a new
mpint.

mp.orint (a, b)

Conducts a bitwise-or, `a or b`, with a, b mpints, and returns the result as a new
mpint.

mp.xorint (a, b)

Conducts a bitwise-xor, `a xor b`, with a, b mpints, and returns the result as a new
mpint.

mp.com (a)

Computes the one’s complement of mpint a and returns the result as a new mpint.

mp.scan0 (a, n)

mp.scan1 (a, n)

Scan mpint a, starting from bit n (a number, not an mpint), towards more significant
bits, until the first 0 or 1 bit (respectively) is found. The functions return the index of the
found bit. Bit positions start from 0.

576 11 Numbers

mp.popcount (a)

Computes the population count of mpint a, i.e. the number of 1 bits in the binary
representation, and returns the result a number.

mp.mostsigbit (a)

Returns the position of the most significant bit (msb) as a number, counting from bit
position number 0. If all bits are cleared, i.e. zero, returns -1.

mp.leastsigbit (a)

Returns the position of the least significant bit (lsb) in a number, counting from bit
position number 0. If all bits are cleared, i.e. zero, returns -1.

mp.hamdist (a, b)

Computes the hamming distance between mpint a and mpint b, i.e. the number of
positions a and b have different bit values. The count will be returned as a number.

mp.setbit (r, n)

Sets bit n in mpint r. The function returns nothing. n is an integer position counting
from 0.

mp.getbit (r, n)

Returns bit n in mpint r. The function returns a number. n is an integer position
counting from 0.

mp.clrbit (r, n)

Clears bit n in mpint r. The function returns nothing. n is an integer position counting
from 0.

mp.combit (r, n)

Conducts a bitwise complement (`not` operation) on bit number n in mpint r. n is
an integer position counting from 0. The function returns nothing.

11.4.5 Miscellaneous

mp.tonumber (a)

Returns the numeric value in mpint a as a number.

agena >> 577

mp.tostring (a)

Returns the numeric value in mpint a as a string.

mp.swap (a, b)

Swaps the values in mpints a and b. The function returns nothing.

mp.cmp (a, b)

Compares a and b and returns a positive number if a > b, 0 if a = b, and a negative
number if a < b.

mp.cmpabs (a, b)

Compares the absolute values of a and b and returns a positive number if a > b, 0 if
a = b, and a negative number if a < b.

mp.iseven (a)

Checks whether mpint a represents an even integer and returns true or false.

mp.isodd (a)

Checks whether mpint a represents an odd integer and returns true or false.

mp.setstring (str)

Receives a string str and converts it to an mpint.

See also: mp.getstring, mp.uint, mp.sint.

mp.getstring (a)

Returns the string in mpint a that was previously stored to it by calling the
mp.setstring function.

See also: mp.setstring, mp.tostring.

mp.sizeinbase (a)

Returns the size of a measured in number of digits in the given base, an integer.
base can vary from 2 to 62 and should be even.

mp.attrib (a)

Returns various information on mpint a, in a dictionary.

578 11 Numbers

11.5 mpf - GNU Multiple Precision Floating-Point Reliable Library

As a plus package, the mpf package is not part of the standard distribution and
must be activated with the import statement, i.e. import mpf.

The mpf library is a binding to the MPFR library providing multiple functions to
conduct floating-point arithmetic of arbitrary precision.

The package also provides various metamethods for easy entry of calculations.

MPFR floats are represented by mpf userdata objects which can be passed to the
functions and operators described below. You can also pass Agena numbers to all
package functions, but, of course, not to the operators.

Solaris, Linux and UNIX users may have to install the original GMP 6.1 and MPFR 4.2
libraries separately in order for this binding to work. The package is not available in
Mac OS X. In order for this binding to work on Intel CPUs, you may need at least a
Sandybridge processor.

Examples:

> import mpf

> a, b := mpf.new(2), mpf.new(3) # define 2.0 & 3.0 as two MPFR floats

> a * b: # conduct multiplication
mpf(6.000000000000000000000000000000000000000)

> sin(mpf.Pi): # compute sine of Pi
mpf(1.883041077660785116745909548456034940273e-39)

> mpf.precision(32); # reduce precision from 128 to 32

> sin(mpf.Pi):
mpf(1.8830410775e-39)

> mpf.log2(mpf.new(8)): # compute base-2 logarithm of 8
mpf(3.0000000000)

> mpf.log2(8): # the same
mpf(3.0000000000)

Following are all available operators, mathematical and general functions.

hyperbolic tangenttanhabsolute valueabs
hyperbolic cosinecoshunary minus(-)
hyperbolic sinesinhexponentiation^
tangenttandivision/
cosinecosmultiplication*
sinesinsubtraction-

exponential function to the
base E = 2.71828..

expaddition+

FunctionalityOperatorFunctionalityOperator

agena >> 579

reciprocal 1/xrecip
square x2squarecube x3cube
inverse tangentarctannatural logarithmln
inverse cosinearccossquare rootsqrt
inverse sinearcsinsignsign
FunctionalityOperatorFunctionalityOperator

greater-than or equal relation>=
greater-than relation>
less-than-or-equal relation<=
less-than relation<
equality check=
test for zeroiszero
test for a non-zeroisnonzero
FunctionalityOperator

See also mpf.cmpd to compare an MPFR value with a number.

exponential to base 21 MPFR valuempf.exp2
exponential to base 101 MPFR valuempf.exp10
complementary error function1 MPFR valuempf.erfc
error function1 MPFR valuempf.erf
exponential integral1 MPFR valuempf.eint

returns a-b if a > b, 0 if a <= b, or
undefined of a or b is undefined

2 MPFR values
a, b

mpf.dim

Digamma function1 MPFR valuempf.digamma
hyperbolic cosecant1 MPFR valuempf.csch
cosecant1 MPFR valuempf.csc
hyperbolic cotangent1 MPFR valuempf.coth
cotangent1 MPFR valuempf.cot
like math.copysign2 MPFR valuesmpf.copysign

rounds up to the next higher or equal
representable integer

1 MPFR valuempf.ceil

cubic root1 MPFR valuempf.cbrt
Beta function (not available in Debian)2 MPFR valuesmpf.beta
inverse tangent2 MPFR valuesmpf.arctan2
inverse hyperbolic tangent1 MPFR valuempf.arctanh
inverse hyperbolic sine1 MPFR valuempf.arcsinh
inverse hyperbolic secant1 MPFR valuempf.arcsech
inverse hyperbolic cosecant1 MPFR valuempf.arccsch
inverse hyperbolic cotangent1 MPFR valuempf.arccoth
inverse hyperbolic cosine1 MPFR valuempf.arccosh
Airy function1 MPFR valuempf.ai
arithmetic-geometric mean2 MPFR valuesmpf.agm
FunctionalityArgumentsFunction

580 11 Numbers

Riemann Zeta function1 MPFR valuempf.zeta

rounds to the next representable integer
toward zero

1 MPFR valuempf.trunc

checks the sign bit and returns true (value is
negative) or false

1 MPFR valuempf.signbit

hyperbolic secant1 MPFR valuempf.sech
secant1 MPFR valuempf.sec

rounds to nearest representable integer,
rounding halfway cases away from zero

1 MPFR valuempf.round

n-th root x1/n (not available in Debian)
1 MPFR value,
1 integer

mpf.root

relative difference |y - x|/x2 MPFR valuesmpf.relerror

returns a uniformly distributed random float
on the interval [0, 1]

nonempf.random

computes x2 - y22 MPFR valuesmpf.pytha4
computes x2+y22 MPFR valuesmpf.pytha

works like `math.nextafter`, but for MPFR
values; does not change its argument

1 MPFR valuempf.nexttoward

see: modf.2 MPFR valuesmpf.modf
logarithm to the base 21 MPFR valuempf.log2
logarithm to the base 101 MPFR valuempf.log10
logarithm of the Gamma function1 MPFR valuempf.lgamma
real part of the dilogarithm of its argument1 MPFR valuempf.li2

second kind Bessel function of order n
2 MPFR values
plus one integer
for the order

mpf.yn

second kind Bessel function of order 11 MPFR valuempf.y1
second kind Bessel function of order 01 MPFR valuempf.y0

first kind Bessel function of order n
2 MPFR values
plus one integer
for the order

mpf.jn

first kind Bessel function of order 11 MPFR valuempf.j1
first kind Bessel function of order 01 MPFR valuempf.j0
check for undefined1 MPFR valuempf.isundefined
check for infinity1 MPFR valuempf.isinfinite

check for a finite value, unlike undefined or
infinity

1 MPFR valuempf.isfinite

computes x2 − y22 MPFR valuesmpf.hypot4
hypotenuse2 MPFR valuesmpf.hypot
Gamma function1 MPFR valuempf.gamma
fused multiply-subtraction3 MPFR valuesmpf.fms
see: fmod2 MPFR valuesmpf.fmod
fused multiply-addition3 MPFR valuesmpf.fma

rounds to the next lower or equal
representable integer

1 MPFR valuempf.floor

FunctionalityArgumentsFunction

agena >> 581

undefinedn/ampf.undefined
infinityn/ampf.infinity
'0.0625n/ampf.sixteenth
1/12n/ampf.twelfth
'0.125n/ampf.eighth
1/6n/ampf.sixth
1/3n/ampf.third
'0.75n/ampf.threequarter
'0.001n/ampf.thousandth
'0.01n/ampf.hundredth
'0.2n/ampf.fifth
'0.1n/ampf.tenth
'0.25n/ampf.quarter
'0.5n/ampf.half
1n/ampf.thousand
100n/ampf.hundred
50n/ampf.fifty
12n/ampf.twelve
11n/ampf.eleven
10n/ampf.ten
9n/ampf.nine
8n/ampf.eight
7n/ampf.seven
6n/ampf.six
5n/ampf.five
4n/ampf.four
3n/ampf.three
2n/ampf.two
1n/ampf.one

0n/a
mpf.naught
mpf.nought

MPFR constant = 0.91596559417...✘n/ampf.Catalan
MPFR constant = 0.57721566490...✏n/ampf.Euler
MPFR constant Pin/ampf.Pi
MPFR constant ln(2)n/ampf.Ln2
returns the minimum of two values2 MPFR valuesmpf.min
returns the maximum of two values2 MPFR valuesmpf.max
returns MPFR undefinednonempf.Nan

returns an MPFR +infinity or -infinity,
depending on sign of its argument

1 signed integermpf.Inf

returns an MPFR +0 or -0, depending on
sign of its argument

1 signed integermpf.Zero

FunctionalityArgumentsFunction

See also: The long package implementing 80-bit floating-point arithmetic,
described in Chapter 11.15.

582 11 Numbers

General functions:

mpf.clone (x)

Clones an MPFR value and returns it. The rounding mode of the MPFR value
returned will be the current one, not necessarily the one with which the value to be
duplicated has been created. See also: mpf.new.

mpf.cmpd (x, y)

Compares the MPFR value x and the number y and returns -1 if x < y, 0 if x = y and
1 if x > y. See also relative operators <, <=, =, etc.

mpf.new (x)

Creates an MPFR floating-point object from a number x, or a string x representing a
number. For best accuracy, you should pass strings instead of numbers, as
numbers are rounded to the next machine-representable floating-point number
before with 53-bits converted to an MPFR value. See also: mpf.clone.

mpf.precision ([x])

Gets or sets the overall precision, in bits. If an integer x in the range 2 ..
2,147,483,647 is being passed, the function sets the precision for all values
subsequently allocated.

If no argument is given, the current setting will be returned.

The default precision at invocation of the package is 128.

mpf.rounding ([rmode])

Gets or sets the current rounding mode. If a string rmode is passed, the function sets
the rounding mode for all values subsequently allocated. Valid settings for rmode
are the strings:

� 'rndn', round to nearest, with ties to even;
� 'rndz', round toward zero;
� 'rndu', round toward +infinity;
� 'rndd', round toward -infinity.

If no argument is given, the current rounding mode will be returned.

The default rounding mode at invocation of the package is 'rndn', i.e. rounding to
nearest.

agena >> 583

mpf.swap (x, y)

Swaps the values in MPFR values x and y. The function returns nothing.

mpf.tonumber (x)

Converts an MPFR value x into an Agena number.

mpf.tostring (x)

Converts an MPFR value x into a string.

584 11 Numbers

11.6 divs - Library to Process Fractions

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.g. import divs.

The library provides basic arithmetic to calculate with fractions. To create a fraction,
use divs.divs which accepts mixed, improper and proper fractions. The package
implements metamethods so that the common addition, subtraction, division, and
unary minus operators can be used.

The + operator adds two fractions, or a number and a fraction in any order.

The - operator subtracts two fractions, or a number and a fraction in any order.

The * operator multiplies two fractions, or a number and a fraction in any order.

The / operator divides two fractions, or a number and a fraction in any order.

The ^ operator exponentiates two fractions, or a number and a fraction in any
order.

The ** operator raises a fraction to an integer power, in this order.

The abs operator returns the absolute value of a fraction and returns a fraction.

The sign operator returns the sign of a fraction and returns a number.

The sqrt operator returns the square root of a fraction and returns a fraction. If the
resulting fraction could not be evaluated with absolute precision, it returns a
number.

The ln operator returns the natural logarithm of a fraction and returns a fraction. If
the resulting fraction could not be evaluated with absolute precision, it returns a
number.

The exp operator returns the value of E to the power of the given fraction and
returns a fraction. If the resulting fraction could not be evaluated with absolute
precision, it returns a number.

The sin operator returns the sine of a fraction and returns a fraction in radians. If the
resulting fraction could not be evaluated with absolute precision, it returns a
number (in radians).

The cos operator returns the cosine of a fraction and returns a fraction in radians. If
the resulting fraction could not be evaluated with absolute precision, it returns a
number (in radians).

agena >> 585

The tan operator returns the tangent of a fraction and returns a fraction in radians. If
the resulting fraction could not be evaluated with absolute precision, it returns a
number (in radians). It returns undefined if poles have been encountered.

The arctan operator returns the arcus tangent of a fraction and returns a fraction in
radians. If the resulting fraction could not be evaluated with absolute precision, it
returns a number (in radians). It returns undefined if poles have been encountered.

The int operator returns the integer quotient of the numerator of a fraction divided
by its denominator.

The numerators and denominators should all be integers.

The return always is an improper fraction. There are also two functions to convert
fractions to decimals and vice versa.

Examples:

> import divs;

> divs.divs(1, 2, 3) + divs.divs(1, 3):
2

> divs.divs(1, 2) * divs.divs(1, 3):
divs(5, 6)

> divs.divs(1, 2) * divs.divs(1, 3):
divs(1, 6)

> 2 * divs.divs(1, 3):
divs(2, 3)

> divs.todec(divs.divs(1, 2)):
0.5

> divs.todiv(ans):
div(1, 2) 0

Relations: Two fractions can be compared with the <, <=, =, ==, ~=, >=, and
> operators.

The following operators are also supported: arcsin, arccos, arcsec, sinh, cosh,
tanh, recip, and ~<>.

586 11 Numbers

Functions:

divs.denom (a)

This function returns the denominator of the fraction a of the user-defined type
'divs' and returns it as a number.

The function is written in Agena and is included in the lib/divs.agn file.

See also: divs.numer.

divs.divs ([x,] y, z)

divs.divs ([x:]y:z)

This function defines a fraction and returns it as a value of the user-defined type
'div' if z is not 1, with proper metamethods added. It returns a number if z equals
1, and undefined if z is 0.

In the first form: if all three arguments are given, representing a mixed fraction x ,
y
z

the function converts it into an improper fraction and returns it. If only y and z are

given, the function returns a reduced improper or proper fraction .
x
y

The second form allows to pass x, y, and z as a nested pair x:y:z, representing a
mixed fraction, or the pair y:z representing an improper or proper fraction.

In both forms, x, y, and z should be integers.

The function is written in Agena and is included in the lib/divs.agn file.

divs.equals (a, b [, option])

This function checks two fractions a, b for equality. Alternatively, either a or b may be
simple Agena numbers. The result is either true or false. If any non-null option is
given, the function checks for approximate equality (see approx function). Note
that the equality operators =, ==, and ~= cannot check values of different types.

The function is written in Agena and is included in the lib/divs.agn file.

divs.numer (a)

This function returns the numerator of the fraction a of the user-defined type 'divs'
and returns it as a number.

The function is written in Agena and is included in the lib/divs.agn file.

See also: divs.denom.

agena >> 587

divs.todec (a)

This function converts a fraction a of the user-defined type 'divs' to a float and
returns it.

The function is written in Agena and is included in the lib/divs.agn file.

See also: divs.todiv.

divs.todiv (x)

This function converts a number x to an improper fraction of the user-defined type
'divs' and returns it. The second return is the accuracy (see math.fraction for
further information).

The function is written in Agena and is included in the lib/divs.agn file.

See also: divs.todec, math.fraction.

588 11 Numbers

11.7 dual - Dual Numbers

As a plus package, the dual package is not part of the standard distribution and
must be activated with the import statement, i.e. import dual.

This library provides basic support for dual numbers which are related to complex
numbers, but instead of an imaginary unit i with i2 = -1, we have a nilpotent unit✒
with = 0. Dual numbers have the user-defined type `dual`. ✒2

Dual numbers are used with automatic differentiation, and other applications.

The package provides basic arithmetic operators via and also some transcendent
functions, in cases, through metamethods.

To define a dual number, e.g. 1+2 , type:✒

> import dual

> a := dual.dual(1, 2)

> a:
1+2e

Add a to 3+4 :✒

> b := dual.dual(3, 4)

> a+b:
4+6e

Square root:

> sqrt(ans):
2+1.5e

The following lists all available operators and functions and the results, with two dual
numbers p = a + b and q = c +d :✒ ✒

agena >> 589

b*(1/(1 - a^2))arctanh(a)
dual.
arctanh

Inverse hyperbolic
tangent

b*(1/sqrt(a^2 - 1))arccosh(a)
dual.
arccosh

Inverse hyperbolic
cosine

b*(1/sqrt(a^2 + 1))arcsinh(a)
dual.
arcsinh

Inverse hyperbolic
sine

b*sech(a)^2tanh atanh pHyperbolic tangent
b*sinh acosh acosh pHyperbolic cosine
b*cosh asinh asinh pHyperbolic sine
b/(1 + a*a)arctan aarctan pArcus tangent
-b/hypot3(a)arccos aarccos pArcus cosine
b/hypot3(a)arcsin aarcsin pArcus sine
b/(cos(a)**2)tan atan pTangent
-b*sin acos acos pCosine
b*cos asin asin pSine

./.hypot(a, b)dual.
hypot p

Hypotenuse
0.5*a[2]/sqrt asqrt asqrt pSquare root

b/(1.0 + a)lnplusone(a)
dual.
lnplusone

ln(x+1)

b*exp(a)expminusone(a)
dual.exp-
minusone

exp(x)-1

b/a/log(10)log10(a)dual.log10Base-10 logarithm
b/a/log(2)log2(a)dual.log2Base-2 logarithm
b/aln aln pNatural logarithm
b*exp aexp aexp pExponential function

n/a1, if a > 0 or a = 0
and b > 0
-1, if a < 0 or
a = 0 and b < 0
0, otherwise

sign pSign
n/aabs aabs pAbsolute value
3*b*a**2a**3cube pCube
2*a*ba**2square pSquare
a^c*(d*ln a + b*c/a)a^cp ^qExponentiation
-b/(a**2)1 / a1 / pReciprocal
(b*c - a*d) / (c*c)a / cp / qDivision
a*d + b*ca * cp * qMultiplication
b - da - cp - qSubtraction
b + da + cp + qAddition
-b-a-pUnary minus
Dual PartReal PartCallOperation

590 11 Numbers

n/aa >= cp >= qRelation >=
n/aa > cp > qRelation >
n/aa <= cp <= qRelation <=
n/aa < cp < qRelation <

n/anot(p~=q)p ~<> q
Approximate
inequality

n/a
a ~= c and
b ~= d

p ~= q
Approximate
equality

n/anot(a=b)p <> qInequality
n/aa = c and b = dp = qEquality

n/an/a
dual.
tostring

Conversion to string

2*a * expx2(a) * erfc(a) -
2/sqrt(Pi)

erfcx(a)dual.erfcx
Scaled
complementary
error function

b*-2/sqrt(Pi)*exp(-(a)^2)erfc(a)dual.erfc
Complementary
error function

b*2/sqrt(Pi) * exp(-(a)^2)erf(a)dual.erfError function
Dual PartReal PartCallOperation

agena >> 591

11.8 clock - Clock Package

This package contains mathematical routines to perform basic operations on time
values, i.e. hours, minutes, and seconds.

As a plus package, it is not part of the standard distribution and must be activated
with the import statement, e.g. import clock.

A time value is always defined by the clock.tm constructor. You may apply the
ordinary +, -, * and / operators in order to add, subtract, multiply or divide values.
The relations <, <=, =, >=, and > are also supported.

Also, the following operators can be used for sexagesimal arithmetic - but please
beware of round-off errors, for they convert a sexagesimal argument to decimal,
apply the operator, and convert the result back to sexagesimal.

The ^ operator exponentiates sexagesimals, or sexagesimals and numbers, and
returns a sexagesimal.

The abs operator determines the absolute value of a sexagesimal and returns a
sexagesimal.

The sign operator returns the sign of a sexagesimal and returns a number.

The sqrt operator returns the square root of a sexagesimal and returns a
sexagesimal. If the sexagesimal is negative, it returns undefined.

The ln operator returns the natural logarithm of a sexagesimal and returns a
sexagesimal. If the sexagesimal is non-negative, it returns undefined.

The exp operator returns the value of E to the power of the given sexagesimal and
returns a sexagesimal.

The sin operator returns the sine of a sexagesimal and returns a sexagesimal, in
radians.

The cos operator returns the cosine of a sexagesimal and returns a sexagesimal, in
radians.

The tan operator returns the tangent of a sexagesimal and returns a sexagesimal, in
radians. It returns undefined if poles have been encountered.

The arctan operator returns the arcus tangent of a sexagesimal and returns a
sexagesimal, in radians. With poles, it returns undefined.

By default, all time values are properly adjusted to a normalised representation if
the value of the environment variable _clockAdjust is not changed. If it

592 11 Numbers

_clockAdjust is set to a value different from true, then this normalisation is switched
off.

All functions are implemented in Agena and included in the lib/clock.agn file.

A typical example might look like this:

> import clock alias

add, adjust, div, mul, sub, pow, tm, todec, totm

Subtract 10 hours and fifteen minutes from 20 hours and 15 minutes:

> tm(20, 15, 0) - tm(10, 15, 0):
tm(10, 0, 0)

61 seconds are automatically converted to 1 minute and 1 second:

> tm(0, 61):
tm(0, 1, 1)

Turn off normalisation:

> _clockAdjust := null

> tm(0, 61):
tm(0, 0, 61)

Turn on normalisation again:

> _clockAdjust := true

The functions provided by the package are:

clock.add (t1, t2 [, ···])

The function adds two or more values of type tm. The return is a value of type tm.

clock.adjust (t)

The function adjusts the representation of tm values in a time object t by applying
the rules described in the description of clock.tm.

clock.sub (t1, t2 [, ···])

The function subtracts two or more values of type tm. The return is a value of type
tm.

agena >> 593

clock.sgstr (x [, d])

Converts a float or `tm` value x into its sexagesimal string representation of the
format hh:mm:ss. The colon to separate hours, minutes, and seconds can be
changed by passing another optional delimiter d of type string.

See also: clock.totm.

clock.tm (min)

clock.tm (min, sec)

clock.tm (hrs, min, sec)

This function is used to define time values, where hrs, min, sec are numbers.

In the first form, minutes are defined. The return is a value of type tm of the form
tm(0, min, 0).

In the second form, both minutes and seconds are defined. The return is a value of
type tm of the form tm(0, min, sec).

In the third form, both hours, minutes, and seconds are defined and returned as a
value of type tm of the form tm(hrs, min, sec). (hrs may be set to 0.)

By default, if min > 59 and / or if sec > 59, proper adjustments are made before
the time value will be returned. If min > 59 the call to time returns tm(hrs + 1, min -
60, sec). If sec > 59 the call to time returns tm(hrs, min + 1, sec - 60). The default is
set by the global variable _clockAdjust which is assigned true at initialisation of the
package if it has not already been set false before the clock package has been
loaded.

hrs might be any non-negative number.

If _clockAdjust is set false then no adjustments are made to the arguments. You
can use clock.adjust to apply the adjustments described above.

clock.todec (t)

Converts a tm value t into its decimal representation of type number.

See also: clock.totm, math.todecimal.

clock.totm (t)

Converts a tm value t in decimals (of type number) into its tm representation. The
return is of type tm.

See also: clock.todec.

594 11 Numbers

11.9 astro - Astronomy Functions

As a plus package, the astro package is not part of the standard distribution and
must be activated with the import statement, e.g. import astro.

astro.cdate (x)

Converts a Julian date, represented by the float x, into its Gregorian calendar date
representation, returning seven values in the following order: the year, the month,
the day, the decimal fraction of the day - in the range [0, 1) -, the hour, minute,
and second.

See also: astro.jdate, os.date, os.isdst.

astro.cweek (y, m, d)

Returns the calendar week for the given year (y), month (m), and day (d), an integer
in the range 1 .. 53, determined according to the ISO 8601 standard, and the
corresponding year as the second result. The second result is not necessarily equal
to y, e.g. the calendar week of January 1, 2016 is calendar week 53 of 2015, and
the calendar week of December 31, 2013 is week 1 of 2014.

If the passed date does not exist, the function issues an error.

See also: astro.lastcweek, os.date.

astro.cweekmonsun (y, cw)

Computes the Gregorian dates of the Monday and Sunday for a given calendar
week cw and year y and returns four numbers: the year, the month, the day, and
the fraction of day - in his order. In case of a non-existing calendar week cw, the
function issues an error.

See also: astro.cweek, os.date.

astro.dectodms (x, orientation)

Converts co-ordinates x in decimal degrees (a number) to the form degree,
minute, second, and their orientation 'N', 'S', 'W', or 'E' (DMS format). You must also
specify whether to compute latitude or longitude values, by passing the strings
'lat' or 'lon', respectively for orientation.

The return are three numbers and the orientation, a string.

See also: astro.dmstodec.

agena >> 595

astro.dmstodec (degree, minute, second, hour, orientation)

Converts co-ordinates in DMS format consisting of degree, minute, second, (all
numbers) and their orientation 'N', 'S', 'W', or 'E' (a single-character string) to their
corresponding decimal degree representation (DegDec format). The return is a
number.

See also: astro.dectodms.

astro.hdate (jd)

Converts the Julian date jd to the corresponding year, month and day in the Jewish
calendar, in this order. The fraction of day, the hour, minute and second are also
returned.

See also: astro.jdate, os.date with the '*j' format.

astro.isleapyear (x)

Returns true if the given year x (a number) is a leap year, and false otherwise.

astro.lastcweek (y [, flag])

Computes the last calendar week of the year y. If flag is not given, the function
returns either the number 52 or 53, and the given year y. If flag is given, then
calendar week 1 and y + 1 will be returned if December 31 of the given year y is
either a Monday, Tuesday or Wednesday, otherwise it works as if flag has not been
passed.

See also: astro.lastcweek, os.date.

astro.jdate (year, month, day [, hour [, minute [, second]]])

Converts a Gregorian date represented by year, month, day and optionally hour,
minute, and second (all numbers) to the corresponding Julian date. The return is a
number, or fail if the date or time is of a wrong format.

By definition, the base 0 of the Julian date is January 1, 4713 BC, noon GMT.
However, since the function takes no account of the date(s) of adoption of the
Gregorian calendar, astro.jdate(0) does not return this date.

The defaults for hour, minute, and second are 0.

See also: astro.cdate, os.date, os.isdst.

astro.moon (year, month, day, hour, lon, lat)

Provides an easier-to-use interface to astro.moonriseset. and astro.moonphase.

596 11 Numbers

The first four arguments represent the year, month, day, and hour, all of type number.
Longitudes and latitudes can be given in form of two tables lon, lat containing
degrees (a number), minutes (a number), seconds (a number), and the orientation
(the single character 'N', 'S', 'W', or 'E').

The return is a table with the indices 'riseset', containing the rise and set times of the
Moon in `tm` representation, and the index 'phase' which holds the computed
Lunar phase (a float and an integer).

See astro.moonriseset and astro.moonphase for further information.

The function uses the `tm` time notation of the clock package. You do not have to
readlib clock before.

The function is written in Agena and included in the astro.agn file.

Example for Düsseldorf:

> astro.moon(2013, 1, 7, 0, [7, 6, 0, 'E'], [50, 43, 48, 'N']):
[phase ~ [0.2995659104481, 7], riseset ~ [tm(2, 27, 0), tm(11, 50, 0)]]

astro.moonphase (year, month, day [, hour])

Takes a year, a month, a day, and optionally an hour (all numbers) and returns the
moon phase as a real number in the range [0, 1], where 0 is new moon and 1 is full
Moon; and an integer in the range [0, 7], where 0 indicates new moon and 4
indicates full moon. If hour is not given, it is set to 0.

See also: astro.moon.

astro.moonriseset (year, month, day, lon, lat)

Returns the times of Lunar rise and set in GMT. Receives the year, month day, the
longitude and latitude lon and lat (all of type number) and returns two numbers:
the GMT rise time in a decimal, and the GMT set time also in a decimal.

Use clock.totm to convert the rise and set times to sexagesimal format, or try
astro.moon.

Example for Düsseldorf:

> astro.moonriseset(2013, 1, 8,
> astro.dmstodec(6, 46, 58, 'E'), astro.dmstodec(51, 13, 32, 'N')):

3.7666666666667 12.566666666667

astro.sun (year, month, day, lon, lat)

Provides an easier-to-use interface to astro.sunriseset.

agena >> 597

year, month, and day must be integers. Longitudes and latitudes can be given in
form of two tables lon, lat, containing degrees (a number), minutes (a number),
seconds (a number), and the orientation (the single-character string 'N', 'S', 'W', or 'E').

The return is a table with the indices 'riseset', 'civil', 'astro', and 'nautical' containing
the rise and set times in `tm` representation. The index 'south' holds the time where
the Sun is at south.

See astro.sunriseset for further information.

The function uses the `tm` time notation of the clock package. The function uses
the `tm` time notation of the clock package. You do not have to readlib clock
before.

The function is written in Agena and included in the astro.agn file.

Example for Düsseldorf:

> astro.sun(2013, 1, 7, [6, 46, 58, 'E'], [51, 13, 32, 'N']):
[astro ~ [tm(5, 34, 5.15), tm(17, 44, 22.95)],
civil ~ [tm(6, 56, 25.74), tm(16, 22, 2.36)],
nautical ~ [tm(6, 14, 13.02), tm(17, 4, 15.08)],
riseset ~ [tm(7, 35, 19.78), tm(15, 43, 8.33)],
south ~ tm(11, 39, 14.05)]

astro.sunriseset (year, month, day, lon, lat)

Returns the sunrise/sunset times in UTC for years starting with 1800 A.D. to 2099 A.D. It
is a workhorse function, maybe you would like to use astro.sun for a more
convenient interface.

year, month and day, all integers, are the values of the day to evaluate. lon is the
longitude (west/east), and lat the latitude (west/east), both in decimal degrees of
type float of the location that is of interest. Use astro.dmstodec to convert
co-ordinates containing degrees (integer), minutes (integer), and seconds (integer
or float), and the orientation to decimal degrees.

Example for Düsseldorf:

> astro.sunriseset(2013, 1, 7,
> astro.dmstodec(6, 46, 58, 'E'), astro.dmstodec(51, 13, 32, 'N')):

7.5888265301838 15.718979334935 0 6.9404828811745 16.367322983944 0
6.2369508540273 17.070855011091 0 5.5680967691543 17.739709095964 0
11.653902932559

The first and second returns are the sunrise/sunset times which are considered to
occur when the Sun's upper limb is 35 arc minutes below the horizon (this accounts
for the refraction of the Earth's atmosphere).

598 11 Numbers

The third return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `horizon` 24 hours, -1 if the Sun is below the specified `horizon` 24 hours.

The fourth and fifth returns are start and end times of civil twilight. Civil twilight
starts/ends when the Sun's centre is 6 degrees below the horizon.

The sixth return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `civil twilight horizon` 24 hours, -1 if the Sun is below the specified
`horizon` 24 hours.

The seventh and eighth returns are the start and end times of nautical twilight.
Nautical twilight starts/ends when the Sun's centre is 12 degrees below the horizon.

The ninth return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `nautical twilight horizon` 24 hours, -1 if the Sun is below the specified
`horizon` 24 hours.

The tenth and eleventh returns are the start and end times of astronomical twilight.
Astronomical twilight starts/ends when the Sun's centre is 18 degrees below the
horizon.

The twelfth return is 0, if the rises and sun sets in a day; +1 if the Sun is above the
specified `nautical twilight horizon` 24 hours, -1 if the Sun is below the specified
`astronomical twilight horizon` 24 hours.

The thirteenth return is the time when the Sun is at south (in decimal UTC).

All times returned are given in decimal hours of type number. Use clock.totm to
convert them into `tm` notation.

See also: astro.sun, astro.moon.

astro.taiutc ([jd])

Returns the TAI-UTC lookup table value of leap seconds for a given Julian date jd; if
no argument is given, then the value for the current system date is computed. TAI
stands for International Atomic Time. The function returns 0 for Gregorian dates
before 1961.

In the future, you may have to add further values to the source code of this function
which also includes the URL of the respective file to be checked. The function is
written in Agena and included in the astro.agn file.

See also: os.date ('*j' format).

agena >> 599

11.10 cordic - Numerical CORDIC Library

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.g. import cordic.

The CORDIC algorithm (CORDIC stands for COordinate Rotation DIgital Computer)
also known as the `Volder's algorithm`, is used to calculate hyperbolic,
trigonometric, logarithmic, and root functions, on hardware not featuring multipliers,
requiring only addition, subtraction, bitshift and table lookup.

The algorithm, similar to one published by Henry Briggs around 1624, has been
developed in 1959 by Kack E. Volder to improve an aviation system. According to
Wikipedia, it has not only been used in pocket calculators, but also in x87 FPUs, in
CPUs prior to Intel 80486 - and in Motorola's 68881, in signal and image processing,
communication systems, robotics, and also 3D graphics - and other applications.

This binding to John Burkardt's CORDIC implementation uses additon, subtraction,
table lookups, multiplication, divisions, and the absolute function.

The package accepts and returns Agena numbers only.

Available functions are:

cordic.carccos (x)

Returns the inverse cosine operator in radians.

cordic.carcsin (x)

Returns the inverse sine operator in radians.

cordic.carctan2 (y, x)

Returns the arc tangent of y/x in radians, but uses the signs of both parameters to
find the quadrant of the result.

cordic.carctanh (x)

Returns the inverse hyperbolic tangent of x in radians.

cordic.ccbrt (x)

Returns the cubic root of the number x.

cordic.ccos (x)

Returns the cosine of x in radians.

600 11 Numbers

cordic.ccosh (x)

Returns the hyperbolic cosine of x in radians.

cordic.cexp (x)

Returns , the exponential function to the base e =2.718281828459 ...ex

cordic.chypot (x, y)

Returns , the hypotenuse.x2 +y2

cordic.cln (x)

Returns the natural logarithm of x.

cordic.cmul (x, y)

Returns x*y, i.e. the product of x and y.

cordic.csin (x)

Returns the sine of x in radians.

cordic.csinh (x)

Returns the hyperbolic sine of x in radians.

cordic.csqrt (x)

Returns the square root of x.

cordic.ctan (x)

Returns the tangent of x in radians.

cordic.ctanh (x)

Returns the hyperbolic tangent of x in radians.

agena >> 601

11.11 zx - Sinclair ZX Spectrum Functions

As a plus package, the zx package is not part of the standard distribution and must
be activated with the import statement, i.e. import zx.

11.11.1 Introduction

This package implements various Sinclair ZX Spectrum mathematical functions.

Most of the functions use the same algorithms and Chebyshev polynomials of
degree 6, 8, or 12 as implemented in the Sinclair ZX Spectrum ROM, with similar
accuracy.

All functions are based on those published on the book `The Complete Spectrum
ROM Disassembly`, written by Dr. Ian Logan & Dr. Frank O'Hara, pp. 217.

In general, the procedures are mostly slower and also less precise than their Agena
pendants. By default, the fully expanded and simplified polynomials are hard-wired
into the library's C code. By passing the optional last argument true, however, the
polynomials are processed iteratively in real-time, using the zx.genseries function
which imitates the Z80 assembler subprocedure `series generator`.

You may query the respective Chebyshev coefficient vectors by calling
zx.getcoeffs, and globally change them with zx.setcoeffs. Range reduction is
performed by zx.reduce.

The names of all ZX Spectrum `clones` are written in capital letters, to not collide
with Agena's built-in operators. Some functions that do not exist on the ZX Spectrum
have been added and are mostly based upon existing ZX Spectrum mathematical
functions, thus providing comparable accuracy.

The C source file src/zx.c contains information on the precision of the functions.

11.11.2 Original ZX Spectrum Functions

zx.ABS (x)

Returns the absolute magnitude of the number x. The function does not use
Chebyshev polynomials.

See also: abs.

602 11 Numbers

zx.ACS (x)

Computes the ZX Spectrum inverse cosine of its numeric argument x and returns a
number. If x [-1, 1], undefined will be returned."

See also: arccos, zx.ASN, zx.ATN.

zx.ACSH (x)

Approximates the inverse hyperbolic cosine of its numeric argument x and returns
the number ln(x +) for 1 x < . The function does not exist on the ZXx2 − 1 [∞

Spectrum.

See also: arccosh, zx.ACSH, zx.ATNH.

zx.ADD (x, y)

Returns x + y.

See also: zx.DIV, zx.MUL, zx.SUB.

zx.AND (x, y)

Returns x if y is non-zero and the value zero otherwise. Strings are not supported. The
function does not use Chebyshev polynomials.

See also: zx.NOT, zx.OR.

zx.ASN (x)

Computes the ZX Spectrum inverse sine of its numeric argument x and returns a
number. If x [-1, 1], undefined will be returned."

See also: arcsin, zx.ACS, zx.ATN.

zx.ASNH (x)

Approximates the inverse hyperbolic sine of its numeric argument x and returns the

number ln(x +) x. The function does not exist on the ZX Spectrum.x2 + 1 ≤

See also: arcsinh, zx.ACSH, zx.ATNH.

zx.ATN (x)

Computes the ZX Spectrum inverse tangent of its numeric argument x and returns a
number.

See also: arctan, zx.ACS, zx.ATN.

agena >> 603

zx.ATNH (x)

Approximates the inverse hyperbolic tangent of its numeric argument x and returns

the number ln for -1 < x < 1, or undefined otherwise. The function does not
1
2

1+x
1−x

exist on the ZX Spectrum.

See also: arctanh, zx.ACSH, zx.ASNH.

zx.COS (x)

Computes the ZX Spectrum cosine of its numeric argument x and returns a
number.

See also: cos.

zx.COSH (x)

Approximates the hyperbolic cosine of its numeric argument x and returns the
number 0.5*(zx.EXP(x) + zx.EXP(-x)). The function does not exist on the ZX Spectrum.

See also: cosh, zx.SINH, zx.TANH, zx.SECH, zx.CSCH, zx.COTH. .

zx.COT (x)

Approximates the cotangent 1/zx.TAN(x), or undefined if x = 0. The function does
not exist on the ZX Spectrum.

See also: cot.

zx.COTH (x)

Approximates the hyperbolic cotangent of its numeric argument x and returns the
number (zx.EXP(x) + zx.EXP(-x))/(zx.EXP(x) - zx.EXP(-x)). The function does not exist on
the ZX Spectrum.

See also: coth, zx.SINH, zx.COSH, zx.TANH, zx.SECH, zx.CSCH.

zx.CSC (x)

Returns the cosecant 1/zx.SIN(x), or undefined if x = 0. The function does not exist
on the ZX Spectrum.

See also: csc.

604 11 Numbers

zx.CSCH (x)

Approximates the hyperbolic cosecant of its numeric argument x and returns the
number 2/(zx.EXP(x) - zx.EXP(-x)). With x = 0, returns undefined. The function does
not exist on the ZX Spectrum.

See also: csch, zx.SINH, zx.COSH, zx.TANH, zx.SECH, zx.COTH.

zx.DIV (x, y)

Returns x / y. With y = 0, the result is undefined.

See also: zx.ADD, zx.MUL, zx.SUB.

zx.E

The constant e = exp(1) in the ZX Spectrum precision, implemented as zx.EXP(1).

See also zx.PI.

zx.ERF (x)

Computes the error function dt. The function does not exist on the ZX
2
✜
¶
0

x

e−t2

Spectrum. See also: erf.

zx.EXP (x)

Computes the ZX Spectrum exponential function of the number x to the base E =
exp(1). It looses precision, however, if its argument is greater than the constant E.

See also: exp. zx.LN, zx.POW.

zx.ERF (x)

Approximates the error function. See also: erf.

zx.GAM (x)

Approximates the Gamma function x. = (x - 1)!. Returns undefined if x = 0, but✄
for the sake of speed does not return undefined for negative integral x. The function
does not exist on the ZX Spectrum. See also: gamma, zx.LGAM.

zx.INT (x)

Rounds its numeric argument x downwards to the nearest integer. The function
does not use Chebyshev polynomials.

See also: entier.

agena >> 605

zx.LGAM (x)

Approximates the logarithmic Gamma function ln x. = ln(x - 1)!. Returns✄
undefined if x = 0, but for the sake of speed does not return undefined for
negative integral x. The function does not exist on the ZX Spectrum. See also:
lngamma, zx.GAM.

zx.LN (x)

Computes the ZX Spectrum natural logarithm of the number x. If x 0, undefined[

will be returned.

See also: ln, zx.EXP.

zx.MUL (x, y)

Computes x*y.

See also: zx.ADD, zx.DIV, zx.SUB.

zx.NOT (x)

Returns 1 if its numeric argument x is 0, and 0 otherwise. The function does not use
Chebyshev polynomials.

See also: not, zx.AND, zx.OR.

zx.OR (x, y)

Returns the number x if the number y is 0, and 1 otherwise. Strings are not
supported. The function does not use Chebyshev polynomials.

See also: or, zx.AND, zx.NOT.

zx.PI

The constant in the ZX Spectrum precision, implemented as 4*zx.ATN(1). ✜

See also zx.E.

zx.POW (x, y)

Returns the ZX Spectrum exponentiation x y, with x and y numbers, and returns am
number.

Internally, the ZX Spectrum and this function treats x y like exp(ln(x)*y). If x < 0m
then undefined will be returned.

As with zx.EXP, the function is quite imprecise if x > zx.E, i.e. the constant exp(1).

See also: ** and ^ operators, zx.SQR.

606 11 Numbers

zx.SEC (x)

Returns the secant 1/zx.COS(x).

See also sec.

zx.SECH (x)

Approximates the hyperbolic secant of its numeric argument x and returns the
number 2/(zx.EXP(x) + zx.EXP(-x)). The function does not exist on the ZX Spectrum.

See also: sech, zx.SINH, zx.COSH, zx.TANH, zx.CSCH, zx.COTH.

zx.SGN (x)

Returns -1 if the number x is negative, 0 if x is zero, and 1 if x is positive. If x is
undefined, undefined will be returned. The function does not use Chebyshev
polynomials.

See also: sign, signum.

zx.SIN (x)

Computes the ZX Spectrum sine of its numeric argument x and returns a number.

See also: sin, zx.COS, zx.TAN.

zx.SINH (x)

Approximates the hyperbolic sine of its numeric argument x and returns the number
0.5*(zx.EXP(x) - zx.EXP(-x)). The function does not exist on the ZX Spectrum.

See also: sinh, zx.COSH, zx.TANH, zx.SECH, zx.CSCH, zx.COTH.

zx.SQR (x)

Returns the ZX Spectrum square root of its numeric argument x and returns a
number. If x < 0, undefined will be returned.

See also: sqrt, zx.POW.

zx.SUB (x, y)

Computes x - y.

See also: zx.ADD, zx.DIV, zx.MUL.

agena >> 607

zx.TAN (x)

Computes the ZX Spectrum tangent of its numeric argument x and returns a
number.

See also: tan, zx.COS, zx.SIN.

zx.TANH (x)

Approximates the hyperbolic tangent of its numeric argument x and returns the
number (zx.EXP(x) - zx.EXP(-x))/(zx.EXP(x) + zx.EXP(-x)). The function does not exist on
the ZX Spectrum.

See also: tanh, zx.COSH, zx.SINH, zx.SECH, zx.CSCH, zx.COTH.

11.11.3 Auxiliary Functions

zx.genseries (x, s)

Receives a number x in the range [-1, 1] and a sequence of coefficients and
returns the value of the corresponding Chebyshev polynomial. If x is out of range,
no error will be returned. This is an exact clone of the ZX Spectrum ROM `series
generator` Z80 assembler subroutine.

zx.getcoeffs ()

The function returns the current Chebyshev coefficient vectors for various package
functions. The return is a dictionary of four numeric sequences:

8zx.SQR and zx.POWzx.EXP'EXP'

12zx.SQR and zx.POWzx.LN'LN'

12zx.ACS and zx.ASNzx.ATN'ATN'

6zx.COS and zx.TANzx.SIN'SIN'

Default sizeIndirectly used byUsed byKey

See also: zx.setcoeffs.

zx.setcoeffs (n, s)

Globally sets Chebyshev coefficients to the package's environment. You can
change existing coefficients, reduce or enlarge their respective number down to
one or up to 256 values. Internally, the coefficients are treated as C doubles, the
shipped defaults have the precision of C floats.

The first argument n must be the string 'SIN', 'ATN', 'LN', or 'EXP'. The second
argument s must be a sequence of one to 256 numbers.

608 11 Numbers

For the purpose of the first argument, see zx.getcoeffs.

Please note that the respective zx functions must be called with the last argument
true in order to revert to the (changed) coefficient vectors as they use hard-wired
expanded polynomials by default.

See also: zx.getcoeffs.

zx.reduce (x)

Reduces a number x to another number v in the range [-1, 1] where sin(v) = sin(✜
*v/2) for multiples or fractions of , and returns v. Please note that even if x [-1, 1],✜ c

v will be calculated - see inrange for range checks.

The function imitates the ZX Spectrum ROM 'reduce argument' Z80 assembler
subroutine which is used to prepare calls to ZX Spectrum's sine and cosine
subroutines. Example:

> zxsin := proc(x) is
> local w, z;
> w := zx.reduce(x);
> z := 2 * w**2 - 1;
> return w * zx.genseries(z, zx.getcoeffs().SIN)
> end;

> zxcos := << x -> zxsin(x + Pi/2) >>;

See also: math.wrap, end of Chapter 11.1.2 for a comparison chart.

agena >> 609

11.12 calc - Calculus Package

This package contains mathematical routines to perform basic calculus
numerically. Since the functions do not work symbolically, please beware of
round-off errors.

A typical example might look like this:

Define a function :f :=x d sin(x)

> f := << x -> sin(x) >>

Determine all its zeros over [-5, 5]:

> calc.zeros(f, -5, 5):
seq(-3.1415926535898, 0, 3.1415926535898)

Differentiate it at point 0 and also return an error estimate:

> calc.diff(f, 0):
0.99999999999963 1.8503717573394e-010

Compare it:

> cos(0):
1

Integrate it over [0,]:✜

> calc.gtrap(f, 0, Pi):
1.9999999938721

Summary of functions:

Basic Calculus:

calc.aitken, calc.fminbr, calc.fmings, calc.iscont, calc.limit,
calc.regulafalsi, calc.sections, calc.zeroin, calc.zeros.

Differentiation:

calc.diff, calc.eulerdiff, calc.isdiff, calc.maximum, calc.minimum,
calc.xpdiff.

610 11 Numbers

Integration:

calc.gauleg, calc.gtrap, calc.intcc, calc.intde, calc.intdei, calc.intdeo,
calc.integ, calc.simaptive.

Integrals:

calc.ausSiCi, calc.Ci, calc.Cin, calc.Chi, calc.dawson, calc.Ei, calc.Ein,
calc.elliptic1, calc.elliptic2, calc.En, calc.fresnelc, calc.fresnels,
calc.ibeta, calc.igamma, calc.igammc, calc.invibeta,
calc.scaleddawson, calc.Shi, calc.Si, calc.Ssi, calc.w.

Sums & Products:

calc.prod, calc.fsum.

Interpolation:

calc.cheby, calc.chebyt, calc.chebycoeffs, calc.chebygen,
calc.clampedspline, calc.clampedsplinecoeffs, calc.interp,
calc.linterp, calc.nakspline, calc.naksplinecoeffs, calc.neville,
calc.newtoncoeffs, calc.polyfit, calc.polygen, calc.savgol,
calc.savgolcoeffs, calc.smoothstep.

Distances

calc.arclen, calc.eucliddist, calc.sinuosity.

Miscellaneous:

calc.Ai, calc.bessel0, calc.bessel1, calc.Bi, calc.dilog, calc.eta,
calc.euler, calc.expn, calc.gammainc, calc.gaussian, calc.hyp1f1,
calc.hyp2f1, calc.lambda, calc.polylog, calc.Psi, calc.weier, calc.zeta,
calc.zeta2.

The functions:

calc.Ai (x)

The Airy wave function returns both the first independent solution to the differential
equation y"(x) = x*y and its first derivative, for any real x.

See also: calc.Bi.

agena >> 611

calc.aitken (f, x0 [, eps [, iter]])

The function finds the limit of the sequence xn+1 = f(xn) with initial x0 and tolerance
eps, with a maximum of iter iterations, using Aitken extrapolation. f is a univariate
function. eps by default is DoubleEps and iter is 20.

It returns either the approximated limit and the first derivative at ,f'(), if✍ ✍ ✍

successful, and undefined twice otherwise. The third return is the number of
iterations taken to compute the result.

Example: calc.aitken(<< x -> 1/2*(x + 2/x) >>, 1) ~= sqrt(2).

See also: times.

calc.arclen (f, a, b)

The function returns the arc length (curvilinear length) of a function f in one real
between the points a and b.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.eucliddist, calc.sinuosity.

calc.auxSiCi (x)

Computes the auxiliary sine and cosine integrals and returns the two numbers:

dt, dt✟
t=0

∞
sin(t)
t + x ✟

t=0

∞
cos(t)
t + x

See also: calc.Ci, calc.Cin, calc.Si, calc.Chi, calc.Shi, calc.Ssi.

calc.bessel0 (x [, any])

When called with just one argument x, returns the modified Bessel function of order
zero of the argument. The function is defined as bessel0(x) = besselj(0, x*I).

With any second argument, returns the modified Bessel function of order zero of the
argument, exponentially scaled.

See also: besselj, bessely, calc.bessel1.

calc.bessel1 (x [, any])

When called with just one argument x, returns the modified Bessel function of order
one of the argument. The function is defined as bessel1(x) = besselj(1, x*I).

612 11 Numbers

With any second argument, returns the modified Bessel function of order one of the
argument, exponentially scaled.

See also: besselj, bessely, calc.bessel0.

calc.Bi (x)

The Airy wave function returns both the second independent solution to the
differential equation y"(x) = x*y and its first derivative, for any real x.

See also: calc.Ai.

calc.Ci (x)

Computes the cosine integral for its numeric argument x and returns it as a
number:

Ci(x) = EulerGamma + ln(|x|) - calc.Cin(x).

See also: calc.auxSiCi, calc.Cin, calc.Si, calc.Chi, calc.Shi, calc.Ssi.

calc.Cin (x)

Computes the entire cosine integral for its numeric argument x and returns the
number:

Cin(x) = dt✟
0

x
1−cos(t)

t

See also: calc.auxSiCi, calc.Ci, calc.Si, calc.Chi, calc.Shi, calc.Ssi.

calc.cheby (f, a, b, n [, ···] [, option])

Returns a function computing the Chebyshev interpolant for a given point. f is the
univariate or multivariate function to be interpolated, a and b represent the domain
of the definition, n is the order of the interpolant. As a rule of thumb, the wider the
domain, the larger n should be. If f has more than one argument, then all
arguments except the first are passed right after n.

You may optionally pass the deriv=k option as the very last argument to compute
either the first (k=1), second (k=2), third (k=3), fourth (k=4), fifth (k=5), sixth (k=6),
seventh (k=7) or eighth (k=8) derivative, where k defaults to 0, i.e. the function itself.

Using this function may speed up numeric computations significantly if the
expression to be evaluated consists of many subexpressions - and if accuracy is not
of primary concern. When computing derivatives, however, it is 10 times faster than
calc.xpdiff and - depending on the expression type - also more accurate.

agena >> 613

Example:

> # get first derivative of ln(x), i.e. 1/x
> g := calc.cheby(<< x -> ln x >>, 1, 10, 50, deriv = 1);

> g(5):

0.20000000000002

See also: calc.chebycoeffs, calc.diff, calc.differ, calc.savgol, calc.xpdiff.

calc.chebycoeffs (f, a, b, n)

Computes Chebyshev interpolation coefficients used internally by calc.cheby. f is
a univariate function for which coefficients shall be computed, a and b represent
the domain of the definition, n is the order of the interpolant.

The return is a table of the Chebyshev coefficients, indexed from 1 to n, with key
`domain` representing the domain a:b (a pair). As a rule of thumb, the larger the
domain, the larger n should be.

See also: calc.chebygen, calc.savgolcoeffs.

calc.chebygen (coeffs [, deriv = n])

Takes a table of Chebyshev coefficients as computed by calc.chebycoeffs and
generates a factory computing approximations of a real function f.

With the optional deriv = n option, where n is an integer from 1 to 8, the n-th
derivative of f will be approximated instead of the plain function value, the default is
n = 0:

> coeffs := calc.chebycoeffs(<< x -> ln x >>, 1, 3, 20):
[1 ~ 1.247621, 2 ~ 0.535898, 3 ~ -0.071797, ..., domain ~ 1:3]

Return a function that computes the first derivative of ln(x):

> f' := calc.chebygen(coeffs, deriv = 1);

> f'(2):

0.49999999999985

Note that the table of Chebyshev coefficients must also contain the domain for
which the coefficients have been computed, see domain ~ 1:3 entry above. The
generated function, when called with a point, will not complain if the given point is
not in the domain, e.g. with a domain ~ 1:3, a call f'(5) will always be accepted.

See also: calc.cheby, calc.diff, calc.savgol, calc.xpdiff.

614 11 Numbers

calc.chebyt (n, x)

Computes the n-th Chebyshev polynomial of the first kind, evaluated at x, with n a
non-negative integer and x a number. The return is equal to cos(n*arccos(x)) for
|x| 1, and cosh(n*arccosh(x)) otherwise, even for x < 1.[

calc.Chi (x)

Computes the hyperbolic cosine integral and returns it as a number. x must be a
number.

See also: calc.Si, calc.Ci, calc.Shi, calc.Ssi.

calc.clampedspline (obj, da:db)

calc.clampedspline (obj, da:db, a)

calc.clampedspline (obj, da:db, a, coeffs)

Evaluates the clamped cubic spline for a given table or sequence obj of pairs
representing the points xk:yk, at a single value a (a number) of the independent
variable x.

The boundary conditions are passed as a pair of numbers da:db, where da is the
derivative of the function at the left border, and db is the derivative of the function
at the right border.

In the first form, returns a univariate function which can be called with a number to
obtain the value of the interpolating polynomial. For best performance, use this first
form.

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each containing numbers. The fourth argument may be obtained by calling
calc.clampedsplinecoeffs.

In the second and third form, the function returns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable x.

In general, the function returns fail if the structure contains less than two pairs.

See also: calc.interp, calc.clampedsplinecoeffs, calc.nakspline, calc.neville.

agena >> 615

calc.clampedsplinecoeffs (obj, da:db)

Determines the coefficients for the clamped cubic spline for a given table or
sequence obj of pairs representing the points xk:yk. The return can be used to
speed up execution of calc.clampedspline.

The boundary conditions are passed as a pair of numbers da:db, where da is the
derivative of the function at the left border, and db is the derivative of the function
at the right border.

The function returns fail if the structure less than two pairs.

See also: calc.clampedspline.

calc.curvature (f, x [, ···])

Determines the curvature of a real univariate or multivariate function at a given
point. Curvature in this context is defined as the rate of change of direction of a
point that moves on a curve. The result is the number f''(x, ···)/(1 + f'(x, ···)2)3/2.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.sinuosity.

calc.dawson (x)

Computes Dawson's integral for a number x. The return is the number

.e−x2 ¶
0

x

e t2dt

See also: calc.scaleddawson, expx2.

calc.diff (f, x [, ···] [, options])

Computes the value of the first derivative of a function f at a point x, and also
returns the absolute error as a second return.

If the option deriv=n is given, where n may be 1, 2, 3, 4 or 5, the n-th derivative is
calculated, with n = 1 the default. If n = 0, then the function value at f(x) is
determined.

If the eps=h option is given, the epsilon value h (a positive number preferably close
to zero) is used to determine the difference quotient; otherwise it is automatically
determined by calling math.epsilon with x.

If the absolute error is quite large, it may either indicate non-differentiability of f at x,
···, or that the derivative could not be computed with sufficient precision.

616 11 Numbers

The algorithm is based on Conte and de Boor's `Coefficients of Newton form of
polynomial of degree 3`, and computes symmetric difference quotients.

For a function that automatically chooses the best differentiation method, see
calc.differ.

See also: calc.cheby, calc.differ, calc.isdiff, calc.eulerdiff, calc.xpdiff.

calc.differ (f, x [, ···] [, options])

Computes the derivative of a univariate or multivariate function f at point x (a
number). The second, etc. arguments to f may be given right after argument x.

If the option deriv=n is given, where n may be 1, 2, 3, 4, or 5 the n-th derivative is
calculated, with n = 1 the default. If n = 0, then the function value at f(x) is
determined.

If the eps=h option is given, the epsilon value h (a positive number preferably close
to zero) is used to determine the difference quotient; otherwise it is automatically
determined by calling math.epsilon for x.

This function actually is just a simple wrapper to

� calc.eulerdiff if deriv=1 or no deriv option has been given,
� calc.xpdiff with deriv < 4 provided that x is not near an undefined realm,
� calc.diff with deriv > 3 if x is near an undefined realm,
� calc.cheby otherwise,

thus automatically choosing the best method to compute the derivative.

The span option gives control on the computation of Chebyshev coefficients should
the logic decide to call calc.cheby and also controls the checks for undefined
realms in the vicinity of the given point. For example, with the call

> calc.differ(<< x -> ln x >>, 2.5, span = 2):

and point x = 2.5 (the second argument) the function will compute Chebyshev
coefficients over [x - span/2, x + span/2] = [1.5, 3.5] and will call calc.diff or
calc.xpdiff instead of calc.cheby if x is less than `span` units away from any
undefined realm. The default is span = 2.

The function is implemented in Agena and included in the lib/calc.agn file.

calc.dilog (x)

Computes the dilogarithm (Spence's) function for a number x. The return is the
number

agena >> 617

Li2(x) = ✟
k =1

∞
zk

k2

See also: calc.polylog.

calc.Ei (x)

Computes the exponential integral

Ei(x) = - dt¶
−x

∞
e−t

t

for a number x. The return is a number20, and undefined if x = 0. See also: calc.Ein.

calc.Ein (x)

Computes the entire exponential integral

Ein(x) = dt¶
−∞

x
1 − e−t

t

for a number x. The return is a number. See also: calc.Ei.

calc.elliptic1 (m)

calc.elliptic1 (phi, m)

In the first form, the function approximates the complete elliptic integral of the first
kind:

K(m) = dt¶
0

✜/2
1

1−msin2t

for real m. The return is a number.

In the second form, the function approximates the incomplete elliptic integral of
the first kind:

F(phi, m) = dt¶
0

phi
1

1−msin2t

with amplitude phi and modulus m both of type number. The return is a number.

See also: calc.elliptic2, calc.jocobian.

618 11 Numbers

20 Please note that for -5 x < 0, the result is an approximation.ñ

calc.elliptic2 (m)

calc.elliptic2 (phi, m)

In the first form, the function approximates the complete elliptic integral of the
second kind:

K(m) = dt¶
0

✜/2

1 − msin2t

for real m. The return is a number.

In the second form, the function approximates the incomplete elliptic integral of
the second kind:

F(phi, m) = dt¶
0

phi

1 − msin2t

with amplitude phi and modulus m both of type number. The return is a number.

See also: calc.elliptic1, calc.jocobian.

calc.En (n, x)

Evaluates the exponential integral

En(x) = - dt¶
1

∞
e−xt

tn

for non-negative n (an integer) and real x. The return is a number.

calc.eta (n)

For non-negative integer n, computes the Dirichlet Eta function:

✔(n) =✟
1

∞

(−1)k−1/ kn

calc.eucliddist (f, a, b [, ···])

Computes the Euclidian distance, i.e. the straight-line distance, of two points (a,
f(a)) and (b, f(b)) on a curve defined by a function f in one real, in the Euclidean
plane. a, b must be numbers. If f is multivariate, its second, third, etc. argument are
passed after b.

See also: |- operator, hypot, calc.sinuosity.

agena >> 619

calc.eulerdiff (f, x [, ···] [, option])

Computes the first (second, third, see below) derivative of the univariate or
multivariate function f at real point x, a number.

If the option eps=h is given, the epsilon value h (a positive number preferably close
to zero) is used internally for the computation, its default is math.epsilon(x).

The second, etc. arguments to f may be given right after argument x.

The return is the imaginary part of f(x + I*h)/h, or fail if f did not evaluate to the
complex plane. The function does not check whether f is differentiable at x, ···,
you may call calc.isdiff before.

If the deriv=2 option is passed, then the second derivative is determined, deriv=3
computes the third derivative. The quality of the second and third derivatives are
close to, but not as good as, the one of calc.xpdiff. (The first derivatives of eulerdiff
are still better than those of xpdiff.)

This function as at least three times faster than calc.xpdiff. See also: calc.diff.

The idea has been taken from the Euler Math Toolbox, thus its name.

For a function that automatically chooses the best differentiation method, see
calc.differ.

See also: calc.differ, calc.diff, calc.xpdiff.

calc.expn (n, x)

Implements the exponential sum function e_n(x), sometimes also denoted exp_n(x):

✟
k=0

n
xk

k!

calc.fminbr (f, a, b [, tol])

Estimates the minimum location of a univariate function f through one-dimensional
search over a given range [a, b], with a, b numbers, using Golden section search
combined with parabolic interpolation. The acceptable tolerance tol defaults to
Eps. Returns the abscissa (x-axis) value where a minimum has been found, a
number.

If there are multiple minima in the range, the function returns an arbitrary one. This
function is rather basic, see calc.minimum and calc.maximum for alternatives.

See also: calc.fmings.

620 11 Numbers

calc.fmings (f, a, b [, tol])

Like calc.fminbr, but performs Golden section search only.

Given a function f with a single local minimum in the interval [a, b], with a, b
numbers, returns the abscissa value (x-axis) where the minimum has been found.
The acceptable tolerance tol defaults to DoubleEps.

calc.fprod (f, a, b)

Computes the product of f(a), ···, f(b), with f a function, a and b numbers. If a > b,
then the result is 1.

See also: calc.fsum.

calc.fresnelc (x)

Computes the Fresnel integral C(x) = and returns it as a number.¶
0

x

cos(✜2 t2) dt

calc.fresnels (x)

Computes the Fresnel integral S(x) = and returns it as a number.¶
0

x

sin(✜2 t2) dt

calc.fsum (f, a, b [, ···])

Computes the sum of f(a), ···, f(b), with f a function, a and b numbers. If f requires
two or more arguments, the second, third, etc. argument must be passed after b. If
a > b, then the result is 0. The function uses Kahan-Babuška round-off error
prevention. Examples:

> calc.fsum(<< n, x -> (x**n)/fact(n) >>, 0, 100, 1):
2.718281828459

> calc.fsum(<< x, n -> (x**n)/fact(n) >>, 0, 100, 1):
5050

See also: addup,foreach, qsumup, sumup, calc.fprod, stats.cumsum, stats.fsum.

calc.gammainc (a, x [, option])

Computes the upper (default)

✄(a, x) = ¶
t=x

∞

ta−1e−tdt

or lower incomplete gamma function if any option is given for non-negative
argument x and non-negative parameter a:

agena >> 621

✏(a, x) = ¶
t=0

x

ta−1e−tdt

calc.gauleg (f, a , b [, n, [, eps]])

Performs Gauss-Legendre integration of a real univariate function f over the interval
a .. b with n sample points over the whole range, and precision eps. n defaults to 50
and eps to DoubleEps. It is seven times faster than calc.integ with similar precision.

calc.gaussian (x [, a [, b [, c]]])

Computes the Gaussian function at a real or complex point x, with a,
a

2c2 e−(x − b)^2

b, c being (real) numbers. By default, a = 1, b = 0, c = . The return depends on
1
2

the type of x.

See also: expx2.

calc.gd (x)

Computes Gudermannian function for any number or complex number x, i.e.

 gd(x) = dt= arctan(sinh(x)).¶
t=0

x
1

cosh(t)

The type of return depends on x.

Wikipedia: `The Gudermann function relates circular functions and hyperbolic
functions without explicitly using complex numbers.` The function is written in the
Agena language.

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the trapezoid rule and returns a number. By default the function quits after an
accuracy of eps = Eps has been reached. You may pass another numeric value
for eps if necessary.

See also: calc.intde, calc.intdei, calc.intdeo, calc.integ, calc.simaptive.

calc.hyp1f1 (a, b, z)

Computes the confluent hypergeometric function 1F1(a, b; z) aka Kummer's
function of the first kind. a, b, z are expected to be numbers. In case of an invalid
argument, the function mostly returns infinity, otherwise the return is a number.

622 11 Numbers

calc.hyp2f1 (a, b, c, z)

Computes the Gaussian or ordinary hypergeometric function 2F1(a, b; c; z). a, b, c, z
are expected to be numbers. In case of an invalid argument, the function mostly
returns infinity, otherwise the return is a number.

calc.ibeta (x, a, b)

Evaluates the incomplete beta integral defined by

dt
✄(a+b)

✄(a)✄(b)¶
0

x

ta−1(1 −t)b−1

from 0 to x. Both a and x must be positive numbers. See also: calc.invibeta.

calc.igamma (x, a)

Evaluates the incomplete gamma integral defined by

dt
1
✄(a)¶

0

x

e−t ta−1

Both a and x must be positive numbers. See also: calc.igammac.

calc.igammac (x, a)

Evaluates the complemented incomplete gamma integral defined by

dt
1
✄(a)¶

x

∞

e−t ta−1

Both a and x must be positive numbers. See also: calc.igamma.

calc.intcc (f, a, b [, eps])

Integrates the function f on the interval [a, b], with a and b numbers, using
Clenshaw-Curtis-Quadrature (CC) which is much faster than Double Exponential (DE)
Transformation.

f needs to be analytic over [a, b]. eps is the relative error requested excluding
cancellation of significant digits, and by default is equal to 1e-15.

For further information on the result, see calc.intde.

agena >> 623

calc.intde (f, a, b [, eps])

Integrates the function f on the interval [a, b], with a and b numbers, using Double
Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a, b]. eps is the relative error requested excluding
cancellation of significant digits, and by default is equal to 1e-15. Specifically, eps

means: (absolute error) / ().¶
a

b

f(x) dx

The return is 1) the approximation to the integral, or fail if evaluation failed, and 2)
an estimate err of the absolute error, where

� err 0: normal termination,m

� err < 0: abnormal termination, i.e. an convergent error has been detected: 1)
f(x) or f(x) has discontinuous points or sharp peaks over [a, b] (you must divided

dx

n

the interval [a, b] at these points). 2) The relative error of f(x) is greater than eps. 3)
f(x) has an oscillatory factor and the frequency of the oscillation is very high.

This function is four times faster than calc.gtrap and also much more accurate. It
can be applied on any polynomial, exponential or trigonometric function,
logarithm, power function, and most special functions.

See also: calc.gauleg, calc.gtrap, calc.intdei, calc.intdeo, calc.integ,
calc.simaptive.

calc.intdei (f, a, [, eps])

Integrates the non-oscillatory function f on the interval [a,], with a a number, using∞

Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a,]. eps is the relative error requested excluding∞

cancellation of significant digits, and by default is equal to 1e-15. Specifically, eps

means: (absolute error) / ().¶
a

b

f(x) dx

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intde, calc.integ, calc.simaptive.

calc.intdeo (f, a, [, omega [, eps])

Integrates the oscillatory function f on the interval [a,], with a a number, using∞

Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a,]. omega is the oscillatory factor of f and by default∞

is 1. eps is the relative error requested excluding cancellation of significant digits,

and by default is equal to 1e-15. Specifically, eps means: (absolute error)/().¶
a

b

f(x) dx

624 11 Numbers

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intde, calc.intdei, calc.integ, calc.simaptive.

calc.integ (f, a, b [, omega [, eps [, n]]])

This function is a wrapper around calc.intde, calc.intdei, and calc.intdeo. If eps is
not given, it is 1e-15 by default. If omega is not given, it is 1. The return is the integral
value and the error margin, both are numbers.

If b is not infinity, the function calls calc.intde and returns its results.

If b is infinity, the function first calls calc.intdei and returns its results, if intdei does not
evaluate to fail. Otherwise, calc.intdeo is called.

If the function should internally switch to another algorithm in order to compute a
result successfully, n denotes the number of sample points to evaluate. n by default
is set to (b - a)*20, i.e. 20 samples per unit.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.gauleg, calc.gtrap, calc.intde, calc.intdei, calc.intdeo,
calc.simaptive.

calc.interp (obj)

calc.interp (obj, a)

calc.interp (obj, a, coeffs)

In the first form, computes a Newton interpolating polynomial and returns it as a
univariate function. The interpolation points are passed in a table obj, with each
point being represented by the pair xk:yk.

Example:

> f := calc.interp([0:0, 1:3, 2:1, 3:3]);

Call f at point 10:

> f(10):
885

In the second and third form, it evaluates the Newton form of the polynomial which
interpolates a given table or sequence obj of pairs representing the points xk:yk, at
a single value a (a number) of the independent variable.

In the second form, the function computes the coefficients automatically in each
call, which slows down this variant.

agena >> 625

In the third form, by passing a sequence coeffs of coefficients (numbers), the
function uses the coefficients passed, avoiding their (re-)computation. The third
argument may be obtained by calling calc.newtoncoeffs.

Both in second and third form, the function returns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable. It is
advised to use the first form to benefit from maximum speed.

Example:

> calc.interp([0:0, 1:3, 2:1, 3:3], 10):
885

See also: calc.cheby, calc.clampedspline, calc.linterp, calc.nakspline,
calc.neville, calc.newtoncoeffs, calc.polyfit, calc.savgol.

calc.invibeta (y, a, b)

Evaluates the inverse of the incomplete beta integral such that

y = calc.ibeta(x, a, b).

See also: calc.ibeta.

calc.iscont (f, x [, ···] [, option])

The function returns true if a real function f is continuous at the given point, and
false otherwise. If f requires only one argument, x is a number. If f requires two or
more arguments, the second, third, etc. argument of f must be passed right after
x.

If the option eps=h is given as the last argument, the epsilon value h (a positive
number preferably close to zero) is used for the approximate equality check with
the left and right limit; otherwise it is automatically determined by calling math.eps
with x and any option given. See calc.limit for an example.

See also: calc.isdiff.

calc.isdiff (f, x [, ···] [, option])

The function returns true if a real function f is differentiable at the given point x, of
type number, and false otherwise. If f requires two or more arguments, the second,
third, etc. argument (all of type number) - of f must be passed right after x. The
second return is the epsilon value actually used internally.

If the option eps=h is given as the last argument, the epsilon value h (a positive
number preferably close to zero) is used for the approximate equality check with
the left and right limit; otherwise it is set to Eps. If the difference between the left-
and right-sided difference quotients is greater than epsilon, it is taken to the square

626 11 Numbers

root, to be more adaptive to functions where the graph is steep around x. See
calc.limit for an example.

A function is differentiable at x, ··· if it is continuous at x and if the left- and right-
sided difference quotients are equal. Note that the function may produce wrong
results around poles.

See also: calc.diff, calc.differ, calc.iscont, calc.xpdiff.

calc.jacobian (u, m)

Computes the Jacobian elliptic functions sn(u, m), cn(u, m) and dn(u, m) of real
parameter m between 0 and 1, and real argument u, in this order and also returns
phi, the amplitude of u, as a fourth result.

The relation to the incomplete elliptic integral is as follows: If u = calc.elliptic1(phi,
m), then sn(u, m) = sin(phi), and cn(u, m) = cos(phi), with phi the amplitude of u.

See also: calc.elliptic1, calc.elliptic2.

calc.lambda (v, x [, eps])

Computes the Lambda function and its derivative of (positive) integral order v for
argument x:

✆v(x) = 2v✄(v+1)

 ✆v
∏ (x) =

2v
x (✆v−1(x) −✆v(x))

 is the Gamma function, and Jv is the Bessel function of the first kind (Agena✄
function besselj). The function also returns the actual order processed, which may
differ from the input v. eps is a bailout value and by default is DoubleEps.

calc.limit (f, x [, ···] [, options])

The function returns the limit, a number, of a real function f at the given point x (a
number). If the limit does not exist, undefined will be returned.

If f is multivariate, the second, third, etc. argument of f must be passed right after
x.

Options may be given as the very last arguments, their order does not matter.

If the eps=h option is given, the epsilon value h (a positive number preferably close
to zero) is used for the approximate equality check of the left and right limit;
otherwise it is automatically determined by calling math.eps with x and any option.

If the side='left' option is given, the left-sided limit is determined. If the
side='right' option is given, the right-sided limit is determined. If the side='both'
option is given, the left and right-sided limit, in this order, will be returned. If the

agena >> 627

side='all' option is given, the limit, the left-sided, and the right-sided limit will be
returned, in this order.

For example, if the function is f(x, y) := |x| + y, with x = 1, y = 3, and eps = 1e-4,
the call for the left-sided limit would be:

> calc.limit(<< x, y -> abs(x) + y >>, 0, 3, eps = 1e-4, side='left'):
3

calc.linterp (obj)

Returns a function that conducts a Lagrange interpolation for a given sequence or
table obj of numeric pairs x:y where x and y denote a point in the plane. It is often
said that Lagrange interpolation is suited for theoretical purposes only, since it is
rather slow.

See also: calc.interp, calc.polyfit.

calc.logistic (x [, max [, k [, x0]]])

Computes the logistic function, having a characteristic `S`-shaped curve or
sigmoid curve, for any number x, according to the formula

L(x) = ,
max

1 + e−k (x−x0)

where max is the curve's maximum, k its steepness and x0 the x-value of the
sigmoid's midpoint. By default, max = 1, k = 1 and x0 = 0, thus computing the
sigmoid function. If only x is given, the function works like calc.sigmoid.

The result is a number between - but excluding - 0 and 1.

See also: calc.gd, calc.logit, calc.sigmoid.

calc.logit (x)

Computes the inverse sigmoid or logistic function according to the formula

logit(x) = = 2 arctanh(2x - 1).
ln(x)

ln(1+x)

If x=0, the function will return -infinity, and if x=1 the result will be +infinity.

See also: calc.logistic, calc.probit, calc.sigmoid.

calc.maximum (f, a, b, [step [, eps]])

Returns all possible maximum locations of the univariate function f on the interval
[a, b]. The function divides the interval [a, b] into smaller intervals [a, a+step],
[a+step, a+2*step], ···, [b-step, b], with step=0.1 if step is not given. It then looks

628 11 Numbers

for possible maximum locations x in these smaller intervals and checks whether the
first derivative of f at x is 0.

f must be differentiable on [a, b]. The procedure returns two sequences.

The accuracy of the procedure is determined by eps, with eps = Eps as a default. If
a possible extreme location x matches the condition f'(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
 Eps, then an accuracy of 1e-5 is used for a second test. If it succeeds, x is[

included into both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.fminbr, calc.fmings, calc.minimum.

calc.minimum (f, a, b, [step [, eps]])

Returns all possible minimum locations of the univariate function f on the interval [a,
b]. The function divides the interval [a, b] into smaller intervals [a, a+step], [a+step,
a+2*step], ···, [b-step, b], with step=0.1 if step is not given. It then looks for
possible minimum locations x in these smaller intervals and checks whether the first
derivative of f at x is 0.

f must be differentiable on [a, b]. The procedure returns two sequences.

The accuracy of the procedure is determined by eps, with eps = Eps as a default. If
a possible extreme location x matches the condition f'(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
 Eps, then an accuracy of 1e-5 is used for a second test. If it succeeds, x is[

included into both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.fminbr, calc.fmings, calc.maximum.

calc.nakspline (obj)

calc.nakspline (obj, a)

calc.nakspline (obj, a, coeffs)

Evaluates the `not-a-knot` cubic spline for a given table or sequence obj of pairs
representing the points xk:yk, at a single value a (a number) of the independent
variable.

In the first form, returns a univariate function which can be called with a number to
obtain the value of the interpolating polynomial. This is the recommended usage
due to its run-time behaviour.

agena >> 629

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each containing numbers. The third argument may be obtained by calling
calc.naksplinecoeffs.

In the second and third form, the function returns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable.

In general, the function returns fail if the structure contains less than four pairs.

See also: calc.clampedspline, calc.interp, calc.naksplinecoeffs, calc.neville.

calc.naksplinecoeffs (obj)

Determines the coefficients for the `not-a-knot` cubic spline for a given table or
sequence obj of pairs representing the points xk:yk. The return can be used to
speed up execution of calc.nakspline.

The function returns fail if the structure contains less than four pairs.

See also: calc.nakspline.

calc.neville (obj)

calc.neville (obj, a)

In the first form, returns a function that conducts an Aitken-Neville interpolation for a
given sequence or table obj of numeric pairs xk:yk where xk and yk denote a point
in the plane.

In the second form, evaluates the polynomial which interpolates a given sequence
or table obj of points represented by pairs of the form xk:yk at a single value a (a
number) of the independent variable, using Aitken-Neville interpolation, and returns
a number. Example:

> calc.neville([1:1, 2:2, 3:3], 2):
2

See also: calc.clampedspline, calc.interp, calc.nakspline.

calc.newtoncoeffs (obj)

Returns a sequence of the coefficients of type number of the Newton form of the
polynomial which interpolates a given table or sequence obj of pairs representing
the points xk:yk. The return can be used to speed up execution of calc.interp.

630 11 Numbers

See also: calc.interp.

calc.polyfit (obj, n)

For an n-th-degree polynomial of a sample of Cartesian pairs xk:yk, returns a
sequence of coefficients of descending degree, using polynomial regression. xk, yk

are numbers and degree n must be a positive integer. Example:

> coeffs := calc.polyfit(seq(1:0, 2:3, 3:1), 2):

seq(-2.5, 10.5, -8.0000000000001)

The return may be passed to calc.polygen to generate a polynomial function,
e.g.:

> p := calc.polygen(coeffs);

There is no limit on the degree, but a degree of 7 or more is not regarded
appropriate.

The function tries to reproduce polynomial trend lines known from spreadsheet
applications and internally uses Kahan-Ozawa-Summation for better accuracy.

See also: calc.interp, calc.linterp, calc.polygen.

calc.polygen (cn, cn-1, ···, c2, c1)

calc.polygen (obj)

Creates a polynomial p(x) = cn*xn-1 + cn-1*xn-2 + ··· + c2*x + c1 from the
coefficients cn, cn-1, ···, c2, c1 and returns it as a new function << x -> p(x) >>,
where x and the return p(x) represent numbers. You may alternatively pass the
coefficients in a table, sequence or register obj.

The function internally uses 80-bit precision floats.

Example: The Taylor series expansion of the sine function, with order 8, is:

sin(x) = x - x3+ x5- x7 + ...
1
3!

1
5!

1
7!

So the coefficients in descending [sic !] order are:

> coeffs := [1, 0, -1/fact(3), 0, +1/fact(5), 0, -1/fact(7)];

This generates the function:

> taylorsine := calc.polygen(coeffs);

agena >> 631

> taylorsine(1), sin(1):

0.84146825396825 0.8414709848079

See also: calc.polyfit.

calc.polylog (n, x)

Returns the polylogarithm of order n (an integer greater or equals -1) at a real point
x. The return is a number, or fail if n < -1 for this situation is not implemented. The
polylogarithm of order n is defined by the series:

Lin(x) = ✟
k=1

∞
xk

kn

See also: calc.dilog.

calc.probit (x)

Computes the inverse of the cumulative distribution function of the standard normal
distribution:

probit(x) = erf-1(2x-1).2

If x=0, the function will return -infinity, and if x=1 the result will be +infinity.

See also: calc.logit,inverf.

calc.Psi (x)

calc.Psi (n, x)

In the first form, computes the Psi (digamma) function, the logarithmic derivative of
the gamma function, for a number or complex number x. The return is the number
calc.xpdiff(lngamma(x), x).

In the second form, with n an integer and x a number, computes:

� n=0: The digamma function, equal to calc.Psi(x) but since it uses a different
algorithm the result may differ slightly.

� n=1: The trigamma function.
� n=2: The tetragamma function.

See also: gamma, lngamma.

calc.regulafalsi (f, a, b [, eps [, checkborders]])

Tries to determine the root of the univariate function f in the borders a and b and
returns it as a number if successful, and null otherwise. It also returns null if the
number of iterations taken exceeded 250 so it cannot go into an infinite loop.

632 11 Numbers

The precision eps by default is Eps.

If checkborders is set to false, then the function does not check whether the
computed result is in [a, b] and just returns the computed value.

See also: calc.zeroin, calc.zeros.

calc.savgol (f [, options])

Computes a Savitzky–Golay filter for the univariate function f to `smooth` its data
by returning a function interpolating f at a given point x0. preventing large
oscillations between sample points.

It fits successive subsets of neighbouring data with a low-degree polynomial using
the linear least-square method. By default, 15 equally-spaced points to the left of x0

and 15 equally-spaced points to the right of x0 are examined.

You can change this `window` by passing another odd value with the 'points'
option. All adjacent points are separated by distance eps which is 1e-5 by default.
You can change the distance with the 'eps' option, e.g. eps=0.1 which unless you
want to compute a derivative, see below, might be a much more useful value.

Alternatively it can also compute derivatives of any degree n by passing the option
deriv=n. The larger the degree n of the derivative, however, the less accurate the
results will become.

The degree d of the smoothing least-square polynomial is 3 by default and can be
changed by the degree=d option. Recommended degrees are d = 2 or 4, with d
not exceeding 6.

The function automatically determines the most suitable settings for the window and
the spacing eps of its points, but you can switch this off by passing the
adaptive=false option (default is adaptive=true).

Example: Compute the first, second and third derivative of sin(x) and evaluate at x=

:
✜
2

> f := << x -> sin x >>

> f' := calc.savgol(f, deriv = 1)

> f'' := calc.savgol(f, deriv = 2)

> f''' := calc.savgol(f, deriv = 3)

> f(Pi/2), f'(Pi/2), f''(Pi/2), f'''(Pi/2):
1 -6.3527471044073e-017 -1.0000000010326 4.3874822912549e-007

See also: calc.cheby, calc.interp, calc.savgolcoeffs.

agena >> 633

calc.savgolcoeffs (nleft, nright, deriv, polydeg)

Returns the normalised Savitzky-Golay filter coefficients as a register. nleft is the
number of leftward observations to be examined, while nright is the number of
rightward ones.

deriv is the order of the derivative desired (0 for the smoothed function, 1 for the
first derivative, asf.).

polydeg is the order of the smoothing polynomial, with 2 or 4 being recommended
values, but not exceeding 6.

See also: calc.chebycoeffs, calc.savgol.

calc.scaleddawson (x)

Implements the Scaled Dawson Integral w_im(x) = 2*calc.dawson(x)/sqrt(Pi) for real
x.

See also: calc.dawson, calc.w.

calc.sections (f, a, b, step)

Returns all intervals where a function has a change in sign. f must be a function, a
the left border of the main interval, b its right border, and step the step size. The
return is a sequence of pairs denoting the found subintervals. The function uses
Adapted Neumaier summation to prevent round-off errors, the same used by
numeric for loops with fractional step sizes.

See also: calc.zeros.

calc.Shi (x)

Computes the hyperbolic sine integral and returns it as the number

Shi(x) = dt¶
0

x
sinh t

t

x must be a number.

See also: calc.Ci, calc.Chi, calc.Si, calc.Ssi.

634 11 Numbers

calc.Si (x)

Computes the sine integral

Si(x) = dt = sinc(t) dt¶
t=0

x
sin(t)

t ¶
t=0

x

and returns it as a number. x must be a number.

See also: calc.Ci, calc.Chi, calc.Shi, calc.Ssi, sinc.

calc.sigmoid (x)

Computes the sigmoid, i.e. standard logistic, function,

S(x) = = = 1 - S(-x)
1

1 + e−x
ex

ex + 1

having a characteristic `S`-shaped curve or sigmoid curve, for any number x. The
result is a number S(x) with 0 < S(x) < 1.

See also: calc.gd, calc.logistic, calc.logit.

calc.simaptive (f, a, b [, h_min [, eps]])

Integrates the function f on the interval [a, b] using Simpson-Simpson Adaptive
Quadrature and returns a number. The function returns fail, if no suitable subinterval
of length greater than min_h could be found for which the estimated error falls
below eps.

The function is thrice as fast as calc.integ, but is not suited with singularities at or
within the borders.

By default, h_min is 1e-7, and eps is Eps/2, where Eps is the global system variable
Eps.

See also: calc.gauleg, calc.gtrap, calc.intde, calc.intdei, calc.intdeo,
calc.integ.

calc.sinuosity (f, a, b)

Computes the ratio of the curvilinear length (along the curve) and the Euclidean
distance (straight line) between the end points a and b, of the curve defined by a
function f in one real. a, b must be numbers.

sinuosity does not check whether f has an inflection point in the given range [a,b].
The function is implemented in Agena and included in the lib/calc.agn file.

agena >> 635

See also: calc.arclen, calc.curvature, calc.eucliddist.

calc.smoothstep (x, n)

calc.smoothstep (x, 'perlin')

In the first form, the function receives a non-negative integer n and any number x
and returns 0 if x < 0, 1 if x > 1, and smoothly interpolates between 0 and 1, using
an (2*n+1)'th-degree Hermite polynomial otherwise.

The slope of the smoothstep function is zero at both edges, so the result is
differentiable over the whole real domain.

Wikipedia: `Smoothstep is a family of sigmoid-like interpolation and clamping
functions commonly used in computer graphics and video game engines`, for
example to naturally accelerate or decelerate an object.

In the second form, if the string 'perlin' is passed, the function computes the
`smootherstep` polynomial 6x5 - 15x4 + 10x3 for 0 < x < 1, which has zero 1st- and
2nd-order derivatives at x = 0 and x = 1, as suggested by computer scientist Prof.
Kenneth Perlin. If given, n may be any integer as it is not evaluated in this case.

See also: heaviside, math.clip, math.rectangular, math.unitise.

calc.softsign (x)

Computes the Softsign function .
x

1 + x

calc.Ssi (x)

Computes the shifted sine integral and returns it as a number. x must be a number.

See also: calc.Ci, calc.Chi, calc.Shi, calc.Si.

calc.variance (f, a, b [, relative [, n [, eps]]])

Returns a positive integer that indicates whether a function f in one real changes
slowly or rapidly on the given interval [a, b], with a, b numbers. The larger the result,
the larger is its rate of change.

By default,
� the result is relative, i.e. given per unit on the abscissa (true for relative, false

for absolute),
� there are n =10 sample points per unit, and
� the bail-out value eps - a positive value close to zero - is Eps.

Internally, the function uses adaptive integration with trapezoidal rule and counts
the number of trapezoids evaluated. Note that the results are estimates.

636 11 Numbers

calc.w (z [, eps])

Implements the scaled complex complementary error function w(z) =
exp(-z^2)*erfc(-I*z) (Faddeeva function) for number or complex number z. The
return is a complex value. By default, the precision eps is DoubleEps, and can be
any other non-negative number.

See also: calc.scaleddawson.

calc.weier (x, a, b [, eps])

Implements the Weierstraß function for the given number x and parameters a, b
(also numbers), with 0 < x < 1 and ab 1, b an odd positive integer - a functionm

that is continuous but non-differentiable everywhere:

an cos(bn x)✟
n=0

∞

The precision is given by its fourth optional argument, eps, which is Eps by default.

The function internally uses Kahan-Ozawa-Summation for better accuracy.

calc.xpdiff (f, x [, ···] [, options])

Like calc.diff, but uses Richardson's extrapolation method to compute symmetric
difference quotients. f is a univariate or multivariate function to be inspected at
point x (a number). The second, etc. arguments to f may be given right after
argument x.

The return of the procedure is the derivative of f at x, ···, - a number - and the
absolute error. If the absolute error is quite large, it may indicate non-differentiability
of f at x, ···. If the function could not determine a result if x is near an undefined
domain, it automatically calls calc.diff, which is more robust in this situation but
returns less precise results.

If the option deriv=n is given, where n may be 1, 2, or 3, the n-th derivative is
calculated, with n = 1 the default. If n = 0, then the function value at f(x) is
determined.

If the option eps=h is given, the epsilon value h (a positive number preferably close
to zero) is used for the relative error check. If the option delta=g is given, the delta
value g (a positive number preferably close to zero) is used for the absolute error
check, otherwise they both default to math.epsilon(x).

xpdiff produces better results with powers and trigonometric functions than
calc.diff. For a function that automatically chooses the best differentiation method,
see calc.differ.

agena >> 637

See also: calc.diff, calc.differ, calc.eulerdiff, calc.isdiff.

calc.zeroin (f, a, b [, eps])

Determines the root of the univariate function f in the borders a and b and returns a
number if successful, and null otherwise.

The precision eps by default is Eps.

In general, the function will even return accurate results where calc.regulafalsi fails
to do so - or even cannot find a root at all -, but the runtime behaviour compared
to calc.regulafalsi depends on the following conditions:

1. the interval should not be too far from the origin,
2. the width of the interval should not be too small.

If both conditions are met, then the function can be faster than calc.regulafalsi.

The algorithm uses bisection combined with linear or quadric inverse interpolation,
followed by applying Regula Falsi to the estimate done by the previous actions.

See also: calc.regulafalsi, calc.zeros.

calc.zeros (f, a, b, [step [, eps]])

Returns all roots of a function f in one variable on the interval [a, b] in a sequence. If
it could not find a root, it returns null.

The function divides the interval [a, b] into smaller intervals [a, a+step], [a+step,
a+2*step], ···, [b-step, b], with step=0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roots
using a modified regula falsi method.
The accuracy of the regula falsi method is determined by eps, with eps = Eps as a
default. f must be differentiable on [a, b].

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.regulafalsi, calc.sections, calc.zeroin.

calc.zeta (x)

Computes the Riemann Zeta function for real x > 1 and returns the number:

✟
k=2

∞

k−x + 1

638 11 Numbers

calc.zeta2 (x, q)

Computes the Riemann Zeta function of two arguments, where x > 1 and q is not a
negative integer or zero.

agena >> 639

11.13 linalg - Linear Algebra Package

This package provides basic functions for Linear Algebra.

There are two constructors available to define vectors and matrices, linalg.vector
and linalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been created with the above mentioned
constructors.

The package includes a metatable linalg.vmt defined in the lib/linalg.agn file with
metamethods for vector addition, vector subtraction, and scalar vector
multiplication. Further functions are provided to compute the length of a vector with
the abs operator and to apply unary minus to a vector.

The table linalg.mmt defines metamethods for matrix addition, subtraction and
multiplication with a scalar. It is assigned via the lib/linalg.agn file, as well.

The vector function allows to define sparse vectors, i.e. if the component n of a
vector v has not been physically set, and if v[n] is called, the return is 0 and not null.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim' key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

A sample session:

Define two vectors in two fashions: In the simple form, just pass all components
explicitly:

640 11 Numbers

21 The = operator just checks whether an element in one structure is residing at any position in the
other structure, whereas the == and ~= operators check elements place-by-place. Developers
who would like to extend the linalg package may also have a look at the __eeq and __aeq
metamethod. to influence the behaviour of the == and ~= operators, respectively.

Equality checks of vectors or matrices should always be conducted with the
strict equality operator == or the ~= approximate equality operator
instead of the Cantor-like = equality operator21. For inequality use the

not operator combined with == or ~=.

> a := vector(1, 2, 3):
[1, 2, 3]

In a more elaborate form, indicate the dimension of the vector to be created and
only pass the vector components that are not zero in a table:

> b := vector(3, [1~2]):
[2, 0, 0]

Check whether a and b are parallel and have the same direction:

> abs(a+b) = abs(a) + abs(b):
false

Addition:

> a + b:
[3, 2, 3]

Subtraction:

> a - b:
[-1, 2, 3]

Scalar multiplication:

> 2 * a:
[2, 4, 6]

> crossprod(a, b):
[0, 6, -4]

Find the vector x which satisfies the matrix equation A x = b. In this example, we will

solve the equation * x = . The linalg.matrix constructor expects
1 2 −4
2 1 3

−3 1 6

−6
5

−2
row vectors.

> A := matrix([1, 2, -4], [2, 1, 3], [-3, 1, 6]):
[1, 2, -4]
[2, 1, 3]
[-3, 1, 6]

> b := vector(-6, 5, -2):
[-6, 5, -2]

> backsubs(A, b):
[2, -2, 1]

The linalg operators and functions are:

agena >> 641

s1 + s2

Adds two vectors or matrices s1, s2. The return is a new vector or matrix. This
operation is done by applying the __add metamethod.

s1 - s2

Subtracts two vectors or matrices s1, s2. The return is a new vector or matrix. This
operation is done by applying the __sub metamethod.

k * s
s * k
m1 * m2

Multiplies a number k with each element in vector or matrix s, or multiplies the
matrix m1 with matrix m2. The return is a new vector or matrix. This operation is done
by applying the __mul metamethod.

s / k

Divides each element in the vector s by the number k The return is a new vector.
This operation is done by applying the __div metamethod.

abs (v)

Determines the length of vector v. This operation is done by applying the __abs
metamethod to v.

qsumup (v)

Raises all elements in vector v to the power of 2. The return is the sum of these
powers, i.e. a number. This operation is done by applying the __qsumup

metamethod to v.

linalg.add (v, w)

Determines the vector sum of vector v and vector w. The return is a vector.

See also: linalg.sub.

linalg.augment (···)

Joins two or more matrices or vectors together horizontally. Vectors are supposed to
be column vectors. The matrices and vectors must have the same number of rows.

The return is a new matrix.

See also: linalg.stack.

642 11 Numbers

linalg.backsub (A)

linalg.backsub (A, v)

Performs backward substitution on a system of linear equations.

In the first form, A must be an augmented m x n lower triangular matrix with m+1 =
n. In the second form, A is an lower triangular square matrix and v a right-hand side
vector.

The return is the solution vector.

The function issues an error if A is not upper triangular. You may change the
tolerance to detect `zeros` by setting the global system variable Eps to another
value.

See also: linalg.forsub, linalg.gsolve, linalg.rref.

linalg.backsubs (A, b)

The function has been deprecated. Please use linalg.gsolve instead.

linalg.checkmatrix (A [, B, ···] [, true])

Issues an error if at least one of its arguments is not a matrix. If the last argument is
true, then the matrix dimensions are returned as a pair, else the function returns
nothing.

Contrary to linalg.checkvector, the dimensions will not be checked if you pass
more than one matrix.

linalg.checksquare (A)

Issues an error if A is not a square matrix. It returns nothing. See linalg.issquare for
information on how this check is being done.

linalg.checkvector (v [, w, ···])

Issues an error if at least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything goes fine, the function will return the dimensions of all vectors passed.

See linalg.isvector for information on how the check is being done.

linalg.coldim (A [, ···])

Determines the column dimension of the matrix A. The return is a number.

agena >> 643

If you pass more than one argument, then a time-consuming check whether A is a
matrix, is skipped.

A more direct way of determining the column dimension is right(A.dim).

See also: linalg.rowdim.

linalg.column (A, n)

Returns the n-th column of the matrix or row vector A as a new vector.

See also: columns, linalg.submatrix.

linalg.crossprod (v, w)

Computes the cross-product of two vectors v, w of dimension 3. The return is a
vector.

linalg.det (A)

Computes the determinant of the square matrix A. The return is a number. With
singular matrices, it returns 0.

linalg.diagonal (v)

Creates a square matrix A with all vector components in v put on the main
diagonal. The first element in v is assigned A[1][1], the second element in v is
assigned A[2][2], etc. Thus the result is a dim(v) x dim(v)-matrix.

See also: linalg.getdiagonal.

linalg.dim (A)

Determines the dimension of a matrix or a vector A. If A is a matrix, the result is a pair
with the left-hand side representing the number of rows and the right-hand side
representing the number of columns. If A is a vector, the size of the vector is
determined.

linalg.dotprod (v, w)

Computes the vector dot product of two vectors v, w of same dimension. The
vectors must consist of Agena numbers. The return is a number.

linalg.eigen (A)

Returns both the eigenvectors and eigenvalues of the square matrix A. The
eigenvectors are returned as a matrix and the eigenvalues as a table array of
complex numbers, in this order.

See also: linalg.eigenval.

644 11 Numbers

linalg.eigenval (A)

Determines the eigenvalues of the square matrix A and returns them as a table
array of complex numbers.

Example:

> linalg.eigenval(linalg.matrix([1, 2, 4], [3, 7, 2], [5, 6, 9])):
[-0.89460254283572, 13.747889058727, 4.1467134841089]

See also: linalg.eigen.

linalg.forsub (A)

linalg.forsub (A, v)

Performs forward substitution on a system of linear equations.

In the first form, A must be an augmented m x n upper triangular matrix with m+1 =
n. In the second form, A is an upper triangular square matrix and v a right-hand side
vector.

The return is the solution vector.

The function issues an error if A is not upper triangular. You may change the
tolerance to detect `zeros` by setting the global system variable Eps to another
value.

See also: linalg.backsub, linalg.gsolve, linalg.rref.

linalg.getdiagonal (A)

Returns the diagonal of the square matrix A as a vector.

See also: linalg.diagonal.

linalg.gsolve (A [, true])

linalg.gsolve (A, v [, true])

Performs Gaussian elimination on a system of linear equations.

In the first form, A must be an augmented m x n matrix with m+1 = n. In the second
form, A is a square matrix and v a right-hand side vector.

The return is the solution vector. It returns infinity if an infinite number of solutions has
been found, and undefined if no solutions exists. It returns fail if it could not
determine whether no or an infinite number of solutions exist.

If the Boolean value true is given as the last argument, the reduced linear system is
also returned as an (augmented) upper triangular matrix.

agena >> 645

See also: linalg.backsub, linalg.forsub, linalg.rref.

linalg.hilbert (n [, x])

Creates a generalised n x n Hilbert matrix H, with H[i, j] := 1/(i+j-x). If x is not
specified, then x is 1. (n and x must be numbers.)

linalg.identity (n)

Creates an identity matrix of dimension n with all components on the main
diagonal set to 1 and all other components set to 0.

linalg.inverse (A)

Returns the inverse of the square matrix A.

linalg.isallones (A)

Checks whether the vector or matrix A contains only ones and returns true or false.

See also: linalg.iszero.

linalg.isantisymmetric (A)

Checks whether the matrix A is an antisymmetric matrix. If so, it returns true and false
otherwise.

linalg.isdiagonal (A)

Checks whether the matrix A is a diagonal matrix. If so, it returns true and false
otherwise.

linalg.isidentity (A)

Checks whether the matrix A is an identity matrix. If so, it returns true and false
otherwise.

linalg.islower (A)

Returns true if A if square matrix A is in lower triangular form, that is all its entries
above the main diagonal are zero. Otherwise returns false.

See also: linalg.isupper.

646 11 Numbers

linalg.ismatrix (A)

Returns true if A is a matrix, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘matrix’.

linalg.issquare (A)

Returns true if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and false otherwise.

linalg.issymmetric (A)

Checks whether the matrix A is a symmetric matrix. If so, it returns true and false
otherwise.

linalg.isupper (A)

Returns true if A if square matrix A is in lower triangular form, that is all its entries
above the main diagonal are zero. Otherwise returns false.

See also: linalg.isupper.

linalg.isvector (A)

Returns true if A is a vector, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’.

linalg.iszero (A)

Checks whether the vector or matrix A contains only zeros and returns true or false.

See also: linalg.isallones.

linalg.ludecomp (A [, n])

Computes the LU decomposition of the square, non-singular matrix A of order n. If n
is missing, it is determined automatically, i.e. n := left(A.dim).

The return is the resulting matrix, the permutation vector as a vector, and a number
where this number is either 1 for an even number of row interchanges done during
the computation, or -1 if the number of row interchanges was odd. If the matrix is
singular, an error will be issued.

agena >> 647

linalg.matrix (obj1, obj2, ···, objn)

linalg.matrix (m, n [, lv])

linalg.matrix (str)

In the first form, creates a matrix from the given structures objk. The structures are
considered to be row vectors. Valid structures are vectors created with
linalg.vector, tables or sequences.

In the second form, with m and n integers, creates an m x n matrix and optionally fills
it row by row with the elements in the table or sequence lv. lv must not include
structures. If lv is not given, the matrix is filled with zeros.

In the third form the matrix is defined by a string str where the row vectors are
separated by commas and the vector components by one or more white spaces.
Carriage returns and newlines, if any, will be ignored. Example:

> linalg.matrix('1 2 3, 4 5 6, 7 8 9'):
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

The return is a table of the user-defined type 'matrix' and a metatable linalg.mmt
assigned to the matrix. The table key 'dim' contains a pair with the dimensions of
the matrix: the left-hand side specifies the number of rows, the right-hand side the
number of columns.

See also: linalg.vector, utils.readcsv.

linalg.maeq (A, B)

This function checks matrix A and matrix B for approximate equality. The return is
either true or false. The function uses Donald Knuth's approximation method to
compare matrix elements (see the approx function for information on how this
works).

You can change the accuracy threshold epsilon with the environ.kernel/eps
function.
See also: ~= and ~<> metamethods, approx, linalg.meeq, linalg.vaeq.

linalg.meeq (A, B)

This function checks matrix A and matrix B for strict equality. The return is either true or
false.

See also: == metamethod, linalg.maeq, linalg.veeq.

648 11 Numbers

linalg.mmap (f, A [, ···])

This function maps a function f to all the components in the matrix A and returns a
new matrix. The function must return only one value. See linalg.vmap for further
information.

linalg.mmul (A, B)

This function multiplies an m x n matrix A with an n x p matrix B. The return is an m x p
matrix. See also: * metamethod.

linalg.mulrow (A, i, s)

Multiplies each element of row i in matrix A with the scalar s and returns a new
matrix.

See also: linalg.swapcol, linalg.swaprow, linalg.mulrowadd.

linalg.mulrowadd (A, i, j, s)

Returns a copy of matrix A with each element in row j exchanged by the sum of this
element and the respective element in row i multiplied by the number s.

See also: linalg.swapcol, linalg.swaprow, linalg.mulrowadd.

linalg.mzip (f, A, B [, ···])

This function zips together two matrices A, B by applying the function f to each of its
respective components. The result is a new matrix m where each element m[i, j] is
determined by m[i, j] := f(A[i, j], B[i, j]). If the f has more than two arguments, then its
third to last argument must be given right after B.

A and B must have the same dimension.

See also: linalg.vzip, linalg.mmap.

linalg.norm (A)

linalg.norm (v [, n])

The function returns the norm of a matrix or vector.

In the first form, the function returns the infinity norm of a matrix A. It is the maximum
row sum, where the row sum is the sum of the absolute values of the elements in a
given row.

agena >> 649

In the second form, it returns the n-norm of a vector v, where n is a positive integer.
(The n-norm of a vector is the n-th root of the sum of the magnitudes (absolute
values) of each element in v raised to the n-th power.) If n is infinity, the return is the
infinity norm, i.e. the maximum magnitude of all elements v.

linalg.reshape (A, m [, n])

Returns an m x n matrix whose elements are taken from the matrix A. The elements of
the matrix are accessed in column-major order. If n is omitted, it is set to 1.

Example:

> a := linalg.matrix(3, 2, [1, 2, 3, 4, 5, 6]):
[1, 2]
[3, 4]
[5, 6]

> reshape(a, 2, 3):
[1, 3, 5]
[2, 4, 6]

linalg.rowdim (A [, ···])

Determines the row dimension of the matrix A. The return is a number.

If you pass more than one argument, then a time-consuming check whether A is a
matrix, is skipped.

A more direct way of determining the column dimension is left(A.dim).

See also: linalg.coldim.

linalg.rref (A [, v])

Returns the reduced row echelon form of any m x n matrix A.

If a vector v is given, the function computes the reduced row echelon form of the
augmented matrix A|v. In this case, A and v must have equal dimensions.

See also: linalg.backsub, linalg.forsub, linalg.gsolve.

linalg.scalarmul (v, n)

linalg.scalarmul (n, v)

Performs a scalar multiplication by multiplying each element in vector v by the
number n. The result is a new vector.

650 11 Numbers

linalg.scale (A)

Normalises the (non-null) columns of a matrix A in such a way that, in each column,
an element of maximum absolute value equals 1. The return is a new matrix where
the normalised vectors are delivered in the corresponding columns.

See also: math.norm, stats.scale.

linalg.stack (···)

Joins two or more matrices or vectors together vertically. Vectors are supposed to
be row vectors. The matrices and vectors must have the same number of columns.

The return is a new matrix.

See also: linalg.augment.

linalg.submatrix (A, p [, r])

linalg.submatrix (A, p:q [, r:s])

In the first form, returns column p from matrix A as a new row vector.

In the second form, returns columns p to q as a new matrix.

An optional third argument may be given to limit the extraction of the columns to
the specified row r or rows r to s.

With the second and third arguments, you may mix numbers with pairs.

See also: linalg.column.

linalg.swapcol (A, p, q)

Swaps column p in matrix A with column q. p, q must be positive integers. The result is
a new matrix.

See also: linalg.swaprow, linalg.mulrow, linalg.mulrowadd.

linalg.swaprow (A, p, q)

Swaps row p in matrix A with row q. p, q must be positive integers. The result is a new
matrix.

See also: linalg.swapcol, linalg.mulrow, linalg.mulrowadd.

agena >> 651

linalg.sub (v, w)

Subtracts vector w from vector v. The result is a new vector.

See also: linalg.add.

linalg.trace (A)

Computes the trace of a square matrix A and returns a number.

linalg.transpose (A)

Computes the transpose of an m x n-matrix A and thus returns an n x m-matrix.

linalg.vector (a1, a2, ···)

linalg.vector ([a1, a2, ···])

linalg.vector (seq(a1, a2, ···))

linalg.vector (n, [a1, a2, ···])

linalg.vector (n, [])

linalg.vector (str)

Creates a vector with numeric components a1, a2, etc. The function also accepts a
table or sequence of elements a1, a2, etc. (second and third form).

In the fourth form, n denotes the dimension of the vector, and ak might be single
values or key~value pairs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n will be returned.

The sixth form allows to define a vector through a string str with the vector
components separated by one or more white spaces:

> linalg.vector(' 1 2 3 '):
[1, 2, 3]

The result is a table of the user-defined type 'vector' and the linalg.vmt metatable
assigned to allow basic vector operations with the operators +, -, *, unary minus
and abs. The table key 'dim' contains the dimension of the vector created.

See also: linalg.matrix.

linalg.vaeq (a, b)

This function checks vector a and vector b for approximate equality. The return is
either true or false. The function uses Donald Knuth's approximation method to

652 11 Numbers

compare vector elements (see the approx function for information on how this
works).

You can change the accuracy threshold epsilon with the environ.kernel/eps
function.

See also: ~= metamethod, approx, linalg.veeq, linalg.maeq.

linalg.veeq (a, b)

This function checks vector a and vector b. for strict equality. The return is either true
or false.

See also: == metamethod, linalg.meeq, linalg.vaeq.

linalg.vmap (f, v [, ···])

This operator maps a function f to all the components in vector v and returns a new
vector. The function f must return only one value.

If function f has only one argument, then only the function and the vector are
passed to linalg.vmap. If the function has more than one argument, then all
arguments except the first are passed right after the name of the vector.

Examples:

> vmap(<< x -> x^2 >>, vector(1, 2, 3)):
[1, 4, 9]

> vmap(<< (x, y) -> x > y >>, vector(1, 0, 1), 0): # 0 for y
[true, false, true]

See also: linalg.vzip, linalg.mmap, linalg.mzip.

linalg.vzip (f, v1, v2 [, ···])

This function zips together two vectors by applying the function f to each of its
respective components. The result is a new vector v' where each element v'[k] is
determined by v'[k] := f(v1[k], v2[k]).

v1 and v2 must have the same dimension. The third to last argument to f must be
given right after v2.

See also: linalg.vmap, linalg.mmap.

linalg.zerovector (n)

Creates a zero vector of length n with all its components physically set to 0. If you
want to create a sparse zero vector of dimension n, use: linalg.vector(n, []).

agena >> 653

11.14 stats - Statistics

This package contains procedures for statistical calculations and operates
completely on tables.

You might want to use utils.readcsv to read distributions from a CSV file.

Summary of functions:

Averages:

stats.accu, stats.amean, stats.ema, stats.gema, stats.gmean, stats.gsma,
stats.gsmm, stats.hmean, stats.iqmean, stats.median, stats.mean,
stats.midrange, stats.qmean, stats.sma, stats.smm, stats.trimean,
stats.trimmean.

Deviations:

stats.ad, stats.chauvenet, stats.durbinwatson, stats.ios, stats.mad,
stats.md, stats.sd, stats.spread, stats.ssd, stats.var.

Distributions:

stats.laplace, stats.logistic, stats.geometric, stats.cauchy, stats.chisquare,
stats.cdfnormald, stats.fratio, stats.gammacdf, stats.gammad,
stats.gammadc, stats.gammapdf, stats.hypergeom, stats.logseries,
stats.poissond, stats.studentst.

Density:

stats.cdf, stats.nde, stats.ndf, stats.pdf, stats.poisson.

Extrema:

stats.colnorm, stats.extrema, stats.minmax, stats.peaks, stats.rownorm,
stats.smallest.

Occurrences:

stats.countentries, stats.freqd, stats.isall, stats.isany, stats.mode,
stats.obcount, stats.obpart.

Ranges:

stats.fivenum, stats.iqr, stats.percentile, stats.prange, stats.qcd,
stats.quartiles.

654 11 Numbers

Sums:

addup, qsumup, sumup, stats.cumsum, stats.fsum, stats.moment,
stats.sumdata, stats.sumdataln, stats.var.

Probability density functions:

stats.cauchy, stats.cdfnormald, stats.chisquare, stats.F, stats.Fc,
stats.fratio, stats.gammad, stats.gammadc, stats.invF, stats.invnormald,
stats.lognormald, stats.normald, stats.probit, stats.studentst.

Miscellaneous:

stats.acf, stats.acv, stats.checkcoordinate, stats.dbscan,
stats.deltalist, stats.fprod, stats.herfindahl, stats.issorted, stats.kurtosis,
stats.neighbours, stats.scale, stats.skewness, stats.sorted, stats.tovals.

The functions:

A general note: almost all of the statistics functions ignore the undefined value
should it be part of a distribution. Any non-numeric values in a distribution are
replaced with zeros. Most of the following functions also process numarrays.

To reduce round-off errors, it is always a good idea to sort structures before applying
stats functions that sum up data, see stats.sorted and numarray.sorted.

Also note that when a distribution is stored to a table and this table has holes, you
might get wrong results - so apply tables.entries to the respective table before
passing it to one of the stats functions.

stats.accu ([true])

Returns an iterator that computes the running mean, variance, median, and
absolute deviation by mere accumulation of individual observations.

If the first optional argument true is passed, then sample values are computed
(division by the number of observations - 1), otherwise population values are
computed (division by the number of observations).

If the resulting iterator is called without any argument, the current results are returned
in a table.

If the resulting iterator is called with a number, i.e. an observation, it is added to the
accumulators.

agena >> 655

While the mean and variance computed are correct, the median and the absolute
deviation are approximations only. The function ignores non-finite values, i.e.
undefined and +/-infinity.

You may use this function if a distribution is too large to be stored in a structure.

The idea has been taken from the Stat package shipped with Digital Equipment
Corporation Critical Mass Modula-3. 2.10.1.

stats.acf (obj, lag, [, option [, m [, s]]])

Returns the autocorrelation of a distribution obj (a table, sequence or numarray) of
numbers at a given lag, a non-negative integer. If any third argument option
different from null is passed, then the un-normalised autocorrelation will be
returned. The return is a number,

(obji -)(obji+lag -)✟
i =1

n-lag

✙ ✙

where n is the number of observations, and is the arithmetic mean of the✙
distribution. If no option is passed, the sum is divided by the variance of obj
multiplied by n, yielding a normalised result. The function uses Kahan-Ozawa
round-off error prevention.

To speed up computation times significantly, you may also pass a precomputed
mean m and the sum s of all values in the distribution.

It may be used to detect periodicy in a time series.

A distribution is autocorrelated if stats.acf returns a negative or positive value
significantly different from zero. The - normalised - return is in the range [-1, 1], where
+1 denotes perfect autocorrelation and -1 with 1 perfect anti-correlation. A
negative correlation indicates that higher values of a distribution are related to
lower values.

See also: stats.acv.

stats.acv (obj, p, [, option])

Depending on the type of the observation obj, returns a table, sequence or
numarray of autocorrelations starting with lag = 0, through and including the given
number p of lags. If any third argument option is passed, then un-normalised
autocorrelations are returned. For the formula and numeric method used, see
stats.acf.

656 11 Numbers

stats.ad (obj [, option])

Computes the absolute (or mean) deviation of all the values in a table, sequence
or numarray obj, i.e. the mean of the equally likely absolute deviations from the
arithmetic mean :✙

1
n✟

i =1

n

obj i - ✙

The return is a number.

If any second non-null argument is given, then the variation coefficient will be
returned:

 / | |
1
n✟

i =1

n

obj i - ✙ ✙

Absolute deviation is more robust than standard deviation since it is less sensitive to
outliers. The function uses Kahan-Babuška round-off error prevention.

If obj is empty or entirely consists of undefineds, fail will be returned. The function
ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

The function returns fail if obj contains less than two elements.

See also: stats.ios, stats.mad, stats.md, stats.sd.

stats.amean (obj)

Divides each element in a table, sequence or numarray obj by the size of obj and
sums up the quotients to finally return the arithmetic mean. It is equivalent to:

✟
i =1

n obj i
n

By dividing each element before summation, the function avoids arithmetic
overflows and also uses the Kahan-Babuška algorithm to prevent round-off errors
during summation. Thus the function is more robust but also significantly slower than
stats.mean.

If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.

The function returns fail if obj contains less than two elements.

agena >> 657

If obj is empty or entirely consists of undefineds, fail will be returned. The function
ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: math.agm, stats.accu, stats.gmean, stats.hmean, stats.mean,
stats.qmean, stats.sma, stats.trimmean.

stats.beta (x, nu1, nu2)

Computes the probability density function 1/beta(nu1, nu2) * xnu1-1* (1-x)nu2-1 of the
Beta distribution. x can be any number and both nu1 and nu2 must be positive
integers.

stats.binomd (k, n, p)

The function simplifies to the cumulative probability binomial distribution function
defined as:

stats.binompdf(j, n, p)✟
j=0

min(k,n)

using Kahan-Babuška summation to minimise round-off errors.

stats.binompdf (k, n, p)

The function simplifies to the binomial probability density defined as:

.
n
k pk(1 −p)n−k

See also: stats.negbinompdf.

stats.cauchy (x, a, b)

The cauchy[a, b] distribution has the probability density function:

1/(*b*(1+((x-a)/b)2)), b > 0.✜

See also: stats.chisquare, stats.fratio, stats.normald, stats.studentst.

658 11 Numbers

stats.cdf (a, b [, [,]])✙ ✤

Computes the cumulative density function between the lower bound a and the
upper bound b. If the mean is not given, it defaults to 0; if the standard deviation✙
 is not given, it defaults to 1.✤

The return is the number:

 e dx
1

✤ 2✜

b

a
¶

−(x−✙)2

2✤2

See also: stats.nde, stats.ndf, stats.pdf.

stats.cdfnormald (x)

Implements the cumulative density function for the standard normal distribution. The
return is the number:

 e dt
1
2✜

x

t=−∞
¶ −t2

2

See also: stats.invnormald, stats.normald.

stats.chauvenet (obj [, x] [, option, ···])

Receives a table or sequence obj of normally distributed numbers and checks
them for outliers using the formula:

p := n * erfc((| x - | / sd),✙

where n is the number of observations in a distribution, x a sample of it, the✙

arithmetic mean = , dev the standard deviation sd = .✙ ✟
i =1

n obj i
n

1
n ✟

i=1

n

obj i − ✙
2

If at least obj and x is given, the function checks whether the number x is an outlier
by conducting a 1-pass check and returns true or false.

If obj but not x is passed, however, the procedure iterates obj again and again as
long as it does not find an outlier, and returns the outliers in a structure, its type
defined by the type of obj.

By default, if p < 0.5, where 0.5 is the magical Chauvenet number, an outlier is
detected. If you pass the option bailout=c, then c, a non-negative number, will
be the threshold.

If you pass the option jump=true, as soon as an outlier is detected, it is removed
from the distribution and then the whole evaluation process is restarted immediately
with a reduced distribution along with a re-computed mean and deviation.

agena >> 659

If you do not, all remaining items are also checked according to the current criteria
- after the last item has been checked, only then the outliers are removed from the
distribution, the mean and deviation are re-computed and another iteration begins.

If you pass the option mean=f, where f is a procedure, then the mean is✙
determined by f. The default is f = stats.amean, i.e. the arithmetic mean.

If you pass the option dev=f, where f is a procedure, then the deviation dev is
determined by f. The default is f = stats.sd, the standard deviation.

if you pass the option outlier='lower' or outlier='upper', then the function only
checks for lower or upper outliers, respectively.

Further information: `Cleaning Data the Chauvenet Way`, by Lily Lin and Paul D.
Sherman, published at the South East SAS Users Group's website
http://www.sesug.org.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.checkcoordinate (c [, procname])

The function checks whether the given co-ordinate c is a pair x:y with both its
left-hand and right-hand side x and y being numbers. If a second argument, a
string, is given, then error messages of stats.checkcoordinate refer to the given
procedure procname as the function issuing the error. Otherwise the error message
includes a reference to stats.checkcoordinate.

The function returns the numbers x and y and issues an error otherwise.

stats.chisquare (x, nu)

The chisquare[nu] distribution has the probability density function:

x^((nu-2)/2) exp(-x/2)/2^(nu/2) / (nu/2),✄

with x > 0 and nu a positive integer.

See also: stats.cauchy, stats.fratio, stats.normald, stats.studentst.

stats.colnorm (obj)

Returns the largest absolute value of the numbers in the table, sequence or
numarray obj, and the original value with the largest absolute magnitude. If obj
includes undefineds, they are ignored. If the structure obj consists entirely of one or
more undefineds, then the function returns the value undefined twice. If the
structure is empty, fail will be returned.

660 11 Numbers

See also: stats.scale, stats.rownorm.

stats.countentries (obj [, f [, ···]])

Counts the number of occurrences of each entry in a table or sequence obj and
returns a dictionary with its respective key the entry and its value the number of
occurrences.

You might optionally pass a procedure f to be mapped on the structure before
counting begins on the thus modified structure. If f has more than one argument,
then its second to last argument must be given right after f.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: countitems, bags package.

stats.cumsum (obj)

Returns a structure of the cumulative sums of the numbers in the table, sequence or
numarray obj.

The type of return is determined by the type of obj.

The function returns fail if obj contains less than one element. It may also return a
structure containing undefined and/or infinity if obj includes non-numbers.

See also: addup, sumup, calc.fsum, stats.fsum, stats.sumdata.

stats.dbscan (obj, eps, minpts [, option])

The functions finds clusters in a sequence obj of n-dimensional points and returns a
table with the individual clusters along with their respective points.

It also returns a register of the size of the whole distribution listing the cluster number
associated with each point, where the point in this case is represented by its integral
position in the sequence obj.

The co-ordinates of points in obj may be represented by pairs (2-dimensional
space, only), sequences (any space), or vectors created by linalg.vector (any
space).

eps is the maximum allowed distance between two points that shall belong to the
same neighbourhood. minpts is the minimum number of points that shall constitute
a neighbourhood.

By specifying the 'select' option along with a function returning a Boolean, e.g.
'select':<< x -> right x < 1 >>, only points satisfying the given criterion are
examined.

agena >> 661

By specifying the 'method' option, you can control how the function determines
clusters: 'method':'original' uses the classic one, 'method':'modified' uses a
much faster and memory-saving implementation that contrary to the original
method immediately flags neighbours of neighbours as being visited and thus does
not examine them again in further passes. The default is 'original'.

See also: stats.neighbours.

stats.deltalist (obj [, option])

Returns a structure of the deltas of neighbouring elements in the table, sequence or
numarray obj. If the value true is given as an option, then absolute differences are
returned.

The type of return is determined by the type of obj.

Please note that the difference between undefined and a number is undefined,
and that the difference between infinity and a number is infinity.!

The function returns fail if obj contains less than two elements.

See also: stats.ios.

stats.durbinwatson (obj)

The Durbin-Watson test detects the autocorrelation in the residuals from a linear
regression and returns

d = / ✟
i =2

n

obj i - obj i-1
2 ✟

i =1

n

obj i
2

If d is equal to 2, it indicated the absence of autocorrelation. If d is less than 2, it
indicates positive autocorrelation; if d is greater than 2 it indicates negative
autocorrelation and that the observations are very different from each other. If d is
less than 1, the regression should be checked. The function uses Kahan-Babuška
roundoff prevention. obj may be a table, sequence or numarray.

stats.ema (obj, k, alpha [, mode [, y0star]])

Computes the exponential moving average of a table or sequence obj up to and
including its k-th element.

The smoothing factor alpha is a rational number in the range [0, 1].

The function supports two algorithms: If mode is 1 (the default), then the algorithm

 r := alpha * obj[k];
 s := 1 - alpha;

662 11 Numbers

 for i from k - 1 to 1 by -1 do
 r +:= alpha * s ^ i * obj[i]
 od;
 r := r + s ^ k * y0star;

is used to compute the result r. In mode 1, you can pass an explicit first estimate
y0star, otherwise the first value y0star is equal to the sample moving average of
obj. If mode is 2, then the formula

 r := obj[k];
 for i from k - 1 to 1 by -1 do
 r +:= alpha * (obj[i] - r)
 od;

is applied.

The result is a number.

See also: stats.gema.

stats.extrema (obj, delta)

Expects a sequence or table obj of points xk:yk and the number delta and
determines the local minima and maxima.

A value yk is considered an extrema if the difference to its surrounding is at least
delta. The function returns two structures of pairs, i.e. points, the first one including
the local minima, the second one the local maxima.

The type of the structures is determined by the type of obj.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.F (df1, df2, x)

Returns the area from zero to non-negative x under the F density function (also
known as Snedcor's density, the variance ratio density or F distribution for short). This
is the density of x = (u1/df1)/(u2/df2), where u1 and u2 are random variables having
Chi square distributions with df1 and df2 degrees of freedom, both positive integers,
respectively.

The incomplete beta integral is used, according to the formula

P(x) = calc.ibeta(df1/2, df2/2, (df1*x/(df2 + df1*x)).

See also: stats.Fc, stats.invF.

agena >> 663

stats.Fc (df1, df2, p)

Computes the complemented F distribution by finding the F density argument x
such that the integral from x to infinity of the F density is equal to the given
probability p, a non-negative number.

This is accomplished using the inverse beta integral function and the relations, with
df1, df2 positive integers:

z = calc.ibeta(df2/2, df1/2, p)
x = df2*(1-z) / (df1*z).

See also: stats.F, stats.invF.

stats.fivenum (obj [, rule])

Returns a sequence of the first quartile, the median, and the third quartile of a
distribution obj, in this order. obj may be a table, sequence or numarray. The
sequence also includes the minimum and the maximum observation, along with
the arithmetic mean, in this order.

The first and third quartiles are computed according to the NIST rule, see
stats.percentile for further information. Instead of the NIST rule, with the second
argument rule you can also pass the strings 'excel' or 'wikipedia' for the Excel or
Wikipedia ways of computing them, respectively.

If the elements in obj are not sorted in ascending order, the function automatically
sorts them non-destructively, and any non-numeric values are converted to zeros.

See also: stats.quartiles.

stats.fprod (f, obj [, a [, b [, ···]]])

Applies the function f onto all elements in the table, sequence or numarray obj
and then multiplies the results. The return is the number:

f(obji)✝
i = a

b

If a is not given, a is set to 1. If b is not given, b is set to the number of elements in
obj. If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsum, stats.fsum, stats.sumdata.

664 11 Numbers

stats.fratio (x, nu1, nu2)

The Fisher's F distribution, also known as fratio distribution, has the probability density
function

((nu1+nu2)/2) / (nu1/2)/ (nu2/2)*(nu1/nu2)^(nu1/2) * ✄ ✄ ✄
x^((nu1-2)/2) / (1+ (nu1/nu2)*x) ^ ((nu1+nu2)/2)

with x > 0, nu1 and nu2 positive integers.

See also: stats.cauchy, stats.chisquare, stats.normald, stats.studentst.

stats.freqd (s, p [, n])

stats.freqd (s, p [, option])

For sample s, the function computes a frequency distribution function that each
time it is called, returns both the start of the respective subinterval (not the class
number) defined by pair p and step size or number of classes and the number of
occurrences in this subinterval/class. If the distribution has been completely
traversed, two nulls are returned.

For more information on the arguments to be passed and the values returned,
please refer to the description of stats.obcount.

Example:

> s := seq(-1, 0, 0.1, 0.2, 0.3, 0.4, 1, 1.1, 2, 2.1)

> stats.obcount(s, 0:2, 0.5):
[0 ~ 5, 0.5 ~ 0, 1 ~ 2, 1.5 ~ 1] [-1, 2.1]

> f := stats.freqd(s, 0:2, 0.5);

> f():
0 5

> f():
0.5 0

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.obcount.

stats.fsum (f, obj [, a [, b [, ···]]])

Applies the function f onto all elements in the table, sequence or numarray obj
and then sums up the results using Kahan-Babuška round-off error prevention. The
return is the number:

f(obji)✟
i = a

b

agena >> 665

If a is not given, a is set to 1. If b is not given, b is set to the number of elements in
obj. If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsum, stats.fprod, stats.sumdata.

stats.gammacdf (x, a, b)

Implements the gamma cumulative distribution function:

✏(a,bx)

✄(a)

See also: stats.gammapdf.

stats.gammad (x, a, b)

The Gamma distribution function returns the integral from zero to real x of the
gamma probability density function and returns the number:

ab

✄(b)¶
0

x

tb−1 e−at dt

where a * x > 0, b > 0. See also: stats.gammadc.

stats.gammadc (x, a, b)

The complemented Gamma distribution function returns the integral from x to
infinity of the gamma probability density function and returns the number:

ab

✄(b)¶
x

∞

tb−1 e−at dt

where a * x > 0, b > 0. See also: stats.gammadc.

stats.gammapdf (x, a, b)

Implements the gamma distribution probability density function:

ba

✄(a) xa−1e−bx

See also: stats.gammacdf.

666 11 Numbers

stats.gema (obj, k, alpha [, mode [, y0star]])

Like stats.ema, but returns a function that, each time it is called, returns the
exponential moving average, starting with sample obj[k], and progressing with
sample obj[k+1], obj[k+2], etc. with subsequent calls. It return null if there are no
more samples in obj. It is much faster than stats.ema with large distributions.

The smoothing factor alpha is a rational number in the range [0, 1].

The function supports two algorithms: If mode is 1 (the default), then the algorithm

 r := alpha * obj[k];
 s := 1 - alpha;
 for i from k - 1 to 1 by -1 do
 r := r + alpha * s ^ i * obj[i]
 od;
 r := r + s ^ k * y0star;

is used to compute the result. In mode 1, you can pass an explicit first estimate
y0star, otherwise the first value y0star is equal to the sample moving average of
obj.

If mode is 2, then the formula

 r := obj[k];
 for i from k - 1 to 1 by -1 do
 r := r + alpha * (obj[i] - r)
 od;

is applied to the period.

The result is a number.

stats.geometric (k, p [, option])

Computes the geometric cumulative distribution F(k, p) if no option is given, and
alternatively the geometric probability point distribution f(k, p) if option is true:

F(k, p) = 1.0 - (1.0 - p)k+1

f(k, p) =p*(1.0 - p)k

where k is the number of 0's which occurred before a 1 occurred and p is the
probability of a 1 on a single trial with 0 p 1.[[

See also: stats.laplace, stats.logistic.

agena >> 667

stats.gini (obj [, 'sorted'])

Measures the inequality in a distribution given by the table, sequence or numarray
obj by applying Gini's formula

|xi - xj| / ,✟
i =1

n

✟
j =1

n

2n2✙

where n is the number of occurrences and the arithmetic mean.✙

All members of obj should be numbers. infinity's or undefined's are ignored.

It returns a number r indicating the absolute mean of the difference between every
pair of observations, divided by the arithmetic mean of the population, with 0 [r [1
, where 0 indicates that all observations are equal, and (a theoretical value of) 1
indicates complete inequality. It is assumed that all observations are non-negative.

If the option 'sorted' is given then the function assumes that all elements in obj are
already sorted in ascending order - thus computing the result much faster.
To compute the normalised Gini coefficient, multiply the result by n/(n-1).

See also: stats.herfindahl.

stats.gmean (obj)

Returns the geometric mean of all numeric values in table, sequence or numarray
obj. It is a measure of central tendency. Its formula is:

✝
i=1

n

obj i

1/n

The function returns fail if obj contains less than two elements.

The geometric mean should be applied on positive values that are interpreted to
their products, e.g. rates of growth, instead of their sums, only. Otherwise,
undefined may be returned.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: math.agm, stats.amean, stats.hmean, stats.mean, stats.qmean.

668 11 Numbers

stats.gsma (obj, k, p)

stats.gsma (obj, k, p, b)

Like stats.sma, but returns a function that, each time it is called, returns the simple
moving mean, starting with sample k, and progressing with sample k+1, k+2, etc.
If k > size obj, then the function returns null. It is much faster than stats.sma with
large distributions.

stats.gsmm (obj, k, p)

stats.gsmm (obj, k, p, b)

Like stats.smm, but returns a function that, each time it is called, returns the simple
moving median, starting with sample k, and progressing with sample k+1, k+2,
etc. If k > size(obj), then the function returns null. It is much faster than stats.smm
with large distributions.

The function automatically non-destructively sorts the distribution obj if it is unsorted.

stats.herfindahl (obj)

Returns the normalised Herfindahl–Hirschman index of a distribution obj (a table,
sequence or numarray), an indicator of the amount of competition in economy. A
value of 0 means that there is absolute competition, i.e. that all companies have
the same share, and 1 means that there is a monopoly.

The normalised index h is defined as:

H = , where s = obji, h = ✟
i =1

n
obj i

s

2
✟
i =1

n

e
H - 1/n
1 - 1/n

It is also a good measure to determine the stability of a distribution, with a value
tending to zero indicating that the number of outliers is quite low, and a value
tending to 1 that there is at least an extreme outlier.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.gini.

stats.hmean (obj)

Returns the harmonic mean of all numeric values in table, sequence or numarray
obj as a number. It is useful with rates and ratios, as it provides the best average. It
is defined as follows:

n / ✟
i =1

n
1

obj i

The function returns fail if obj contains less than two elements.

agena >> 669

The harmonic mean should be applied on observations containing relations to a
unit, e.g. speed.

The function internally uses Kahan-Babuška summation to compensate for rounding
errors.

See also: stats.amean, stats.gmean, stats.mean, stats.qmean.

stats.hypergeom (x, N1, N2, n)

Computes the hypergeometric probability density function

binomial(N1, x)*binomial(N2, n - x)/binomial(N1 + N2, n),

avoiding numeric overflow and internally computing with 80-bit precision if
supported by the platform. x is non-negative integer, non-negative N1 is the size of
the success population, non-negative N2 the size of the failure population, and n is
the sample size. If n > N1 + N2 or x > n, the function returns fail.

stats.invF (df1, df2, p)

Computes the inverse of complemented F distribution by finding the F density
argument x such that the integral from x to infinity of the F density is equal to the
given probability p, with 0 < p 1, and df1, df2 positive integers. This is[

accomplished using the inverse beta integral function and the relations

z = calc.ibeta(df2/2, df1/2, p)
x = df2*(1-z) / (df1*z).

See also: stats.F, stats.Fc.

stats.invnormald (y)

Evaluates the inverse of the Normal distribution function by returning the number x,
for which the area under the Gaussian probability density function (integrated from

 to x) is equal to number y.−∞

See also: stats.cauchy, stats.chisquare, stats.fratio, stats.normald, stats.studentst.

stats.ios (obj [, option])

Sums up absolute differences between neighbouring entries in a table, sequence
or numarry obj, divides by the number of its elements minus 1, and returns the
number:

1

n −1 ✟
i = 2

n

obj i − obj i−1

670 11 Numbers

The function returns fail if obj contains less than two elements.

If any second non-null argument is given, the function first normalises the
distribution to the range (- , 1] (see stats.scale), determines the difference list,∞

sums up its absolute differences and divides the sum by the number of
occurrences minus 1 to make a distribution comparable to other ones.

This indicator is quite useful to find out how stable or volatile a preferably unsorted
distribution is.

See also: stats.ad, stats.deltalist, stats.sd, stats.var.

stats.iqmean (obj)

Returns the arithmetic mean of the interquartile range of the distribution obj using
Kahan-Babuška round-off error prevention. The return is a number. obj may be a
table, sequence or numarray.

If a distribution is unsorted, the function automatically sorts it non-destructively, and
any non-numeric observations are converted to zeros.

The interquartile range comprises all observations that reside between the first and
third quartiles.

See also: stats.iqr, stats.midrange, stats.qmean.

stats.iqr (obj [, a [, b]])

Without a and b given, the function determines the interquartile range (IQR), i.e. the
difference of the third and first quartile. stats.iqr is useful for determining the
variability in a distribution obj (a table, sequence or numarray).

You may optionally pass a lower and upper percentile a, b, both in the range [0,
100). If a is missing, it is set to 25. If b is missing it is set to 100 - a.

It returns the number

stats.percentile(obj, b) - stats.percentile(obj, a).

If obj is unsorted, the function sorts it non-destructively. It is implemented in Agena
and included in the lib/stats.agn file.

See also: stats.midrange, stats.percentile, stats.qcd, stats.quartiles.

stats.isall (obj [, eps])

Checks whether all elements in a table, sequence or numarray obj are non-zero
and returns true or false. If the second argument eps, a non-negative number, is

agena >> 671

passed, the function returns true if all observations x in obj satisfies the condition
abs(x) > eps. By default eps is 0.

The function returns fail with empty structures or structures that contain one element
only.

See also: and operator, stats.isany.

stats.isany (obj [, eps])

Checks whether at least one element in a table, sequence or numarray obj is
non-zero and returns true or false. If the second argument eps, a non-negative
number, is passed, the function returns true if at least one observations x in obj
satisfies the condition abs(x) > eps. By default eps is 0.

The function returns fail with empty structures or structures that contain one element
only.

See also: or operator, stats.isall.

stats.issorted (obj [, f])

Checks whether all values in a table, sequence or numarray obj of numbers are
stored in ascending order and returns true or false. If a value in obj is not a number,
it is ignored.

If obj is a table, you have to make sure that it does not contain holes, by calling
tables.hashole. If it contains holes, apply tables.entries on obj.

If f is given, then it must be a function that receives two structure elements to
determine the sorting order. See sort for further information.

See also: sort, sorted, skycrane.sorted, stats.sorted.

stats.kurtosis (obj)

The function determines the kurtosis, a measure of flatness or peakedness of
symmetric and unimodal distributions.

To quote Wikipedia, a higher value means that the distribution has `a sharper peak
and fatter tails,` while a lower value indicates `the distribution has a more rounded
peak and thinner tails.`

The function computes the result by computing the fourth moment around the
mean of a distribution, divided by the fourth power of the standard deviation.

The function returns fail if obj contains less than two elements.

672 11 Numbers

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.skewness.

stats.laplace (x)

stats.laplace (x, a, b)

In the first form computes both the Laplace distribution F(x) and the corresponding
probability density function f(x):

F(x) = for x 0, 1 - for x > 0
ex

2 [
e−x

2

f(x) = x
e−|x|

2 -

In the second form computes the probability density function of the Logistic[a, b]
distribution for numeric x:

1/(2*b) * exp(-abs(x - a)/b)

stats.logistic (x)

stats.logistic (x, a, b)

In the first form computes both the Logistic distribution F(x) and the corresponding
probability density function f(x):

F(x) =
1

1 + e−x

f(x) =
e−x

(1+e−x)2

In the second form computes the probability density function of the Logistic[a, b]
distribution for numeric x:

exp(- (x - a)/b) / b / (1 + exp(-(x - a)/b))2.

See also: stats.geometric, stats.laplace.

stats.lognormald (x [, [,]])✙ ✤

Computes probability density function:

exp(-0.5*(ln(x) -)2 /) / ✙ ✤2 2✜✤

 is the standard deviation and must be positive x. defaults to 0, and to 1. Both x✤ ✙ ✤
and must be positive.✤

See also: stats.cauchy, stats.chisquare, stats.fratio, stats.invnormald,
stats.normald, stats.studentst.

agena >> 673

stats.logseries (k, p)

Computes the log(arithmic) series cumulative distribution

f(k, p) = , where
−pk

k ln(1−p)

� k: argument of the logarithmic distribution, k >= 1,
� p: shape parameter of a logarithmic distribution, 0 < p < 1.

stats.mad (obj [, option])

Returns the median of the absolute deviations of all numeric values in table,
sequence or numarray obj from obj's median, and returns the number:

stats.median().-
i =1

size obj

obj i − stats.median(obj)

If any second non-null argument is given, then the variation coefficient will be
returned:

stats.median() / stats.median(obj).-
i =1

size obj

obj i − stats.median(obj)

Median absolute deviation is quite robust if a distribution contains a small number of
outliers.

If obj is unsorted, it automatically sorts it before determining the result.

If obj contains less than two elements or entirely consists of undefineds, fail will be
returned. The function ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: stats.ad, stats.md, stats.median.

stats.md (obj [, option])

Computes the median deviation of all the values in a table, sequence or numarray
obj, i.e. the mean of the equally likely absolute deviations from the median med:

1
n✟

i =1

n

obj i - med

674 11 Numbers

The return is a number.

If any second non-null argument is given, then the variation coefficient will be
returned:

/ | med |1
n ✟

i =1

n

obj i − med

See also: stats.mad.

stats.mean (obj)

Returns the arithmetic mean of all numeric values in table, sequence or numarray
obj as a number. It is equivalent to:

1
n✟

i=1

n

obj i

thus the function - as opposed to stats.amean - first computes the sum of the
observations and then divides it by the number of elements.

If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.

The function returns fail if obj contains less than two elements.

For a more robust but slower version, please have a look at stats.amean.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.accu, stats.amean, stats.gmean, stats.hmean, stats.meanmed,
stats.qmean.

stats.meanmed (obj [, option])

Returns both the arithmetic mean and the median of all numeric values in table,
sequence or numarray obj as numbers. If any option is given, the quotient of the
mean and the median will be returned.

See also: stats.accu, stats.amean, stats.meanvar, stats.median.

stats.meanvar (obj [, option])

Returns both the arithmetic mean and the variance - in this order - of the distribution
obj using an algorithm developed by B. P. Welford to prevent round-off errors.

agena >> 675

By default, the population variance will be returned unless you pass the Boolean
value true for option to compute the sample variance. obj may be a table,
sequence or numarray.

See also: stats.meanmed.

stats.median (obj)

Returns the median of all numeric values in table, sequence or numarray obj as a
number. If obj is unsorted, it automatically sorts it before determining the median.

If obj contains less than two elements or entirely consists of undefineds, fail will be
returned. The function ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

The median is the middle element of a distribution if its size is odd, or the average
of its middle elements it is size is even.

See also: stats.accu, stats.mad, stats.meanmed.

stats.midrange (obj [, option])

Returns both the arithmetic mean and the variance - in this order - of the distribution
obj, a table, sequence or numarray.

Computes the sum of the minimum and maximum value of a distribution obj,
divided by two.

If the option 'sorted' is given, the observation is not traversed; instead the first and
the last entry is taken to compute the mean. If the observation is empty or has only
one element, fail will be returned.

See also: stats.iqr, stats.minmax.

stats.minmax (obj [, 'sorted'])

Depending on the type of obj, returns either a table or sequence with the minimum
of all numeric values in table, sequence or numarray obj as the first value, and the
maximum as the second value.

If the option 'sorted' is passed than the function assumes that all values in obj are
sorted in ascending order so that execution is much faster.

676 11 Numbers

stats.minmax returns fail if obj has less than two elements. If obj consists entirely of
undefined entries, [] or seq() are returned, otherwise undefined values−∞,∞ −∞,∞
are simply ignored.

See also: stats.midrange.

stats.mode (obj)

Returns all values in the numarray, sequence or table obj with the largest number of
occurrence, i.e. highest frequency. If there is more than one value with the highest
frequency, they are all returned.

The type of return is determined by the type of its argument. If the given structure is
empty, it is simply returned.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.moment (obj [, p [, xm [, option]]])

Computes the moment p of the given table, sequence or numarray obj about any
origin xm for a full population and returns a number. It is equivalent to:

1
n✟

i=1

n

obj i − xm
p

If only obj is given, the moment p defaults to 1, and the origin xm defaults to 0. If
given, the moment p and the origin xm must be numbers. If obj contains less then
two observations, fail will be returned.

if option is given and is true, the sample moment

1
n - 1✟

i=1

n

obj i − xm
p

will be computed.

See also: addup, qmdev, stats.sd, stats.sumdata.

stats.nde (x [, [, []])✙ ✤

Computes e ; and default to 0 and 1, respectively.
−(x−✙)2

2✤2 ✙ ✤

See also: stats.ndf, stats.pdf.

agena >> 677

stats.ndf ([])✤

Computes if is not given, and otherwise, and issues an error if .
1
2✜

✤
1

✤ 2✜
✤ [0

See also: stats.nde, stats.pdf.

stats.negbinompdf (x, n, p)

Computes the probability density function of the negative binomial distribution and
is equal to

binomial(n + x - 1, x) * pn * (1 - p)x,

with x a non-negative integer no greater than n, n a positive integer and p a
number between 0 (inclusive) and 1 (inclusive).

See also stats.binompdf.

stats.neighbours (obj, idx, eps [, power [, indices]])

Determines all neighbours of a given n-dimensional point in a distribution obj that lie
in a certain Euclidian distance eps. idx is the position of the point of interest in the
distribution - a positive integer -, and not the point itself.

eps is any positive number, power is a positive integer with which the respective
Euclidean distances and eps shall be raised before a comparison is conducted, its
default is 2.

The return is a sequence with the nearby points. If the fifth argument indices is true,
however, then not the points but their positions in the distribution are returned.

The points may be represented either as pairs (2-dimensional space), sequences of
co-ordinates (n-dimensional space), or any n-dimensional vectors created by the
linalg.vector function.

See also: linalg.norm, stats.dbscan.

stats.normald (x [, [,]])✙ ✤

The normal distribution has the probability density function for any number x:

exp(-(x -)2 / 2 /) / ✙ ✤2 2✜✤2

 is the standard deviation and must be positive. defaults to 0, and to 1.✤ ✙ ✤

See also: stats.cauchy, stats.chisquare, stats.fratio, stats.invnormald,
stats.lognormald, stats.studentst.

678 11 Numbers

stats.obcount (s, p, n [, f])

stats.obcount (s, p [, option])

The function counts occurrences in an observation.

In the first form, it first divides a numeric range defined by the pair p and its step size
n into its respective classes.

In the second form, if the option is classes=k, it first divides a numeric range defined
by the pair p into k classes. If no option is passed, it automatically computes the
number of classes according to the formula

1+ 3.3*ln(size of range p),

with no upper limit. (It is suggested to choose between 5 or 30 classes.)

With both forms, all occurrences in the distribution s (a sequence) are then sorted
into these subranges/classes and the function finally counts all elements in them. If
the optional fourth argument f, a function, is given, then an occurrence or a part of
an occurrence is first converted according to the function definition before the
correct subinterval is being determined.

The function returns a table with the keys the respective left borders of the
subranges and the values the number of counts in the respective subranges. It
always also returns a second table which may include all those elements in s which
are not part of the overall range defined by p. If all numbers in s fit into p, an empty
table will be returned.

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval.

The function issues an error if it encounters a non-number in s, or if the left border in
p is greater or equals to the right border in p.

The function is implemented in Agena and included in the lib/stats.agn file.

An example:

> s := seq(0.1, 0.2, 0.3, 0.4, 1, 1.1, 2, 2.1);

> stats.obcount(s, 0:2, 1):
[0 ~ 4, 1 ~ 3] [2.1]

See also: stats.freqd, stats.obpart.

agena >> 679

stats.obpart (s, p, n [, f [, g]])

stats.obpart (s, p, option [, f [, g]])

The function sorts occurrences into subintervals (classes).

In the first form, it divides a numeric range defined by the pair p and its step size n
into its respective subintervals, and sorts all occurrences in the distribution s (a
sequence) into these classes.

In the second form, if the option is class=k, divides a numeric range defined by the
pair p into k classes. If the option null, the function automatically computes the
number of classes according to the formula

1+ 3.3*ln(size of range p),

with no upper limit. (It is suggested to choose between 5 or 30 classes.)

If the fourth argument f, a function, is given, then an occurrence or a part of an
occurrence is first converted according to the function definition before the correct
subinterval is being determined. If f is null, no conversion is done.

If the fifth argument g, a function, is given, then it is applied on an occurrence or
part of it before it is inserted into the subinterval that already has been determined.

The function returns a table with the keys the respective left borders of the
subranges and the values sequences with the respective occurrences. It always
also returns a second table which may include all those elements in s which are not
part of the overall range defined by p.

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval.

The function issues an error if a distribution or part of it is not or could not be
converted to a number, or if the left border in p is greater or equals to the right
border in p.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.obcount.

Examples:

> s := seq(1.1, 1.2, 2.4, 2.5, 2.6, 3.1);

> stats.obpart(s, 1:4, 1):
[seq(1.1, 1.2), seq(2.4, 2.5, 2.6), seq(3.1)] []

Given are timestamps and running times in seconds:

680 11 Numbers

> s := seq('12:30:05.017':3, '12:31:57.235':4);

To convert a timestamp into its decimal representation, so that stats.obpart can
sort an occurrence into a subinterval, we define the following function:

> import clock

> f := proc(x) is
> local hrs, min, sec;
> hrs, min, sec :=
> strings.match(left(x), '(%d%d):(%d%d):(%d%d\.%d%d%d)');
> return clock.todec(clock.tm(# returns a number
> tonumber(hrs), tonumber(min), tonumber(sec)))
> end;

> stats.obpart(s, 12.4:12.6, 1/60, f):
[12.4 ~ seq(), ..., 12.5 ~ seq(12:30:05.017:3),
 12.516667 ~ seq(12:31:57.235:4), ...] []

We only want to insert the running times in milliseconds, but not the timestamps:

> g := << x -> right(x)*1k >>;

> stats.obpart(s, 12.4:12.6, 1/60, f, g):
[12.4 ~ seq(), ..., 12.5 ~ seq(3000), 12.516667 ~ seq(4000), ...] []

See also: stats.obcount.

stats.pdf (x [, [,]])✙ ✤

Computes the probability density function for the normal distribution at the numeric
value x. The defaults are = 0, with standard deviation = 1, thus determining✙ ✤
the standard normal distribution.

The return is the number:

 e
1

✤ 2✜

−(x−✙)2

2✤2

See also: stats.cdf, stats.nde, stats.ndf.

stats.peaks (obj, delta [, dv])

The function returns all peaks and valleys of a distribution obj consisting of
two-dimensional numeric co-ordinates represented as pairs xk:yk. obj may be a
table or sequence. A point is considered an extremum if the `vertical` difference to
its surrounding is at least delta, a positive number. By default, if dv is not given or is
1, the direct neighbours of each point are considered, otherwise the dv-th
neighbours to the left and the right of each point are checked.

agena >> 681

Depending on the type of o, the first return is a structure including all valleys
represented as pairs xk:yk, and the second return is a structure of the peaks as pairs
xk:yk.

See also: stats.extrema.

stats.percentile (obj, p [, option])

Returns the value below which a certain percent p of the elements in obj fall.

obj must be a table, sequence or numarray, p an integer in the range 0 p < 100.[

If no option is given, then the percentile is determined by computing the nearest
rank (rank = p/100 * size obj + ½, `Wikpedia method`). If option is the string
'nist', then the method proposed by NIST is used (rank = p/100 * (size obj + 1)); if
the string 'excel' is given for option, then the algorithm used by Excel is used (rank
= p/100*(size obj -1) + 1).

If obj is not sorted, the function automatically sorts it non-destructively before
computing the indicators.

The function issues an error if obj is empty.

See also: whereis, stats.quartiles.

stats.poisson (k, t)

Simplifies to the Poisson probability density defined as , avoiding overflow. k
e−ttk

j!
must be non-negative, t is any number.

stats.poissond (k, t)

The function simplifies to the cumulative probability Poisson distribution function
defined as

, ✟
j=0

k
e−tt j

j!

preventing overflow and using Kahan-Babuška summation to minimise round-off
errors.

stats.prange (obj [, a [, b]])

Returns all elements in a table, sequence or numarray obj from the a-th percentile
rank up but not including the b-th percentile rank. a and b must be positive integers
in the range [0 .. 100). If a and b are not given, a is set to 25, and b to 75. If b is not
given, it is set to 100 - a. The type of return is determined by the type of obj.

682 11 Numbers

If the elements in obj are not sorted in ascending order, the function automatically
sorts them non-destructively, and any non-numeric values are converted to zeros.

stats.probit (x)

Implements the quantile function associated with the standard normal distribution,
or in other words: the inverse of the cumulative distribution function of the standard
normal distribution for number x. It returns the number .2 erf−1(2x−1)

stats.qcd (obj [, a [, b]])

Without a and b given, the function determines the interquartile range (IQR) of a
distribution obj (a table, sequence or numarray), i.e. the difference of the third (=
Q3) and first (= Q1) quartile divided by the sum of the third and first quartile:

.
Q3−Q1

Q3+Q1

You may optionally pass a lower and upper percentile a, b, both in the range [0,
100). If a is missing, it is set to 25. If b is missing it is set to 100 - a.

If obj is unsorted, the function sorts it non-destructively. It is implemented in Agena
and included in the lib/stats.agn file.

See also: stats.iqr, stats.percentile, stats.quartiles.

stats.qmean (obj)

Returns the quadratic mean (root mean square) of all numeric values in table,
sequence or numarray obj as a number. If obj is table, it is assumed to be an array,
non-positive integral keys (including strings, etc.) are ignored. It can be used to
measure the magnitude of a quantity which variates are positive and negative, e.g.
sinusoids.

It is equivalent to:

1
n ✟

i =1

n

obj i
2

The function returns fail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.amean, stats.gmean, stats.hmean, stats.iqmean, stats.mean,
stats.moment, stats.sd.

agena >> 683

stats.quartiles (obj)

stats.quartiles (obj [, pos])

In the first form, it returns the first, second, and third quartile of table, sequence or
numarray obj. The first and third quartiles are computed according to the NIST rule,
see stats.percentile for further information.

It also determines the lower outlier limit L1, where L1 = first quartile - 1.5 times the
interquartile range of obj, and the upper outlier limit U1, where U1 = third quartile +
1.5 times the interquartile range of obj. If a value x in obj is equal to L1 or U1, then x
will be returned. If L1 is not included in obj, then the next largest value to L1 will be
returned. If U1 is not included in obj, then the next smallest value to U1 is computed.
Finally it computes the interquartile range, i.e. third quartile - first quartile. The order
is: first quartile, median, third quartile, `L1`,`U1`, and the interquartile range.

In the second form, if either the integer 1, 2, or 3 is passed for the optional second
argument pos, the first, second, or third quartile will be returned as a number,
respectively.

If the elements in obj are not sorted in ascending order, the function automatically
sorts them non-destructively, and any non-numeric values are converted to zeros.
The number of values in obj should be at least 12, better are 20 or more values. If
the number of values is less than 2, fail will be returned.

See also: whereis, stats.fivenum, stats.iqr, stats.percentile, stats.qcd.

stats.rownorm (obj)

Returns the sum of the absolute values of the numbers in the table, sequence or
numarray obj. If obj includes undefineds, they are ignored. If the structure consists
entirely of one or more undefineds, then the function returns undefined. If the
structure is empty, fail will be returned.

See also: stats.scale, stats.colnorm.

stats.scale (obj [, option])

The procedure normalises the numbers in the table, sequence or numarray obj in
such a way that an element of maximum absolute value equals 1, thus scaling a
distribution to the range (, 1] by dividing all observations by this maximum−∞

element.

When given a second option, the function normalises all its observations to the
range [0, 1]. See math.norm for further details.

The normalised numbers are returned in a new table or sequence, depending on
the type of obj.

684 11 Numbers

If the maximum absolute value is 0, the function returns fail.

See also: math.norm, linalg.scale.

stats.sd (obj [, sample [, option]])

Returns the standard deviation of all numeric values in table, sequence or
numarray obj as a number. If obj is a table, it is assumed to be an array,
non-positive integral keys (including strings, etc.) are ignored.

If sample is not given or is not true, it returns the population standard deviation:

 = ✤ 1
n ✟

i =1

n

obj i − ✙
2

where is the arithmetic mean of a distribution.✙

If sample is given and is true, the (unbiased) sample standard deviation will be
returned:

 = ✤ 1
n-1 ✟

i =1

n

obj i − ✙
2

If the return is a small number, it indicates that the points in a distribution are close
to its mean m. A large value indicates that its points are rather spread out. Contrary
to variance, standard deviation is expressed in the same units as the data.

Standard deviation is less robust to outliers than absolute deviation.

The function returns fail if obj contains less than two elements.

If any third non-null argument is given, then the coefficient / | | will be returned✤ ✙
to make different distributions comparable.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: qmdev, stats.ad, stats.chauvenet, stats.ios, stats.mad, stats.moment,
stats.qmean, stats.var.

stats.skewness (obj)

Returns the sample skewness, a measure of the asymmetry of the probability
distribution represented by the table, sequence or numarray obj of numbers.
Returns 0 if a distribution is symmetric, a negative value if the left tail is longer, and a
positive value if the right tail is longer.

It computes the third moment about the mean and divides it by the third power of
the standard deviation.

agena >> 685

The function returns fail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.kurtosis.

stats.sma (obj, k, p)

stats.sma (obj, k, p, b)

In the first form, computes the simple moving average of a table or sequence obj
by averaging the last p numbers from the structure (p is also known as the `period`)
including sample k, i.e.:

 (financial form)
1
p ✟

i = k−p+1

k

obj i

In the second form, by passing the Boolean value true for argument b, the mean is
taken from an equal number of values on either side of k, including k. Thus p must
be an odd number:

 (scientific form)
1
p ✟

i = k−p\2

k+p\2

obj i

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj. The function does not accept structures including the value undefined.

By dividing each element before summation, the function avoids arithmetic
overflows and also uses Kahan-Babuška summation to prevent round-off errors
during summation.

stats.gsma is the iterator version of this function which traverses large distributions
much faster.

See also: stats.amean, stats.gsma, stats.gsmm, stats.smm.

stats.smallest (obj [, k])

Returns the k-th smallest element in the numeric table, sequence or numarray obj.
If k is not given, it is set to 1.

stats.smm (obj, k, p)

stats.smm (obj, k, p, b)

In the first form, computes the simple moving median of a table or sequence obj
by sorting the last p numbers from the structure (p is also known as the `period`)
including sample k, and then taking its median.

686 11 Numbers

In the second form, by passing the Boolean value true for argument b, the simple
moving median is determined by sorting an equal number of values on either side
of k, including k, and then taking the median. Thus p must be an odd number.

The function is more robust than stats.sma to outliers in a period.

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj. The function does not accept structures including the value undefined.

The function automatically non-destructively sorts the distribution obj if it is unsorted.

stats.gsmm is the iterator version of this function which traverses large distributions
much faster.

See also: stats.amean, stats.gsma, stats.gsmm, stats.sma.

stats.sorted (obj [, true] [, options])

Sorts the table, sequence or numarray obj of numbers in ascending order and
non-destructively up to and around twice as fast as sort if the structure contains
(around) more than seven elements. It also ignores undefined's. The type of return is
defined by the type of the input.

If an element in obj is not a number, it is replaced with the number 0 before sorting.

By default, the function internally uses a recursive implementation of the Quicksort
algorithm combined with a fallback to Heapsort in ill-conditioned situations, called
Introsort.

You may exclusively use an iterative variant of the Quicksort algorithm by passing
the second argument true or the string 'pixelsort', which may be faster on some
older systems, especially with elements in completely random or in (nearly)
ascending order. If the option 'nrquicksort' is given, an alternative non-recursive
algorithm described by Niklaus Wirth is being used. If the option 'heapsort' is
passed, the function uses the Heapsort algorithm. If the option 'quicksort' is given,
a traditional recursive Quicksort algorithm is being used.

See also: sort, sorted, skycrane.sorted, stats.issorted, numarray.sort.

stats.spread (obj)

Computes the population spread, i.e. the variance, of a distribution obj of
numbers, and returns a number. The result is equal to:

 -
1
n✟

i=1

n

obj i
2 1

n2 ✟
i=1

n

obj i

2

agena >> 687

The function is around 10 percent faster than stats.var but is more susceptible to
numeric overflows if the magnitudes of the observations are very large.

The function is implemented in Agena and included in the lib/stats.agn file.

stats.standardise (obj [, option])

Standardises a distribution by subtracting the arithmetic mean from each✙
observation and then dividing by the population standard deviation (default) of✤
the distribution:

obji t
obj i−✙
✤

Depending on the type of its argument obj, the return is either a new table or
sequence of the respective quotients, preserving the original order of the
observations. You may alternatively divide by the sample standard deviation by
passing the optional value true as the second argument. obj may be a table,
sequence or numarray.

stats.studentst (x [, nu])

The Student's t-distribution has the probability density function:

((nu+1)/2) / (nu/2) / / (1+t2/nu)^((nu+1)/2),✄ ✄ nu*✜

with nu a positive integer.

See also: stats.cauchy, stats.chisquare, stats.fratio, stats.normald.

stats.sumdata ([f,] obj [, p [, xm [, ···]]])

Sums up all the powers p of the given table, sequence or numarray obj of n
elements about the origin xm and returns a number. It is equivalent to:

✟
i =1

n

obj i − xm
p

If only obj is given, the power p defaults to 1, and the origin xm defaults to 0. If given,
p and xm must be numbers. If obj is empty, the function returns fail.

If a function f is given, it only sums up the values in obj satisfying f, which should
return a Boolean. If f has more than one argument, then its second to last
argument must be given right after xm.

Examples:

688 11 Numbers

> stats.sumdata(<< x -> x > 2 >>, seq(1, 2, 3, 4)):
7

> stats.sumdata(<< x, y -> x + y > 2 >>, seq(1, 2, 3, 4), 1, 0, 1):
9

The function uses Kahan-Babuška round-off error prevention.

See also: addup, foreach, math.kbadd, math.koadd, sumup, stats.cumsum,
stats.fsum, stats.moment, stats.sumdataln.

stats.sumdataln ([f,] obj [, p [, xm [, ···]]])

Sums up all the natural logarithms of the powers p of the given table, sequence or
numarray obj of n elements about the origin xm and returns a number. It is
equivalent to:

ln✟
i =1

n

obj i − xm
p

If only obj is given, the power p defaults to 1, and the origin xm defaults to 0. If given,
p and xm must be numbers. If obj is empty, the function returns fail.

If a function f is given, it only sums up the values in obj satisfying f, which should
return a Boolean. If f has more than one argument, then its second to last
argument must be given right after xm. For examples, please see stats.sumdata.

stats.tovals (obj)

Converts all string values in the structure obj to Agena numbers or complex
numbers and returns a new structure. The type of return is determined by the type of
obj.

stats.trimean (obj [, p])

If p is not given, the function determines the 1st quartile Q1 and the 3rd quartile Q3
along with the median Q2 of a distribution obj and returns the trimean (Q1 + 2*Q2
+ Q3)/4 along with the median. obj may be a table, sequence or numarray.

If p, an integer in the range [0 .. 100) is given, instead of the first and third quartiles
the p-th and 100 - p-th percentile ranks are the lower and upper margins in the
computation.

When compared to the median, the trimean is a means to determine whether a
distribution is biased in its first or second half. If the distribution is not sorted, it
automatically sorts it non-destructively, where any non-numeric elements are set to
0.

See also: stats.iqr, stats.trimmean, stats.winsor.

agena >> 689

stats.trimmean (obj, f)

Returns the arithmetic mean of the interior of a distribution obj (a table or
sequence), where the number f [0, 1) determines the fraction of the data that isc

to be excluded from the margins.

The number p of data to be excluded from obj is always rounded down to the
nearest even number. The function then does not take into account p/2 points from
the left margin and p/2 points from the right margin when calculating the average
using Kahan-Babuška round-off error prevention. The function does not sort the
distribution.

The return is a number. It returns fail, if the distribution includes less than two
elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.amean, stats.winsor.

stats.var (obj [, sample [, option]])

Returns the variance of all numeric values in table, sequence or numarray obj as a
number. If obj is a table, it is assumed to be an array, non-positive integral keys
(including strings, etc.) are ignored.

If sample is not given or does not evaluate to true, the population variations will be
returned, where is the arithmetic mean of a distribution:✙

= ✤2 1
n✟

i=1

n

obj i − ✙
2

If sample is given and is true, the (unbiased) sample variance will be returned:

= ✤2 1
n - 1✟

i=1

n

obj i − ✙
2

If option of any type is passed, the variation coefficient / | | is determined to✤2 ✙
make different distributions comparable.

The function returns fail if obj contains less than two elements.

The function is implemented in Agena and included in the lib/stats.agn file.

See also: stats.ad, stats.ios, stats.mad, stats.sd, stats.spread.

690 11 Numbers

stats.weights (obj)

stats.weights (x [, ···])

In the first form, the function inserts all the elements in sequence obj into a new
sequence and returns it.

In the second form, it inserts all the given arguments into a new sequence and
returns it.

In both forms, only numbers and pairs are accepted in the sequence or argument
list. In case of a pair x:n, x denotes an observation and n, a non-negative integer,
denotes the number of occurrence of x, so x is inserted n times into the new
sequence.

stats.winsor (obj [, n])

Returns the winsorised mean of all numeric values in table or sequence obj.

The function first replaces the first n percent of a distribution at the low and high end
with the most extreme remaining values, and then calculates the arithmetic mean
of the entire modified distribution. By default, n is 10.

The winsorised mean is more resistant to outliers than the traditional arithmetic
mean.

See also: stats.trimean, stats.trimmean..

stats.zscore (obj)

Returns a univariate function `z(x)` computing the z-score (standard score) of a
sample x in the table, sequence or numarray obj - the number of standard
deviations x is above or below the mean according to the formula: z(x) = (x -)/ ,✙ ✑
where denotes the arithmetic mean of obj, and its standard deviation.✙ ✑

The resulting function returns a positive number if x is above the mean and a
negative number if it is below. It does, however, not check whether x is part of obj.
The result is computed using Kahan-Babuška round-off error prevention for and .✙ ✑

The function is implemented in Agena and included in the lib/stats.agn file.

agena >> 691

11.15 long - 80-Bit Floating-Point Arithmetic

This package implements 80-bit floating-point numbers and arithmetic. It is at least
80 times faster than the mapm package with the same precision.

Note that 80-bit floating-point arithmetic provided by this new package is still at
least 12 times slower than Agena's built-in 64-bit arithmetic so it is useful only if you
need extended precision with 19 significant digits and a range of approximately
3.65×10-4951 to 1.18×104932. The package is not available on ARM platforms.

Example:

> a, b := long.double(1), long.double(2)

> a + b:
longdouble(3.0000000000000000000)

> exp(a):

longdouble(2.7182818284590452354)

> long.tonumber(ans): # convert back to Agena number (64-bit)

2.718281828459

Note that relational operators such like = or <> cannot compare longdoubles with
numbers as they are different types, and the result would always be false.
Arithmetic binary operators, however, such like +, %, however, can process a mix
of numbers and longdoubles and return a longdouble as the result. Also, most
unary operators and functions with one or two arguments can process both
longdoubles and ordinary Agena numbers. Long numbers have the user-defined
type `longdouble`.

Creation, Conversion, Iteration:

long.double (x)

Creates a longdouble from the ordinary Agena number x, returning a userdata of
type longdouble with the longdouble metatable attached.

x may also be a string representing a number - with constants, you might prefer this
to avoid round-off errors. For a predefined set of constants, also check the end of
this subchapter.

long.tonumber (x [, option])

Converts longdouble x into an ordinary Agena number, losing precision. If any
option is given, then there is a second Boolean return indicating whether the 80-bit
value x is less or greater the minimum or maximum value an Agena number can
represent, i.e. whether there was an overflow during conversion.

692 11 Numbers

See also: environ.system.numberranges/mindouble & maxdouble settings,
long.overflow.

long.tostring (x [, format])

Converts the longdouble x into a string with 19 fractional digits by default. You can
pass a string format that includes the ld specifier to control the output, e.g.

> long.tostring(long.Pi, "%.15ld"):

returns

3.141592653589793

If a value absolutely is less than 1e-10 or greater than 1e20, then it will be formatted
in scientific notation, to prevent output with too many digits or just a zero with very
small x.

long.count ([start [, step [, stop]]])

Returns an iterator function that, each time it is called, returns a new longdouble.

If no argument is given, the first number returned by the iterator is 0, the next call
returns 1, the next one 2, and so forth. This means that the longdouble returned with
each call is increased by 1.

If only start is given, the first value returned by the iterator is start, the next call
returns start + 1, the next one start + 2, and so forth. This means that the
longdouble returned with each call is increased by 1.

If start and step are given, the first value returned by the iterator is start, the next
call returns start + step, the next one start + 2*step, and so forth. This means that
the number returned with each call is increased by step, which may be negative.
In the latter case the next value returned will be less than the current returned value.

If stop is given, the iterator returns null if the counter value exceeds stop. Default is
+long.infinity.

If start or step are not longdoubles or numbers, the factory issues an error.

If start or step are non-integral, the function applies Neumaier summation to avoid
round-off errors.

Example:

> f := long.count(long.double(1), long.double(-0.1), long.double(-1));

> while c := f() do print(c) od; # counts down

agena >> 693

A note in advance: All the functions and most of the operators are also available as
functions which names always start with "long.x". So, for example, the sin operator is
also available as the function long.xsin, and the math.chop function has the alias
math.xchop.

long.overflow (x)

Returns a Boolean indicating whether 80-bit longdouble x is less or greater the
minimum or maximum value an Agena number can represent.

See also: long.tonumber.

Basic Arithmetic Operations:

x + y

The operator computes x + y, i.e. performs an addition.

x - y

The operator computes x - y, i.e. performs a subtraction.

x * y

The operator computes x * y, i.e. performs a multiplication.

x / y

The operator computes x / y, i.e. performs a division.

x \ y

The operator computes x \ y, i.e. performs an integer division.

x % y

The operator computes x % y, i.e. returns the modulus.

x ^ y

The operator computes x ^ y, i.e. raises x to the power of y, where y represent any
arithmetic number.

x ** y

The operator computes x ** y, i.e. raises x to the power of y, where y represent an
integer.

694 11 Numbers

recip (x)

The operator returns the inverse 1/x.

abs (x)

The operator will return the absolute value of x.

sign (x)

Determines the sign of x. The result of the operator is determined as follows:
� 1, if x > 0,
� -1, if x < 0,
� undefined, if x = undefined,
� 0 otherwise, even for -0.

signum (x)

Determines the sign of x. The result of the operator is determined as follows:

� 1, if x 0m
� -1 otherwise.

long.copysign (x, y)

Returns a longdouble with the magnitude of x and the sign of y, i.e. abs(x) * sign(y).
If y is 0, then its sign is considered to be 1.

long.exponent (x)

Returns the exponent e of x such that long.mantissa(x) * 2e equals x.

long.fma (x, y, z)

Performs the fused multiply-add operation (x * y) + z, with the intermediate result
not rounded to the destination type, to improve the precision of a calculation.

long.fmod (x, y)

Computes the remainder from the division of numerator x by denominator y. The
return value is x - n * y, where n is the quotient of x divided by y, rounded towards
zero to an integer.

long.hypot (x, y)

Returns . It is the length of the hypotenuse of a right triangle with sides ofx2 +y2

length x and y, or the distance of the point (x, y) from the origin. The function is
slower but more precise than using sqrt along with square, avoiding over- and
underflow.

agena >> 695

long.hypot2 (x)

Returns , avoiding over- and underflow.1 + x2

long.hypot3 (x)

Returns , avoiding over- and underflow.1- x2

long.hypot4 (x)

Returns , avoiding over- and underflow.x2 − y2

long.koadd (x, y [, q])

The function adds x and y using Kahan-Ozawa round-off error prevention and
returns two longdoubles: the sum of x and y plus the updated value of the
correction variable q. The optional correction variable q should be 0 at first
invocation, and the previously returned correction variable otherwise - if q is not
given, it defaults to 0.

A typical usage should look like:

> x, q -> long.double(0);

> y := long.double('0.1');

> while x < long.double(1) do
> x, q := long.koadd(x, y, q)
> od;

> print(s + q);

long.fdim (x, y)

Computes x - y if x > y, and return 0 otherwise.

long.mantissa (x)

Returns the mantissa m of x such that m * 2^long.exponent(x) equals x. See also:
long.significand.

long.modf (x)

Returns the integral part of x and its fractional part. The integral part is rounded
towards zero. Both the integral and fractional part of the return have the same sign
as x. The sum of the two values returned equals x.

696 11 Numbers

long.pytha (a, b)

Computes the Pythagorean equation c2 = a2 + b2, without undue underflow or
overflow, for longdoubles or numbers a, b.

long.pytha4 (a, b)

Computes a2 - b2, without undue underflow or overflow, for longdoubles or numbers
a, b.

long.significand (x)

Returns the mantissa of x in a normalised form, in the range[1, 2), with
long.significand(x) = 2*long.mantissa(x) = long.ldexp(x, -long.ilog2(x)). If x is 0,
the return is 0.

Relations:

A note in advance: The 80-bit infinity representation is represented by the constant
long.infinity and not infinity, and that of "undefined" is long.undefined.

x = y

The binary operator returns true if x is exactly equal to y, and false otherwise.

x <> y

The binary operator returns true if x is not exactly equal to y, and false otherwise.

x ~= y

The binary operator returns true if x is approximately equal to y, and false otherwise.
See also long.approx.

x ~<> y

The binary operator returns false if x is approximately equal to y, and trueotherwise.

x < y

The binary operator returns true if x is less than y, and false otherwise.

x <= y

The binary operator returns true if x is less than or equal to y, and false otherwise.

agena >> 697

x > y

The binary operator returns true if x is greater than y, and false otherwise.

x >= y

The binary operator returns true if x is greater than or equal to y, and false
otherwise.

long.isequal (x, y)

Compares x with y and returns true if x = y, and false otherwise.

long.isunequal (x, y)

Compares x with y and returns true if x <> y, and false otherwise.

long.isless (x, y)

Compares x with y and returns true if x < y, and false otherwise.

long.islessequal (x, y)

Compares x with y and returns true if x <= y, and false otherwise.

long.approx (x, y [, eps])

Compares the x and y and checks whether they are approximately equal. If eps is
omitted, Eps is used.

The algorithm uses a combination of simple distance measurement (|x-y| eps)[

suited for values `near` 0 and a simplified relative approximation algorithm
developed by Donald H. Knuth suited for larger values (|x-y| eps * max(|x|,[

|y|)), that checks whether the relative error is bound to a given tolerance eps.

The function returns true if x and y are considered equal or false otherwise. If both a
and b represent infinity, the function returns true. The same applies to a and b
being -infinity or undefined.

long.fmax (x, y)

Returns x if x > y, and y otherwise.

long.fmin (x, y)

Returns x if x < y, and y otherwise.

698 11 Numbers

Powers and Roots:

square (x)

The operator squares x and returns x**2.

cube (x)

The operator raises x to the power of 3.

x squareadd c

The operator computes x^2 + c, preventing round-off errors. See also long.fma.

sqrt (x)

Returns the square root of x. If x is a number and negative, the operator returns
undefined.

long.cbrt (x)

Returns the cubic root of the number x.

long.root (x [, n])

Returns the non-principal n-th root of x. n must be an integer and is 2 by default.
Note that since the function computes the non-principal root.

invsqrt (x)

The operator computes the inverse square root x, i.e. 1/sqrt(x).

Exponentiation & Logarithms:

antilog2 (z)

The operator computes , i.e. 2 raised to the power of z. See also: exp.2z

antilog10 (z)

The operator computes , i.e. 10 raised to the power z. See also: exp.10z

exp (x)

Exponential function; the operator returns the value ex, with e Euler's number.

See also: antilog2, antilog10.

agena >> 699

long.expminusone (x)

Returns a value equivalent to exp(x) - 1. It is computed in a way that is accurate
even if x is near 0, since exp(~0) and 1 are nearly equal.

long.fact (n)

Returns the factorial of positive integral value n. With n 171, returnsm

longdouble(infinity).

See also: long.lnfact.

ln (x)

Natural logarithm of x (with base e1). If x is non-positive, the operator returns
undefined.

lngamma (x)

Natural logarithm of the Gamma function of x. If x is non-positive, the operator
returns undefined.

long.gamma (x)

Implements the Gamma function of its argument x.

long.lnabs (x)

Returns ln(abs(x)) for longdouble x.

long.lnbinomial (n, k)

Returns the natural logarithm of the binomial coefficient

ln = ln = lngamma(n + 1) - lngamma(k + 1) - lngamma(n - k + 1)
n

k

n!
k!(n−k)!

avoiding overflows.

See also: binomial, math.lnbinomial, long.lnfact.

long.lnfact (n)

Returns the logarithmic factorial ln n!. See math.lnfact for details.

See also: long.lnbinomial, long.fact.

700 11 Numbers

long.lnplusone (x)

Returns a value equivalent to ln(1 + x). It is computed in a way that is accurate
even if x is near zero.

log (x, b)

The operator returns the logarithm of x to the base b.

long.log2 (x)

Returns the base-2 logarithm of x.

long.ilog2 (x)

Returns the integral base-2 logarithm of x.

long.log10 (x)

Returns the base-10 logarithm of x.

Trigonometric Functions and Operators:

sin (x)

The operator returns the sine of x (in radians).

cos (x)

The operator returns the cosine of x (in radians).

tan (x)

The operator returns the tangent of x (in radians).

long.csc (x)

The function returns the cosecant of x (in radians), i.e. 1/sin(x).

long.sec (x)

The function returns the secant of x (in radians), i.e. 1/cos(x).

long.cot (x)

The function returns the cotangent of x (in radians), i.e. 1/tan(x).

agena >> 701

sinc (x)

The operator returns the un-normalised cardinal sine of x (in radians), i.e. sin(x)/x,
with sinc(long.double(0)) = long.double(1).

Hyperbolic Trigonometric Functions and Operators:

sinh (x)

The operator returns the hyperbolic sine of x (in radians).

cosh (x)

The operator returns the hyperbolic cosine of x (in radians).

tanh (x)

The operator returns the hyperbolic tangent of x (in radians).

Inverse and Inverse Hyperbolic Trigonometric Functions and Operators :

arccos (x)

The operator returns the inverse cosine operator (x in radians).

long.arccosh (x)

The function computes the inverse hyperbolic cosine of x (in radians).

arcsin (x)

The operator computes the inverse sine operator (in radians).

long.arcsinh (x)

The function returns the inverse hyperbolic sine of x (in radians).

arctan (x)

The operator computes the inverse tangent operator (in radians).

long.arctanh (x)

The function returns the inverse hyperbolic tangent of x (in radians).

long.arccsc (x)

The function returns the inverse cosecant of x (in radians).

702 11 Numbers

arcsec (x)

The operator returns the inverse secant of x (in radians).

long.arccot (x)

The function returns the inverse cotangent of x (in radians).

Error Functions:

long.erf (x)

Returns the error function of number x. It is defined by erf(x) = .
2
✜
¶

t=0

x

e−t^2

long.erfc (x)

Returns the complementary error function of x. It is defined by erfc(x) = 1 - erf(x).

long.inverf (x)

Returns the inverse error function of number x.

Rounding & Related:

long.ceil (x)

Rounds upwards to the nearest integer larger than or equal to x.

entier (x)

The operator rounds x downwards to the nearest integer. Same as long.floor.

long.floor (x)

Rounds x downwards to the nearest integer. Also: long.floor(x) = long.ceil(x) =
-entier(-x).

int (x)

The operator rounds x to the nearest integer towards zero.

frac (x)

The operator returns the fractional part of x, i.e. x - int(x), preserving the sign.

long.round (x [, d])

Rounds x to its d-th digit, using the round-half-up method. If d is omitted, the
longdouble is rounded to the nearest integer. If d is positive, the function rounds to

agena >> 703

the d-th fractional digit. If d is negative, it rounds to the d-th integral digit. long.round
treats positive and negative values symmetrically, and is therefore free of sign bias.

long.chop (x [, eps [, method [, n]]])

Shrinks x more or less near zero to exactly zero, using one of several methods,
passed as an integer. The default for eps is DoubleEps. The standard method is 0 for
hard shrinking. Integral n is used in the SmoothGarrote method.

|x| eps[

|x| eps>

0
sign(x) x2 −eps2

"Hyperbola"5

any xx2n+1/(x2n + eps2n)
"SmoothGarrote"; with n ,d ∞
goes to "Hard" shrinking

4

|x| eps[

|x| eps>

0
x - eps2/x

"PiecewiseGarrote"3

|x| eps[

|x| eps>

0
sign(x) (|x| - eps)

"Soft", performs soft shrinking1

|x| eps[

|x| eps>

0
x

"Hard", performs hard shrinking0

DomainValueCommentmethod

Method 2 has not been implemented.

Checks:

nonzero (x)

Checks whether x is not 0. The operator returns true or false.

zero (x)

Checks whether x is 0, respectively. The operator returns true or false.

even (x)

Checks whether x is even. The operator returns true if x is even, and false otherwise.
With non-integral numbers, the operator returns false.

odd (x)

The operator checks whether x is odd. The operator returns true if x is odd, and
false otherwise. With non-integral longdoubles, the operator returns false.

float (x)

Checks whether x has a fraction, i.e. not integral, and returns true or false.

With +/-infinity and undefined, returns false.

704 11 Numbers

integral (x)

Checks whether x is integral, i.e. does not contain a fraction, and returns true or
false.

With +/-infinity and undefined, returns false.

finite (x)

The operator checks whether x is neither infinity nor undefined. The operator!

returns true or false.

nan (x)

Checks whether x evaluates to undefined. The operator returns true or false.

Miscellaneous:

long.unm (x)

Negates a number or longdouble x and returns it, same as the expression -x.

long.eps ([x [, option]])

The function returns the machine epsilon, the relative spacing between |x| and its
next larger longdouble in the machine’s 80-bit floating point system. If no argument
is given, x is set to 1.

When given any second argument, the function computes a `mathematical`
epsilon value that is also dependent on the magnitude of its argument x. It can be
used in difference quotients, etc., for it prevents huge precision errors with
computations on very small or very large numbers. The mathematical epsilon with
respect to x is equal to x* sqrt(long.eps(x)).

long.zeroin (x [, eps])

By default, returns 0 if longdouble |x| long.DoubleEps, and x otherwise. If the[

longdouble eps is given as a second argument, returns 0 if |x| eps, otherwise[

returns its argument.

long.zerosubnormal (x)

Checks whether its longdouble x is subnormal and in this case returns 0, otherwise
returns its argument x. It is useful to prevent excessive CPU usage in case of
arguments very close to zero. Note that result retains the sign of x.

See also: long.zerosubnormal.

agena >> 705

long.nextafter (x, y)

Returns the next machine 80-bit floating-point number of x in the direction toward y.

long.gsolve (A)

long.gsolve (A, v)

Performs Gaussian elimination on a system of linear equations.

In the first form, A must be an augmented m x n matrix created with linalg.matrix
with m+1 = n. In the second form, A is a square matrix and v a right-hand side
vector, created with linalg.vector.

linalg.matrix and linalg.vector accept standard Agena numbers only, so the input
is 64-bit precision but the output is 80-bit.

The return is the solution vector with longdoubles. It returns infinity if an infinite
number of solutions has been found, and undefined if no solutions exists. It returns
fail if it could not determine whether no or an infinite number of solutions exist.

Example:

> A := linalg.matrix([1, 1, 1, 2], [6, -4, 5, 31], [5, 2, 2, 13]):
[1, 1, 1, 2]
[6, -4, 5, 31]
[5, 2, 2, 13]

> long.gsolve(A):

[longdouble(3.000000..), longdouble(-2.000000..), longdouble(0.999999..)]

long.norm (x, a1:a2 [, b1:b2])

Converts x in the scale [a1, a2] to one in the scale [b1, b2]. The second and third
arguments must be pairs of longdoubles. If the third argument is missing, then x is
converted to a longdouble in [0, 1].

long.redupi (x)

Subtracts the nearest integer multiple of from longdouble x. if x is a multiple of ,✜ ✜
returns long.nought.

See also: long.rempio2, long.wrap.

706 11 Numbers

long.rempio2 (x [, option])

Conducts an argument reduction of x into the range |y| < and returns y = x -
✜
2

N* . If any option is given, then the function also returns N, or actually the last three
✜
2

digits of N. The number of operations conducted are independent of the exponent
of the input.

See also: long.redupi, long.wrap.

long.wrap (x [, a [, b]])

Conducts a range reduction x to the interval [a, b). If x [a, b), x is simply returned.c

In the second form, if a is not given, a is set to and b to . If a is given but not b,−✜ +✜
a is set to -a and b to +a, so a should be positive.

See also: long.redupi, long.rempio2.

long.signbit (x)

Checks whether x has its sign bit set and returns true or false. For example, although
-0 = 0, long.signbit(-0) true and long.signbit(0) false.e e

long.frexp (x)

Returns the mantissa m and the exponent e of x such that x = m2e. e should be
integral, and the value of m is in the range [0.5, 1) (or zero when x is zero). The
operation is bijective, i.e. long.ldexp(long.frexp(x)) = x.

long.ldexp (m, e)

Returns m2e (e should be integral).

long.multiple (x, y [, option])

Checks whether x is a multiple of y, i.e. whether x/y evaluates to an integral, and
returns true or false.

Also returns true with x = 0 and any non-zero y.

If y is zero, long.undefined or +/-long.infinity, the function returns fail.

By passing the optional third argument true, a tolerant check is done, with
subnormal x or y first converted to zero, and a subsequent approximate equality
check to the nearest integer of x/y. The tolerance value internally used is the value
of DoubleEps at the time of the function call.

agena >> 707

In most cases, it may suffice to just call integral(x/y).

IEEE:

long.fpclassify (x)

For the given x, returns

� long.fp_nan if x is undefined,
� long.fp_infinite if x is infinite, i.e. +/-infinity,
� long.fp_subnormal if x is subnormal,
� long.fp_zero if x is zero,
� long.fp_normal if x is normal, including irregular values .m 252

long.isundefined (x)

Returns true if long.fpclassify(x) = long.fp_nan, and false otherwise.

long.isinfinite (x)

Returns true if long.fpclassify(x) = long.fp_infinite, and false otherwise.

long.iszero (x)

Returns true if long.fpclassify(x) = long.fp_zero, and false otherwise.

long.isnormal (x)

Returns true if long.fpclassify(x) = long.fp_normal, and false otherwise.

long.issubnormal (x)

Returns true if long.fpclassify(x) = long.fp_subnormal, and false otherwise.

See also: long.normalise.

long.isfinite (x)

Returns true if long.fpclassify(x) <> long.fp_nan and long.fpclassify(x) <>
long.fp_infinite, and false otherwise.

long.normalise (x)

Returns long.MinDouble with the sign of x if x is subnormal, and returns x otherwise.

See also: long.issubnormal, long.zerosubnormal.

708 11 Numbers

Available constants are:

1/3long.third
'0.75long.threequarter
'0.001long.thousandth
'0.01long.hundredth
'0.2long.fifth
'0.1long.tenth
'0.25long.quarter
'0.5long.half
1,000long.thousand
100long.hundred
50long.fifty
12long.twelve
11long.eleven
10long.ten
9long.nine
8long.eight
7long.seven
6long.six
5long.five
4long.four
3long.three
2long.two
1long.one

zero0
long.naught
long.nought

inverse1/ln(1 +)/25long.InvlnPhi
logarithm of Golden Ratioln(1 +)/25long.lnPhi

(1/((1 +)/2))25long.InvPhiSq
inverse Golden Ratio1/((1 +)/2)5long.InvPhi
Golden Ratio(1 +)/25long.Phi

1/ 2long.Invsqrt2
1/ln(2)long.Invln2
ln(2)long.ln2

 3long.sqrt3
2long.sqrt2

E = exp(1)long.E
4// 2✜long.InvPiSqO4
4/✜long.InvPiO4
1/(2)✜long.InvPi2

radians per degree/180✜long.PiO180
/4✜long.PiO4
/2✜long.PiO2

2✜long.Pi2
 ✜long.Pi

CommentValueConstant

agena >> 709

smallest normalised
positive longdouble value
(a longdouble may be
smaller, of course, but then
it is subnormal)

3.3621031431120935e-4932long.MinDouble

long double machine
epsilon at 1

'1.084202172485504434E-19long.DoubleEps

undefinedlong.undefined
infinitylong.infinity
'0.0625long.sixteenth
1/12long.twelfth
'0.125long.eighth
1/6long.sixth

CommentValueConstant

These constants - with the exception of long.MinDouble - have all been defined in
source file lib/long.agn.

710 11 Numbers

11.16 combinat - Combinatorics

This package features some combinatorial functions. See also: fact, binomial.

combinat.bell (n)

Returns the n-th Bell number, i.e. counts the possible partitions of a set. With n >
218, always returns infinity.

combinat.bernoulli (n [, eps])

Computes the n-th Bernoulli number Bn and returns a number. n should be a
non-negative integer. eps is an internal bailout value and by default equals
DoubleEps.

See also: combinat.euler.

combinat.cartprod (l [, flag])

When called with argument l only, returns the Cartesian product of a table of two
or more tables l, or a sequence of two or more sequences l. The type of the result
is the same as the type of the input. The structures in l may be of different size but
must be non-empty.

If any non-null second argument is given, the function creates an iterator that each
time it is called, returns a tuple in the Cartesian product. A typical usage might look
like this:

> f := combinat.cartprod([[1, 2, 3], [30], [50, 100]]);

> for i in f do print(i) od
[1, 30, 50]
[1, 30, 100]
[2, 30, 50]
[2, 30, 100]
[3, 30, 50]
[3, 30, 100]

combinat.catalan (n)

Returns the n-th Catalan number.

agena >> 711

combinat.choose (n [, m])

The function constructs the combinations of table elements.

If n is a table, then the function returns a table of the combinations of the table
elements.

If n is a positive integer, it is interpreted in the same way as a set of the first n
integers.

If m is given, then only combinations of size m are generated; otherwise, all
combinations are generated, including the empty combination, that is, the power
set is generated. Duplicates in table n are taken into account.

See also: combinat.cartprod, combinat.numbcomb, combinat.permute.

combinat.euler (n [, eps])

Computes the n-th Euler number En and returns a number. n should be a
non-negative integer. eps is an internal bailout value and by default equals
DoubleEps.

See also: combinat.bernoulli.

combinat.numbcomb (n, r)

combinat.numbcomb (s, r)

In the first form, counts the number of combinations of n things taken r at a time. In
the second form, the function counts the number of combinations all the elements
in the set s taken r at a time. The set may include data of any type. n, r are
numbers and may even be negative or fractions.

See also: binomial, fact, combinat.choose, combinat.numbperm.

combinat.numbpart (n, r)

Computes the number of partitions of n, the partition numbers, taken r at a time. By
default, r = n.

combinat.numbperm (n, r)

combinat.numbperm (s, r)

In the first form, counts the number of permutations of n things taken r at a time. In
the second form, the function counts the number of permutations of all the
elements in the set s taken r at a time. The set may include data of any type.

If n or r are non-integral or negative, the function returns undefined.

712 11 Numbers

See also: binomial, fact, combinat.numbcomb, combinat.permute.

combinat.permute (n, r)

The function constructs the permutations of table elements.

If n is a table, then the function returns a table of all the permutations of the
elements taken r at a time.

If n is a non-negative integer, it is interpreted in the same way as a table of the first n
integers.

If r is not specified, then it is taken to be equal to the number of elements in n.

The permutations are generated in order. Duplicates in n are respected.

Examples:

> combinat.permute([1, 2, 3], 3):
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

> combinat.permute(3, 2):

[[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]

See also: combinat.cartprod, combinat.choose, combinat.numbperm.

combinat.stirling1 (n, k)

Computes Stirling number of the first kind for n, k.

combinat.stirling2 (n, k)

Computes Stirling number of the second kind for n, k.

agena >> 713

714 11 Numbers

Chapter Twelve

Input & Output

agena >> 715

716 12 Input & Output

12 Input & Output

12.1 io - Input and Output Facilities

The I/O library provides two ways for file manipulation.

Summary of functions:

Opening and closing files:

io.open, io.close.

Reading data:

io.input, io.lines, io.read, io.readfile, io.readlines.

Writing data:

io.output, io.write, io.writefile, io.writelines.

File positions:

io.eof, io.filepos, io.move, io.seek, io.skiplines.

File locking:

io.lock, io.unlock.

File buffering:

io.setvbuf, io.sync

Interaction with applications:

io.pcall, io.popen, io.close

Keyboard interaction:

io.anykey, io.getkey, io.kbdgetstatus, io.keystroke

Windows clipboard interaction

io.getclip, io.putclip.

agena >> 717

Miscellaneous:

io.clearerror, io.ferror, io.fileno, io.filesize, io.isfdesc, io.mkstemp, io.nlines,
io.isopen, io.tmpfile, io.truncate.

Usage:

1. The first one uses file handles; that is, there are operations to set a default input
file and a default output file, and all input/output operations are over these
default files. File handles are values of type userdata and are used as in the
following example:

Open a file and store the file handle to the name fh:

> fh := io.open('d:/agena/src/change.log'):
file(7803A6F0)

Read 10 characters:

> io.read(fh, 10):

Change Log

Close the file:

> io.close(fh):
true

In the following descriptions of the io functions, file handles are indicated with
the argument filehandle.

The table io provides three predefined file handles with their usual meanings
from C: io.stdin, io.stdout, and io.stderr.

2. The second style uses file names passed as strings like
'd:/agena/lib/library.agn'. File names are always indicated with the
argument filename in this chapter.

Unless otherwise stated, all I/O functions return null on failure (plus an error message
as a second result) and some value different from null on success.

io.anykey ()

Checks whether a key is being pressed and returns either true or false. A common
usage is as follows:

> while io.anykey() = false do od; # wait until a key has been pressed

718 12 Input & Output

The function works in the OS/2, Solaris, Linux, DOS, and Windows editions only. On
Lion, the function sometimes echoes the key being pressed. On other systems, it
returns fail.

See also: io.getkey, io.read.

io.clearerror (filehandle)

Clears the end-of-file and error indicators for the file denoted by filehandle. The
function returns nothing.

See also: io.eof, io.ferror.

io.close ([filehandle, ···])

Closes one or more files. Note that files are automatically closed when their handles
are garbage collected, but that takes an unpredictable amount of time to
happen.

Without a filehandle, closes the default output file.

The function also deletes the file handles and the corresponding filenames from the
io.openfiles table if the files could be properly closed.

The function returns true on success and false otherwise. With pipes, also returns the
exit code of the application run.

See also: io.open, io.popen.

io.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns true or false.

See also: io.clearerror, io.ferror.

io.ferror (filehandle)

Checks the error indicator for the file denoted by filehandle and returns true if set
or false if not set.

See also: io.clearerror, io.eof.

io.fileno (filehandle)

Returns the file descriptor, an integer, associated with the stream referenced by
filehandle, which is of type userdata/file. It is useful for informative purposes, only.

agena >> 719

The return cannot be used as a substitute to filehandle in calls to io functions, and
which require a handle of type userdata/file.

The function issues an error if filehandle is not of type userdata/file or if does not
reference an open file.

See also: io.isfdesc.

io.filepos (filehandle)

Returns the current position in the file denoted by its file handle filehandle, and
returns a non-negative number.

See also: io.seek.

io.filesize (filehandle)

Returns the size of an open file denoted by its file handle filehandle and returns the
number of bytes as a non-negative integer.

io.getclip ()

Returns the contents of the Windows clipboard as a string. If the clipboard could not
be accessed, it returns fail plus an error string. It also returns fail and an error string, if
the clipboard contains a binary object.

The function is available in the Windows edition only.

See also: io.putclip.

io.getkey ([anything])

If no argument is given, waits until a key is pressed and returns its ASCII number. If
any argument is passed, the function waits until a key is pressed, but returns nothing.

The function is available in the OS/2, Solaris, Linux, Mac OS X, DOS, and Windows
editions only.

See also: io.anykey, io.read.

io.infile (filename, pattern)

io.infile (filehandle, pattern)

Checks whether the file given by the name filename or the file denoted by its
descriptor filehandle includes a pattern of type string, and returns true or false.
The function supports pattern matching.

See also: io.readfile, utils.findfiles.

720 12 Input & Output

io.input (filehandle)

io.input (filename)

io.input ()

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file
handle as the default input file. When called without parameters, it returns the
current default input file.

In case of errors this function raises the error, instead of returning an error code.

io.isfdesc (filehandle)

Checks whether filehandle is a valid file handle. Returns true if filehandle is an
open file handle, or false if filehandle is not a file handle.

See also: io.fileno, io.isopen.

io.isopen (filehandle)

Checks whether filehandle references an open file. Returns true if filehandle is an
open file handle, or false if filehandle is not a file handle. Thus it also returns false if
filehandle is not of type userdata/file. Contrary to io.isfdesc, it also detects invalid
file positions caused by files too large or if the stream referenced by filehandle
does not support file positioning.

Please note that the function cannot detect whether a file has been opened by
another application.

The function is five times slower than io.fdesc.

See also: io.fileno, io.isfdesc.

io.kbdgetstatus ()

OS/2 only: Get status information about the keyboard. The function returns a table
with the contents of the KBDINFO structure after the call to the C API function
KbdGetStatus. See http://www.edm2.com/index.php/KbdSetStatus_(FAPI) for the
meaning of the results.

io.keystroke (c)

Windows only: emulates a keystroke for the given ASCII value (an integer) c and
dumps the character representing c to the currently active window. For security,
newlines, carriage returns, and CTRL-Z's will not be accepted as input.

agena >> 721

io.lines (filename)

io.lines (filehandle)

io.lines ()

io.lines (file, [i1 [, i2, ···]] [, options])

io.lines (file, [o] [, options])

In the first form, the function opens the given file denoted by string filename in read
mode and returns an iterator function that, each time it is called, returns a new line
from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

Therefore, the construction

 for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f, where f is either a file name or file
handle. When the iterator function detects the end of file, it returns null (to finish the
loop) and automatically closes the file if a filename is given. In case of a file
handle, the file is not closed.

The call io.lines() (without a file name) iterates over the lines of the default input
file. In this case it does not close the file when the loop ends.

In the fourth and fifth form, the iterator generated by io.lines does not return a string
but extracts the given fields from the line just read, where the field positions i1, i2,
etc. are non-zero integers. The field positions may be negative, denoting fields
counted from the right end of the line. If no position is given, then all the fields will
be returned. In the fifth form, the field positions are given in the sequence o. You
can pass one or more of the following options:

� delim=string where string denotes the non-empty string separating the fields, the
default is a semicolon,

� unwrap=string where string denotes a non-empty string - by default there is no
unwrapping; if a field is enclosed by one of the characters in string then it is
removed from the start and end of the respective field,

� convert=boolean: if boolean is true then the function tries to convert the field
into a number or complex number. In the latter case, the value must be of the
form "a + I*b" with or without white spaces in between; default is false,

� skipfaulty=boolean: when set to true, lines of size zero and all lines with
incorrect field numbers are skipped and the function will not return fail. Default
is: false.

� header=boolean: when given the very first line in a file will be skipped and the
function will not return fail, default is false;

� ignore=f: applies a function f on every line and if f evaluates to true, the line will
be skipped and io.lines will not return fail.

722 12 Input & Output

The return of the iterator function on success is a sequence of the fields (strings,
optionally numbers or complex numbers).

Example: Consider a CSV file with US ZIP codes which is set up like this:

"Zip";"City";"State Id";"State";"Parish/County/Borough";"Latitude";"Longitude"
"00601";"Adjuntas";"PR";"Puerto Rico";"Adjuntas";"18.1788";"-66.7516"
[further lines]
"70001";"Metairie";"LA";"Louisiana";"Jefferson Parish";"29.987138";"-90.169513"
"70002";"Metairie";"LA";"Louisiana";"Jefferson Parish";"29.987138";"-90.169513"

[further lines]

To skip the file header, remove wrapping double quotes and select certain fields for
entire Louisiana only, issue:

> f := io.lines('uszips.csv', 1, 2, 5,
> header = true, unwrap = '"',
> ignore = << x -> '"LA"' notin x >>);

> f():
seq(70001, Metairie, Jefferson Parish)

> f():

seq(70002, Metairie, Jefferson Parish)

To skip empty lines or lines with white spaces only, you can define:

> f := io.lines('faulty.txt', skipfaulty = true,
> ignore = << x -> strings.isspace(x) >>)

See also: io.readlines.

io.lock (filehandle)

io.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form described below in Windows
after the file has become larger than bytes (= 8,589,934,592 GBytes).263

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns true on a successful lock, and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

agena >> 723

See also: io.unlock.

io.maxopenfiles ([n])

In Solaris, Linux Mac OS X and Windows, returns the maximum number of open files,
minus 2 for stdin & stdout, if no argument is given - or sets the maximum number of
files that are allowed to be opened simultaneously if an integer n is given.

On OS/2 and DOS, returns the maximum number of open files, but you cannot
change this number.

On the platforms given above, when n is not given, returns undefined in case of
errors. On all other platforms, the function always returns undefined.

io.mkstemp (template)

The function creates a unique temporary filename from the given template, a
string, which must always end with six (capital) X's and returns it as a string. It also
creates a file of the same name, but does not open it.

Example: io.mkstemp('fileXXXXXX').

See also: io.tmpfile, os.remove, os.tmpdir, os.tmpname.

io.move (filehandle, n)

Moves the current file position of the open file denoted by its filehandle either to
the left or the right.

If n is a positive integer, then the file position is moved n characters to the right, if it is
a negative integer, it is moved n characters to the left. If n is zero, the position is not
changed at all.

The function returns true on success and false otherwise.

See also: io.seek.

io.nlines (filename)

io.nlines (filehandle)

The function counts the number of lines in the (text) file denoted by filename or
filehandle and returns a non-negative integer.

See also: io.skiplines.

724 12 Input & Output

io.open (filename [, mode])

This function opens a file, given by the string filename, in the mode specified in the
string mode. It returns a new file handle of type userdata/file. The function does not
lock the file (see io.lock).

The function also enters the newly opened file into the io.openfiles table in the
following format: [filehandle ~ [filename, mode]].

In case of errors, the function quits with an error.

The mode string can be any of the following:

• 'r', 'read': read mode (the default);
• 'w', 'write': write mode only; if the file already exists, it is truncated to zero

length;
• 'a', 'append': append mode;
• 'r+': update mode (both reading and writing), all previous data is preserved;

the initial file position is at the beginning of the file;
• 'w+': update mode (reading and writing), all previous data is erased;
• 'a+': append update mode (reading and appending), previous data is

preserved, writing is only allowed at the end of file.

The mode string may also have a 'b' at the end, which is needed in some systems
to open the file in binary mode. This string is exactly what is used in the standard C
function fopen.

See also: io.close, io.lock.

io.output ([filehandle])

Similar to io.input but operates over the default output file.

io.pcall (prog [, mode])

Starts programme prog (passed as a string) in a separated process, sends and
receives data to this programme via stdout - if mode is 'r', or mode is not given -, or
writes data to this programme if mode is 'w'. After communication finishes, the
connection is automatically closed.

The return is a sequence of strings containing the result sent back by the
application.

The function thus is a combination of io.popen, io.readlines, and io.pclose, has
been written in Agena, and is included in the main Agena library (lib/library.agn).

This function is system dependent and is not available on all platforms.

agena >> 725

See also: remove, select, os.execute.

io.popen ([prog [, mode]])

Starts programme prog in a separated process and returns a file handle that you
can use to read data that is sent from this programme (if mode is 'r', the default) via
stdout, or to write data to this programme (if mode is 'w').

Use io.close to close the connection.

The following example shows how to receive the output of the UNIX `ls` command:

> p := io.popen('ls -l', 'r'):
file(779509B8)

> for keys i in io.lines(p) do print(i) od;
total 1917
drwxrwxrwx 1 user group 0 Oct 12 17:00 OS2
-rw-rw-rw- 1 user group 24481 Oct 13 18:23 aauxlib.c
-rw-rw-rw- 1 user group 6205 Aug 10 02:26 aauxlib.h
-rw-rw-rw- 1 user group 16067 Oct 12 23:42 aauxlib.o

> io.close(p):
true 0

This function is system dependent and is not available on all platforms.

See also: os.execute, io.close, io.pcall.

io.putclip (str)

Copies the string str to the Windows clipboard. If the clipboard could not be
accessed, it returns fail plus an error string. It only returns fail, if something else went
wrong, and true on success.

The function is available in the Windows edition only.

See also: io.getclip.

io.read (filehandle [, format])

io.read ()

In the first form, reads the file with the given filehandle, according to the given
formats, which specify what to read. For each format, the function returns a string
(or a number) with the characters read, or null if it cannot read data with the
specified format. When called without formats, it uses a default format that reads
the entire next line (see below).

The available formats are:

726 12 Input & Output

• '*n': reads a number; this is the only format that returns a number instead of
a string. Hexadecimal numbers and numbers in scientific E notation are
accepted, too. It also processes floats that include the decimal point
separator of the current locale that may be different from a dot.

• '*a': reads the whole file, starting at the current position. On end of file, it
returns the empty string22.

• '*l': reads the next line (skipping the end of line), returning null on end of
file. This is the default format.

• '*L': reads the next line keeping the end-of-line character.
• number: reads a string up to this number of characters, returning null on end

of file. If number is zero, it reads nothing and returns an empty string, or null
on end of file.

In the second form, the function reads from the default input stream (usually the
keyboard) and returns a string or number.

Note that you can write to stdin by passing the constant io.stdin as a file handle.

See also: io.lines, io.readfile, io.readlines, skycrane.readcsv, utils.readcsv,
utils.readxml.

io.readfile (filename [, removenlcr [, pattern [, flag]]])

io.readfile (filhandle [, removenlcr [, pattern [, flag]]])

Reads the entire file with name filename or the file denoted by its handle
filehandle in binary mode and returns it as a string. Note that contrary to
io.readlines, the function also returns carriage returns (ASCII code 13).

If a second argument removenlcr is the Boolean value true, has been passed, then
the function removes all newlines and if existing all carriage returns at the end of
each line. If it is false, no such deletions are performed.

If the optional third argument pattern is given, the function only returns the whole
contents of a file if the string pattern has been found in the file. Pattern matching is
supported.

If the optional fourth argument flag is false, the function returns the whole file
contents file if the string pattern has not been found in the file.

See also: io.infile, io.read, io.readlines, io.writefile.

io.readlines (filename [, options])

io.readlines (filehandle [, options])

Reads the entire file with name filename or file handle filehandle and returns all
lines in a table.

agena >> 727

22 See also io.readfile to read a file entirely.

If a string consisting of one or more characters is given as a further argument, then
all lines beginning with this string are ignored. If the option true is passed, then
diacritics in the file are properly converted to the console character set, provided
you use code page 1252. You can mix the options in any order. The function
automatically deletes carriage returns (ASCII code 13) if included in the file.

You can also pass a function of one variable: in this case the function is applied on
all the lines being read in and the function call results are inserted into the resulting
table instead of the original lines. A line is only transformed if the line has not been
skipped, see the string option mentioned above. Example:

> # convert all lines to upper-case, but skip all lines starting with '1':
> io.readlines(filename, '1', << x -> upper x >>):

An error is issued if the file could not be found.

If you use file handles, you must open the file with io.open before applying
io.readlines, and close it with io.close thereafter.

See also: io.lines, io.read, io.readfile, utils.readcsv, utils.readxml,
skycrane.readcsv.

io.rewind (filehandle)

Sets the current file position of the open file denoted by its filehandle to the
beginning of the file. It returns the current file position, the number 0, at success,
and null plus an error string otherwise.

See also: io.move, io.seek, io.toend.

io.seek (filehandle [, whence [, offset]])

Sets and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as follows:

• 'set': base is position 0 (beginning of the file);
• 'cur': base is current position;
• 'end': base is end of file.

In case of success, io.seek returns the final file position, measured in bytes from the
beginning of the file. If this function fails, it returns null, plus a string describing the
error.

The default value for whence is 'cur', and for offset is 0. Therefore, the call
io.seek(file) returns the current file position, without changing it; the call
io.seek(file, 'set') sets the position to the beginning of the file (and returns 0);
and the call io.seek(file, 'end') sets the position to the end of the file, and
returns its size.

728 12 Input & Output

See also: io.move, io.rewind, io.skiplines, io.toend.

io.setvbuf (filehandle, mode [, size])

Sets the buffering mode for an output file. There are three available modes:

• 'no': no buffering; the result of any output operation appears immediately.
• 'full': full buffering; output operation is performed only when the buffer is full or

when you explicitly flush the file (see io.sync).
• 'line': line buffering; output is buffered until a newline is output or there is any

input from some special files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is
an appropriate size.

io.skiplines (filehandle, n)

io.skiplines (filename, n)

The function skips the given number of lines and sets the file position to the
beginning of the line that follows the last line skipped.

If a file name is passed, then with each call to io.skiplines the search always starts
at the very first line in the file. The function automatically closes the file if a file name
has been passed and returns the result (see below).

If you use a file handle, then lines can be skipped multiple times, always relative to
the current file position. With a file handle, io.skiplines does not close the file.

The second argument n may be any non-negative number. If n is 0, then the
function does nothing and does not change the file position.

The function returns two values: the non-negative number of lines actually skipped
and the non-negative number of characters skipped in this process, including
newlines and carriage returns.

See also: io.nlines, io.seek.

io.sync (filehandle)

io.sync ()

In the first form, saves any written data to the file denoted by filehandle. In the
second form, the function flushes the default output.

io.tmpfile ()

Returns a handle to a temporary file. The file is opened in update mode and it is
automatically removed when the programme ends.

agena >> 729

See also: io.mkstemp, os.tmpdir, os.tmpname.

io.toend (filehandle)

Sets the current file position of the open file denoted by its filehandle to the end of
the file. It returns the current file position, a number indicating the size of the file, at
success, and null plus an error string otherwise.

See also: io.move, io.rewind, io.seek.

io.unlock (filehandle [, size])

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. If size is given, the function, only the given
number of bytes is unlocked, starting from the current file position.

The function returns true on a successful unlock, and false otherwise.

For more information, see io.lock.

io.write (···)

io.writeline (···)

Write the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument, a file handle. Except
for the file handle and the 'delim' option described below, all arguments must be
strings, numbers, Booleans or null. To write other values, use tostring or
strings.format.

io.writeline adds a new line at the end of the data written, whereas io.write does
not.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.g. 'delim':'|') as the
last argument to the functions with <str> being a string of any length. Remember
that in the function call, a shortcut to 'delim':<str> is delim ~ <str>.

The functions return true on success, and false otherwise.

Hint: If you work in DOS-like systems, such like DOS, Windows, or OS/2, and if the text
to be written includes line breaks, you may wonder why the resulting file will be
larger than the number of characters in the text. This is because the operating
system adds a further control code, i.e. carriage return, in front of each line break.
To avoid this, open the file in binary mode, e.g. io.open(filename, 'wb').

Examples:

730 12 Input & Output

Write a string to the console. Note that in the first statement, no newline is added to
the output, as opposed to the second and third statements.

> io.write('Gauden Dach !')
Gauden Dach !

> io.write('Gauden Dach !', '\n')
Gauden Dach !

> io.writeline('Gauden Dach !')
Gauden Dach !

Write strings to the console:

> io.writeline('Bet', 'to\'n', '16.', 'Johrhunnert', 'geef', 'dat', 'hier',
> 'baben', 'anne', 'Küst', 'nix', 'anneres', 'as', 'Platt.')
Betto'n16.JohrhunnertgeefdathierbabenanneKüstnixanneresasPlatt.

Use a white space as a separator:

> io.writeline('Bet', 'to\'n', '16.', 'Johrhunnert', 'geef', 'dat', 'hier',
> 'baben', 'anne', 'Küst', 'nix', 'anneres', 'as', 'Platt.',
> delim=' ')
Bet to'n 16. Johrhunnert geef dat hier baben anne Küst nix anneres as
Platt.

Write a string to a new file called 'd:/newfile.txt': First we have to create the new
file with io.open and the 'w' (write) option.

> fh := io.open('d:/newfile.txt', 'w'):
file(7803A6F0)

Write some text to the file.

> io.write(fh, 'Gouden Dach !'):
true

> io.writeline(fh, '\nBet', 'to\'n', '16.', 'Johrhunnert', 'geef', 'dat',
> 'hier', 'baben', 'anne', 'Küst', 'nix', 'anneres', 'as', 'Platt.',
> delim=' '):
true

Finally, the file will be closed.

> io.close(fh):
true

Note that you can also write to stdin, stdout and stderr by passing the constants
io.stdin, io.stdout or io.stderr as a file handle.

See also: io.writefile, print, skycrane.formatline, skycrane.scribe, skycrane.tee.

agena >> 731

io.writefile (filename, ···)

io.writefile (filehandle, ···)

In the first form, creates a new file filename denoted by its first argument (a string)
and writes all of the given strings or numbers starting with the second argument in
binary mode to it. To write other values, use tostring or strings.format. After writing all
data, the function automatically closes the new file.

In the second form, the function writes its arguments to the open file denoted by its
handle filehandle.

By default, no character is inserted between neighbouring strings. This may be
changed by passing the option 'delim':<str> (i.e. a pair, e.g. 'delim':'|') as the last
argument to the function with <str> being a string of any length.

If the file fn already exists, it is overwritten without warning.

The function returns the total number of bytes written, and issues an error otherwise.
It is around twice as fast than using a combination of io.open, io.write and io.close.

See also: save, io.readfile.

732 12 Input & Output

12.2 binio - Binary File Package

This package contains functions to read data from and write data to binary files.

Summary of functions:

Opening and closing files:

binio.open, binio.close, binio.isfdesc.

Reading data:

binio.lines, binio.readbytes, binio.readchar, binio.readlong, binio.read-
longdouble, binio.readnumber, binio.readshortstring, binio.readstring.

Writing data:

binio.writebytes, binio.writechar, binio.writeline, binio.writelong, binio.write-
longdouble, binio.writenumber, binio.writeshortstring, binio.writestring.

File positions:

binio.eof, binio.filepos, binio.rewind, binio.seek, binio.toend.

File locking:

binio.lock, binio.unlock.

File buffering:

binio.sync.

Miscellaneous:

binio.length.

The binio package always uses file handles that are positive integers greater than 2.
(Note that the io package uses file handles of type userdata.) The positive integer
will be returned by the binio.open function and must be used in all package
functions that require a file handle.

A typical example might look like this:

agena >> 733

Open a file and return the file handle:

> fh := binio.open('c:/agena/lib/library.agn'):
3

Determine the size of the file in bytes:

> binio.length(fh):
46486

Close the file.

> binio.close(fh):
true

binio supports metamethods. The metatable used by the package is called
`BINIOFILE*`. By default, only __gc and __tostring methods are supported. Check
the end of Chapter 6.19 on how to add further methods.

The binio functions are:

binio.close (filehandle [, filehandle2, ···])

Closes the files identified by the given file handle(s) and returns true if successful,
and issues an error otherwise. The function also deletes the file handles and the
corresponding filenames from the binio.openfiles table if the file could be properly
closed.

See also: binio.open.

binio.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns true or false.

binio.filepos (filehandle)

Returns the current file position relative to the beginning of the file as a number. In
case of an error, it quits with this error.

binio.isfdesc (filehandle)

Checks whether filehandle is a valid file handle. Returns true if filehandle is an
open file handle, or false if filehandle is not a file handle.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle in bytes.

734 12 Input & Output

binio.lines (filehandle [, n] [, true])

Creates an iterator function that beginning from the current file position, with each
call will return a new line from the file pointed to by the handle filehandle.

By default, the function traverses the file up to its end. If the second argument n is a
positive integer, it will read the next n characters from the current file position
(default is infinity = end of file). The function generally ignores carriage returns (ASCII
code 13) and does not return newlines (ASCII code 10).

If the last argument is the Boolean value true, all embedded zeros (ASCII Code 0)
will be replaced with white spaces, and the traversal of the file will continue. By
default, zeros are not ignored, so if one is found, the traversal will stop.

The iterator function returns a string, and null if the end of the file has been
reached. It also returns null if the last argument is not true and an embedded zero
has been found in the file.

The iterator function does not close the file at the end of traversal, use binio.close
to accomplish this.

binio.lock (filehandle)

binio.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form in Windows after the file has
become larger than bytes (= 8,589,934,592 Gbytes).263

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns true on a successful lock, and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

See also: binio.unlock.

agena >> 735

binio.open (filename, 'a')

binio.open (filename [, anything else])

Opens the given file denoted by filename and returns a file handle (a number).

If it cannot find the file, it creates it and leaves it open for further binio operations.

In the first form, by passing the 'a' or 'append' option, and if the file already exists, it
opens the file and sets the current file position to the end of the file so that nothing
will be overwritten later on.

In the second form, if the file already exists, it opens the file and sets the current file
position to the beginning of the file. In subsequent write operations, the contents of
the file will thus be overwritten and the programmer has to ensure its integrity
himself. (Use binio.toend to append to the file in this case or pass the 'a' option.)

The file is always opened in both read and write modes.

If an optional second argument except 'a' or 'append' is given, the file is opened
in read mode only. Thus, if the file does not yet exist, the function returns an error.

The function also enters the newly opened file into the binio.openfiles table.

See also: binio.close, binio.lock, binio.unlock, os.exists.

binio.readbytes (filehandle [, bytes] [, options])

By default, the function reads environ.kernel('buffersize') bytes from the file
denoted by filehandle and returns them as a sequence of integers. You may
change the kernel buffer size value to any other values in order to read less or more
bytes.

If bytes is given, the function reads bytes bytes from the file denoted by filehandle
and returns them as a sequence of integers.

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call to various binio.read* functions.

If the end of the file has been reached, null will be returned. In case of an error, it
quits with the respective error.

By default, the function reads in all bytes of a file, including newlines (ASCII 10) or
carriage returns (ASCII 13). You can change this by setting the ignore option and
passing a string of explicit bytes that shall be skipped, e.g.:

> binio.readbytes(fh, ignore=" .\n"); # skip white space, dot & newline

Also by default, the function reads in embedded zeros and treats them as every
other byte. If you pass the eof option and set it to true, then the function quits if it

736 12 Input & Output

encounters an embedded zero in the file. The file pointer is automatically reset to
the position of the embedded zero. The default is false, i.e. the whole file is read in.

The function is much faster when working on a larger number of bytes.

See also: binio.writebytes, bytes.tonumber, stack.readbytes, strings.tochars.

binio.readchar (filehandle)

binio.readchar (filehandle, offset)

In the first form, the function reads a byte from the file denoted by filehandle from
the current file position and increments the file position thereafter so that the next
byte in the file can be read with a new call to binio.read* functions.

In the second form, at first the file position is changed by offset bytes (a positive or
negative number or zero) relative to the current file position. After that, the byte at
the new file position is read. Next, the file position is being incremented thereafter so
that the next byte in the file can be read with a new function call.

If the byte is successfully read, it will be returned as a number. If the end of the file
has been reached, null will be returned. In case of an error, the function quits.

binio.readindex (filehandle , k [, type [, offset]])

The function assumes that all values in the binary file pointed to be filehandle are
of the same type and reads the k-th one. By default, the function reads numbers (C
doubles). You may pass the third argument type to determine another type. Valid
types are the strings 'char' (see binio.writechar), 'long' (see binio.writelong),
'number' (the default, see binio.writenumber), 'shortstring' (see
binio.writeshortstring) or 'string' (see binio.writestring). Longdoubles are not
supported.

You may pass an optional offset from the beginning of the file as the fourth
argument, which by default is 0. If given, the file position is moved the offset's + 1
byte in the file before searching for the given index and reading the value of
interest. This feature supports a self-defined file header.

See also: binio.readbytes, binio.readchar, binio.readlong, binio.readnumber,
binio.readshortstring, binio.readstring, binio.writeindex.

binio.readlong (filehandle [, offset])

The function reads a signed C value of type int32_t from the file denoted by
filehandle from the current file position and returns it. If there is nothing to read, the
function returns null. Note that the number to be read should have been written to
the file using the binio.writelong function.

agena >> 737

In the second form, before reading the actual value, at first the file position is
changed by offset bytes (a positive or negative number or zero) relative to the
current file position.

See also: binio.writelong.

binio.readlongdouble (filehandle [, offset])

The function reads a longdouble from the file denoted by filehandle from the
current file position and returns it. If there is nothing to read, the function returns null.
Note that the longdouble to be read should have been written to the file using the
binio.writelongnumber function. See the long package for further information on
80-bit floating point values.

In the second form, before reading the actual value, at first the file position is
changed by offset bytes (a positive or negative number or zero) relative to the
current file position.

The function is not supported on Big Endian systems.

See also: binio.writelongdouble.

binio.readnumber (filehandle [, offset])

The function reads an Agena number from the file denoted by filehandle from the
current file position and returns it. If there is nothing to read, the function returns null.
Note that the number to be read should have been written to the file using the
binio.writenumber function.

In the second form, before reading the actual value, at first the file position is
changed by offset bytes (a positive or negative number or zero) relative to the
current file position.

See also: binio.writenumber.

binio.readshortstring (filehandle)

The function reads a string of up to 255 characters from the file denoted by
filehandle from the current file position and returns it. If there is nothing to read, the
function returns null.

Note that the string to be read should have been written to the file using the
binio.writeshortstring function, as this function also stores the length of the string in a
special way to the file.

See also: binio.writeshortstring.

738 12 Input & Output

binio.readstring (filehandle)

The function reads a string of any length from the file denoted by filehandle from
the current file position and returns it. If there is nothing to read, the function returns
null.

Note that the string to be read should have been written to the file using the
binio.writestring function, as this function also stores the length of the string in a
special way to the file.

See also: binio.writestring.

binio.rewind (filehandle [, pos])

Sets the file position to the beginning of the file denoted by filehandle.

If pos, a non-negative integer is given, the function resets the file pointer to the
position pos relative to the beginning of the file.

The function returns the new file position as a number in case of success, and quits
with an error otherwise.

See also: binio.toend, binio.seek.

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position
bytes relative to the current position. position may be negative, zero, or positive.

The return is true if the file position could be changed successfully, or issues an error
otherwise.

See also: binio.rewind, binio.toend.

binio.sync (filehandle)

Flushes all unwritten content to the file denoted by the handle filehandle. The
function returns true if successful, false if stdin or stdout should be closed, and
issues an error otherwise (e.g. if the file was not opened before or an error during
flushing occurred).

binio.toend (filehandle)

Sets the file position to the end of the file denoted by filehandle so that data can
be appended to the file without overwriting existing data. The function returns the
file position as a number in case of success, and issues an error otherwise.

agena >> 739

See also: binio.rewind, binio.seek.

binio.unlock (filehandle)

binio.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again.

The function returns true on a successful unlock, and false otherwise.

For more information, see binio.lock.

binio.writebytes (filehandle, s)

The function writes all integers in the sequence s to the file denoted by filehandle
at its current position. The function returns true in case of success and fail if the
sequence is empty.

The integers in s should be integers number with 0 number < 256, otherwise number[

% 256 will be stored to the file.

Internally, the bytes are stored as C unsigned char's.

See also: binio.readbytes, math.tobytes, strings.tobytes.

binio.writechar (filehandle, number [, ···])

The function writes the given Agena number, and optionally more numbers, to the
file denoted by filehandle at its current position. The function returns true in case of
success and quits with an error otherwise.

All number(s) should be integers with 0 number < 256, otherwise number % 256 will[

be stored to the file.

Internally, the bytes are stored as a C unsigned char.

binio.writeindex (filehandle, k, type, value [, offset])

The function assumes that all values in the binary file pointed to by filehandle are
of the same type and writes the k-th one.

The third argument type specifies the type to be written. Valid types are the strings
'char' (see binio.writechar), 'long' (see binio.writelong), 'number' (see
binio.writenumber), 'shortstring' (see binio.writeshortstring) or 'string' (see
binio.writestring). Longdoubles are not supported.

740 12 Input & Output

The fourth argument specifies the actual value to be written.

You may pass an optional offset from the beginning of the file as the fifth
argument, which by default is 0. If given, the file position is moved to the offset's +
1 byte before writing a value. This feature allows for a self-defined file header.

See also: binio.writebytes, binio.writechar, binio.writelong, binio.writenumber,
binio.writeshortstring, binio.writestring, binio.readindex.

binio.writeline (filehandle, ···)

Writes one or more strings to the file denoted by its file handle filehandle,
separated by newlines.

The function is written in the Agena language and is included in the lib/library.agn
file.

binio.writelong (filehandle, number [, ···])

The function writes the given Agena number, and optionally more numbers, to the
file denoted by filehandle at its current position. The number(s) should be integers
with environ.minlong < number < environ.maxlong, otherwise the result is not
defined.

The function returns true in case of success and quits with an error otherwise.

Internally, the numbers are stored as signed C int32_t in Big Endian notation. Use
binio.readlong to read values written by writelong back into Agena as readlong
transforms the value back into the proper Endian format used by your machine.

binio.writelongdouble (filehandle, number [, ···])

The function writes the given longdouble number, and optionally more longdoubles,
to the file denoted by filehandle at its current position. The function returns true in
case of success and issues an error otherwise. The function is not supported on Big
Endian systems. See also: binio.readlongdouble.

binio.writenumber (filehandle, number [, ···])

The function writes the given Agena number, and optionally more numbers, to the
file denoted by filehandle at its current position. The function returns true in case of
success and issues an error otherwise. The numbers are always stored in Big Endian
notation. The binio.readnumber function conducts proper conversion to Little
Endian if Agena runs on a Little Endian machine.

agena >> 741

binio.writeshortstring (filehandle, string [, ···])

The function writes the given string, and optionally more strings, to the file denoted
by filehandle at its current position. The strings can be of length 0 to 255.

The function returns true in case of success and issues an error otherwise. Internally,
writeshortstring at first writes the length of the respective string as a C unsigned char
and after this it stores the string without a trailing null character to the file. If you call
binio.readstring later, Agena very efficiently returns the string.

See also: binio.readshortstring.

binio.writestring (filehandle, string [, ···])

The function writes the given string, and optionally more strings, to the file denoted
by filehandle at its current position.

The function returns true in case of success and quits with an error otherwise.
Internally, writestring first writes the length of the respective string as a C long int and
then the string without a null character to the file. This information is then read by the
binio.readstring function to efficiently return the string.

See also: binio.readstring.

742 12 Input & Output

12.3 xbase - Library to Read and Write xBase Files

This package provides basic functions to read and write dBASE III+ compliant files.

A typical session may look like this:

> import xbase alias;

> new('test.dbf', data=Number);

> f := open('test.dbf', 'write');

> writenumber(f, 1, 1, Pi);

> readvalue(f, 1, 1):
3.1415926535898

> close(f):
true

Limitations:

1. The xBase data types currently supported are: Number, Float (dBASE IV 2.0),
Binary Double (dBASE 7), String, Date, and Logical.

2. Only files with extension .dbf are supported. Searching and sorting functions are
not available, and any .ndx, or .idx index files or *.dbt files will be ignored.

3. Files with sizes greater than 2 GBytes are not supported.

xbase.attrib (filehandle)

returns a table with various information on the xBase file pointed to by filehandle.

dBASE version name (a string, see xbase.new)'versionname'

dBASE version number (see xbase.new)'version'

Number of bytes occupied by each record.'recordlength'

Number of records stored in the file.'records'

UTC date of the last write access, coded as an integer.'lastmodified'

Length of the header in the xBase file.'headerlength'

Name of the xBase file (relative).'filename'

Number of fields in the file.'fields'

A table of tables that describe the respective fields in
consecutive order: title, xBase native type (see below), Agena
type, total number of bytes occupied by the field in the file.
With numbers, the number of decimals following the decimal
point (its scope) given.

'fieldinfo'

Code page used.'codepage'

MeaningTable key

xBase native types recognised are: 'C' for String, 'N' for Number, 'F' for Float, 'L' for
Logical, 'D' for Date, and 'O' for a binary Double and 'I' for a binary 4-byte signed

agena >> 743

integer. 'B' indicates a .DBT block number and 'M' a memo field. See xbase.new for
further information.

For known version numbers, see xbase.new, as well. To check for dBASE 7,
binary-and the result with 0b111 and check for result 4, e.g. result && 0b111= 4.

See also: xbase.fieldtype, xbase.filepos.

xbase.close (filehandle)

Closes a connection to the xBase file pointed to by filehandle. No more data can
be read or written to the xBase file until you open it again using xbase.open. The
function returns true if the file could be closed, and false otherwise.

xbase.field (filehandle, row [, 'set'])

The function has been deprecated. Please use xbase.readdbf instead.

See also: xbase.ismarked, xbase.readdbf, xbase.readvalue, xbase.record.

xbase.fields (filehandle)

Returns the number of fields per record contained in the xBase file denoted by
filehandle.

See also: xbase.attrib, xbase.records.

xbase.fieldtype (filehandle, field)

Determines the dBASE data type of the given field in the open file denoted by
filehandle. The function returns a one-character string, or the string '?' if it is
unknown. See xbase.new for the meaning of the return.

See also: xbase.attrib.

xbase.filepos (filehandle)

Returns the current file position in the file denoted by filehandle and returns it as a
number.

See also: xbase.attrib.

xbase.header (filehandle)

Returns three sequences: the header field names of the file denoted by
filehandle, the corresponding Agena type names, and the respective
single-character dBASE types.

744 12 Input & Output

See also: xbase.attrib.

xbase.ismarked (filehandle, record)

Checks whether a record in a file denoted by filehandle has been marked as to
be deleted and returns true or false.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.

See also: xbase.mark.

xbase.isopen (filehandle)

Checks whether filehandle points to an open xBase file (opened by the same
Agena session) and returns true or false.

xbase.isvoid (filehandle, record, field)

Checks whether the value at record number record and field number field from
the file pointed to by filehandle has been deleted.

The function returns either true or false.

See also: xbase.ismarked, xbase.mark, xbase.purge, xbase.readvalue.

xbase.kernel ([options])

The function sets defaults for the binary representation and layout of binary doubles
and binary time stamps in dBASE Level 7 files:

If set to true, binary time stamps are represented
as a binary 8-byte double; by default time and
date are represented by two 4-byte signed
integers, with the endianness depending on the
setting of Long1IsBigEndian.

falseTimestampIsDouble

If set to true, binary doubles shall be represented
in Big Endian notation. By default, binary integers
are Little Endian.

falseLongIsBigEndian

If set to false, binary doubles shall be
represented in Little Endian notation. By default,
binary doubles are Big Endian.

trueDoubleIsBigEndian
DescriptionDefaultSetting

If no argument is given, the current settings are returned.

agena >> 745

xbase.lock (filehandle)

xbase.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form in Windows after the file has
become larger than bytes (= 8,589,934,592 GBytes).263

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns true on success and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

See also: xbase.unlock.

xbase.mark (filehandle, row [, flag])

Marks the record number row, an integer, in the file denoted by its filehandle, as
deleted.

Returns true if a record has been marked successfully, and false otherwise.

The actual data is not physically deleted, however, xbase.readvalue,
xbase.record, xbase.field, and xbase.readdbf do not return it. Use xbase.purge to
delete entries.

If flag is false, a formerly marked record is activated (`undeleted`) again.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.

See also: xbase.ismarked.

xbase.new (filename, desc1 [, code page] [, version] [, desc2, ···, desck])

creates a new xBase file with the file name filename.

desck are k fields (columns) the xBase file will contain. code page indicates the
code page to be used (see below)23.

746 12 Input & Output

23 Note that code pages are a Foxpro extension.

In its header, the function designates the resulting file as a dBASE III+ file without
memo .DBT file.

desck must be a pair of the following form:

1. field_name : data_type

where field_name is a string and the name of the field to be added, and
data_type is one of the strings 'Logical', 'Date', 'Float', 'Number', 'Double',
'Long', 'Complex', 'Byte', 'Decimal' or 'Character', i.e. the xBase data type of
the values to be stored later.

Examples:

new('dbase.dbf', 'logical':'Logical') or
new('dbase.dbf', logical='Logical') for short for a Boolean.

A Boolean (which in xBase is equal to a `Logical`) will always consist of one
character 'T', 'F' for true and false.

An xBase Number will have a standard length of 19 places with a default scale
of 15 digits, whereas an xBase Float consists of 20 places with a scale of 18
digits (scale: numbers following the decimal point). Numbers are stored in xBase
files as strings with ANSI C double precision. The scale may be in [0, 15] with
xBase Numbers, and in [0, 18] with xBase Floats.

An xBase Character (string) will have a default length of 64 characters. The
minimum length of a string is 1, the maximum length of a string may be 254
characters. Longer strings will be truncated.

A date will always consist of eight digits of the format YYYYMMDD.

A dBase Level 7 Double represents an Agena number (integral or fractional) that
is stored in either binary Big Endian or Little Endian format of eight bytes to an
xBase file. The default is Big Endian, but you can change this when writing or
reading files, see xbase.kernel.

A dBase Level 7 Long represents a signed 4-byte integer that is stored in either
binary Big Endian or Little Endian format to an xBase file. The default is Little
Endian, but you can change this when writing or reading files, see xbase.kernel.
There are three proprietary nonstandard types: Type 'Complex' represents a
complex number, stored in 16 bytes, type 'Byte' represents an unsigned integer
in the range 0 .. 255, stored in just one byte, and the experimental type
'Decimal' stores numbers as signed 4-byte C floats (note that these are highly
inaccurate). All of these three types are represented in Little Endian notation.

agena >> 747

1. field_name : data_type : length

where field_name and data_type are the same as mentioned above, and
length is the maximum length of the item to be added. length must be a
positive integer. With numbers, length denotes the number of digits after the
decimal point to be stored.
When passing a length value, you may leave out the quotes for data_type
values.

Examples:

new('dbase.dbf', 'value':'Number':5) or
new('dbase.dbf', value=Number:5) for short for a float with five decimal places.

Supported xBase data types are:

prop.xbase.writedecimalnumber'Decimal' or 'f'Decimal
prop.xbase.writebytenumber'Byte' or 'b'Byte
prop.xbase.writecomplexcomplex'Complex' or 'c'Complex
?n/a'B'Binary
?n/a'M'Memo
?n/a'G'OLE
7xbase.writetimenumbers'@'Timestamp
III+xbase.writedatestring'Date' or 'D'Date
III+xbase.writestringstring'Character' or 'C'Character
7xbase.writelongnumber'Long' or 'I'Long
7xbase.writedoublenumber'Double' or 'O'Double
IV 2.0xbase.writefloatnumber'Float' or 'F'Float

III+xbase.writenumbernumber'Number' or
'Numeric' or 'N'

Number
III+xbase.writebooleanboolean'Logical' or 'L'Logical

dBASE
version

Write functionAgena
type

data_type nameType

codepage should be a pair of the form 'codepage':n, with n an integer in [0, 255].

Valid codepages are:

861Icelandic DOS0x67
866Russian DOS0x66
865Nordic DOS0x65
852Eastern Europe DOS0x64
10.000Standard Macintosh0x04
1.252Windows ANSI0x03
850DOS Multilingual0x02
437DOS USA0x01
Code pageMeaningn

748 12 Input & Output

1.253Greek Windows0xcb
1.254Turkish Windows0xca
1.251Russian Windows0xc9
1.250Eastern Europe Windows0xc8
10.006Greek Macintosh0x98
10.029Eastern European Macintosh0x97
10.007Russian Macintosh0x96
1.256Arabic Windows0x7E
1.255Hebrew Windows0x7D
874Thai Windows0x7C
932Japanese Windows0x7B

936Chinese Simplified
(Singapore, PRC)

0x7A
949Korean Windows0x79

950Traditional Chinese (Republic
of China (Taiwan), Hong Kong
SAR)

0x78
857Turkish DOS0x6b
437GGreek DOS0x6a
620Mazovia (Polish) DOS0x69
895Kamenicky (Czech) DOS0x68
Code pageMeaningn

If no code page has been passed, it is set to 0x00.

Example for Eastern European Macintosh:

new('dbase.dbf', text=string:255, code page=0x97);

version should be a pair of the form 'version':n, with n an integer in [0, 255].

agena >> 749

dBASE version numbers are:

x xxx x 001 = 0x?1 not used
0 000 0 010 = 0x02 FoxBASE
0 000 0 011 = 0x03 FoxBASE+/dBASE III PLUS, no memo
x xxx x 100 = 0x?4 dBASE 7
0 000 0 101 = 0x05 dBASE 5, no memo
0 011 0 000 = 0x30 Visual FoxPro
0 011 0 001 = 0x31 Visual FoxPro, autoincrement enabled
0 011 0 010 = 0x32 Visual FoxPro, Varchar, Varbinary, or Blob-enabled
0 100 0 011 = 0x43 dBASE IV SQL table files, no memo
0 110 0 011 = 0x63 dBASE IV SQL system files, no memo
0 111 1 011 = 0x7B dBASE IV, with memo
1 000 0 011 = 0x83 FoxBASE+/dBASE III PLUS, with memo
1 000 1 011 = 0x8B dBASE IV, with memo
1 000 1 110 = 0x8E dBASE IV with SQL table
1 100 1 011 = 0xCB dBASE IV SQL table files, with memo
1 110 0 101 = 0xE5 Clipper SIX driver, with SMT memo
1 111 0 101 = 0xF5 FoxPro 2.x (or earlier) with memo
1 111 1 011 = 0xFB FoxBASE (with memo?)
| ||| | |||
| ||| | ||| Bit flags (not used in all formats)
| ||| | ||| -----------------------------------
| ||| | +++-- bits 2, 1, 0, version (x03 = level 5, x04 = level 7)
| ||| +------ bit 3, presence of memo file
| +++-------- bits 6, 5, 4, presence of dBASE IV SQL table
+------------ bit 7, presence of .DBT file

The default is 0x03 = 3 decimal for dBASE III+. If at least one of the given fields is of
dBASE data type 'Double' (= 'B' or 'O') or type 'timestamp', then the version number is
automatically changed to 0x?4 = 4 decimal = dBASE Level 7. This allows dBASE files
created with Agena and containing binary Doubles to be imported into LibreOffice
5.x. Current versions of Excel still cannot read Visual Fox Pro dbf files with Doubles or
Longs, so you might pass the version option.

See also: xbase.open.

xbase.open (filename [, mode])

Opens an xBase file of the name filename for reading or writing, or both.

In the first form, the file is opened for reading only.

In the second form, if mode is either 'write', 'w', 'append', or 'r+', the file is
opened for reading while new data sets may be added to the end of the file.

If mode is 'read' or 'r', the file is opened for reading only.

The return is a file handle to be used by all other xBase package functions.

See also: xbase.close, xbase.lock, xbase.new.

750 12 Input & Output

xbase.purge (filehandle, record, field)

Overwrites the specified field in the given record of the file denoted by its handle
filehandle with asterisks, thus physically deleting the original content. The return is
true if deletion succeeded, and false otherwise. After successful completion, a
subsequent call to xbase.isvoid would return true.

See also: xbase.isvoid, xbase.mark, xbase.wipe.

xbase.readdbf (filename [, option])

xbase.readdbf (filehandle [, option])

In the first form, opens an xBase file denoted by its filename in read mode, returns
all its records and fields, and closes it. In the second form, it reads the contents of
the open file denoted by its handle filehandle.

If the xBase file contains more than one field, the data will be returned as a
sequence of sequences, whereas if the file contains only one field, all values are
returned in one sequence only.

If the option fields=x with x a positive number is given, only the given column x is
extracted, and the return is a sequence of the column values. If the option
fields=obj with obj a table or sequence of positive numbers is given, only the given
fields in the records are returned, and the return is a sequence of sequences.

If a record has been marked as being deleted, the function ignores the record.

See also: xbase.field, xbase.ismarked, xbase.readvalue, xbase.record.

xbase.readvalue (filehandle, record, field)

Reads a value at record number record and field number field from the file
pointed to by filehandle.

Supported values are of xBase type Logical, Number, Float, binary double, Date,
Timestamp and String. Also Binary, Memo and OLE .DBT block numbers are
supported, as well as type Complex, Byte and Decimal. If a number could not be
read from the file, the function returns 0. On Little Endian systems, you might have to
convert Big Endian binary doubles back to Little Endian by calling bytes.tolittle; see
also os.endian.

If record has been marked as being deleted, the function returns null.

See also: xbase.field, xbase.ismarked, xbase.record, xbase.isvoid.

agena >> 751

xbase.record (filehandle, line)

Returns all values in the given record line (a number) of the file denoted by
filehandle and returns them in a sequence.

If record has been marked as being deleted, the function returns null.

See also: xbase.field, xbase.ismarked, xbase.readdbf, xbase.readvalue.

xbase.records (filehandle)

Returns the number of records contained in the xBase file denoted by filehandle,
including the ones marked as to be deleted or being completely void.

See also: xbase.attrib, xbase.fields.

xbase.sync (filehandle)

Writes any unwritten content to the xBase file pointed to by filehandle. The function
either returns true if flushing succeeded or nothing had be flushed, or fail otherwise.

Please make sure that the file has been opened in write, append, or read/write
mode before, otherwise the result may be undefined.

xbase.unlock (filehandle)

xbase.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again.

The function returns true on success and false otherwise.

For more information, see xbase.lock.

xbase.wipe (filehandle, record)

In an xBase file denoted by filehandle, deletes all fields of the given record, a
positive integer by overwriting all fields with asterisks. It also marks the record as
deleted (see xbase.mark for further information).

To ensure performance, the function does not lock the file before deleting data -
you may want to manually call xbase.lock before and xbase.unlock thereafter.
Also, it does not flush the file.

The function returns nothing.

The function has been written in Agena, see lib/xbase.agn.

752 12 Input & Output

See also: xbase.mark, xbase.purge.

xbase.writeboolean (filehandle, record, field, value)

Writes the Boolean value true or false (4th argument) to the file denoted by
filehandle to record number record and field number field. fail and null are not
supported.

When creating the dBASE file with xbase.new, pass the 'L' data type descriptor for
the respective fields.

The return is true if writing succeeded, and false otherwise.

xbase.writebyte (filehandle, record, field, value)

Writes the integer value in the range 0 .. 255(4th argument) to the file denoted by
filehandle to record number record and field number field.

When creating the dBASE file with xbase.new, pass the 'b' data type descriptor for
the respective fields.

The integer is stored in binary format of just one byte (unsigned C char).

A proprietary extension, applications that import dBASE files - such as Microsoft Excel
- do not support this type.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.writefloat, xbase.writelong, xbase.writenumber, xbase.new.

xbase.writecomplex (filehandle, record, field, value)

Writes the complex number value (4th argument) to the file denoted by filehandle
to record number record and field number field.

When creating the dBASE file with xbase.new, pass the 'c' data type descriptor for
the respective fields.

The complex number is stored in Little Endian binary format of sixteen bytes (two C
doubles, converted to two C uint64_t).

A proprietary extension, applications that import dBASE files - such as Microsoft Excel
- do not support this type.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

agena >> 753

See also: xbase.writefloat, xbase.writelong, xbase.writenumber, xbase.new.

xbase.writedate (filehandle, record, field, value)

Writes the string or number value (4th argument), representing an integer - or a
string representing an integer - in the range and denoting19000101 ê x ê 99991231
a date, to the file denoted by filehandle to record number record and field
number field.

When creating the dBASE file with xbase.new, pass the 'D' data type descriptor for
the respective fields.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.writetime.

xbase.writedecimal (filehandle, record, field, value)

Writes the number value (4th argument) as a signed 4-byte Little Endian float to the
file denoted by filehandle to record number record and field number field.

When creating the dBASE file with xbase.new, pass the 'f' data type descriptor for
the respective fields.

A proprietary extension, applications that import dBASE files - such as Microsoft Excel
- do not support this type.

Note that 4-byte floats are inherently inaccurate, so when reading them back into
Agena you will find significant round-off errors due to stray bits.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

xbase.writedouble (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field.

When creating the dBASE file with xbase.new, pass the 'O' (letter O) data type
descriptor for the respective fields.

The number is stored in binary format of eight bytes (C double, converted to a C
uint64_t). By default, doubles are written in Big Endian representation. You can
change this to Little Endian by setting

> xbase.kernel(DoubleIsBigEndian = false);

754 12 Input & Output

A dBASE 7 extension, some applications that import dBASE files - such as Microsoft
Excel - do not support binary numbers, but LibreOffice 5.x and beyond does.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.writefloat, xbase.writelong, xbase.writenumber, xbase.new.

xbase.writefloat (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field.

When creating the dBASE file with xbase.new, pass the 'F' data type descriptor for
the respective fields.

The number is stored with a total of 20 digits, including a maximum of 18 digits
following the decimal point (scale).

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.writedouble, xbase.writenumber, xbase.new.

xbase.writelong (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field.

When creating the dBASE file with xbase.new, pass the 'I' data type descriptor for
the respective fields.

The function automatically truncates Agena numbers containing decimal places to
their integral part and issues an error if the numeric range [-2'147'483'647,
+2'147'483'647] is exceeded.

By default, longs are written in Little Endian representation. You can change this to
Big Endian by setting

> xbase.kernel(LongIsBigEndian = true);

A dBASE 7 extension, some applications that import dBASE files - such as Microsoft
Excel - do not support binary numbers, but LibreOffice 5.x and beyond does.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

agena >> 755

See also: xbase.writedouble, xbase.writefloat, xbase.writenumber, xbase.new.

xbase.writenumber (filehandle, record, field, value)

Writes the number value (4th argument) to the file denoted by filehandle to record
number record and field number field.

The function automatically determines whether the respective field is of xBASE type
Numeric ('N'), Float ('F'), binary Long ('I'), or Binary Double ('O') (letter O).
Concerning 'O' and 'I', read the remarks on Endianness in the description of
xbase.writedouble. It also writes the proprietary formats 'b' for byte (see
xbase.writebyte) and 'c' for complex numbers (see xbase.writecomplex).

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error may have occurred.

See also: xbase.writedouble, xbase.writefloat, xbase.writelong, xbase.new.

xbase.writestring (filehandle, record, field, value)

Writes the string value (4th argument) to the file denoted by filehandle to record
number record and field number field.

When creating the dBASE file with xbase.new, pass the 'C' data type descriptor for
the respective fields.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error might have occurred.

xbase.writetime (filehandle, record, field,

 y, m, d [, h [, m [, s [, ms]]]])

Writes the timestamp given by the year y, month m, day d, and optionally hour h,
minute mm, second s, and milliseconds ms to the file denoted by filehandle to
record number record and field number field.

By default, hours, minutes, seconds, and milliseconds default to 0. Milliseconds
must be an integer in the range [0, 999].

When creating the dBASE file with xbase.new, pass the '@' data type descriptor for
the respective fields.

The return is true if writing succeeded, and false otherwise. Note that the return false
only indicates that an error might have occurred.

756 12 Input & Output

By default, the timestamp internally is represented by two signed 32-bit integers in
Little Endian representation. You can change this to Big Endian representation by
setting:

> xbase.kernel(LongIsBigEndian = true);

If the timestamp shall be represented by a binary double - the Julian Date, but the
documentation available on dBASE Level 7 files is contradictory - you can set:

> xbase.kernel(TimestampIsDouble = true);

The endianness of the double is Big Endian by default. You can change this to Little
Endian by setting:

> xbase.kernel(DoubleIsBigEndian = false);

See also: xbase.writedate.

agena >> 757

12.4 ads - Agena Database System

As a plus package, this simple database is not part of the standard distribution and
must be activated with the import statement, e.g. import ads.

Agena is a database for storing and accessing strings, and strings only, and
currently supports three `base` types:

1. Sorted `databases` with a key and one or more values,

2. sorted `lists` which store keys only,

3. unsorted `sequences` to hold any value (but no keys).

With databases and lists, each record is indexed, so that access to it is very fast. If
you store data with the same key multiple times in a database, the index points
to the last record stored, so you always get a valid record.

Sequences do not have indexes, so searching in sequences is rather slow.
However, all values can be read into the Agena environment rapidly (using
ads.getall).

The Agena Database System (ADS) pays attention to both file size and fast I/O
operation. To reduce file size, the keys (and values) are stored with their actual
lengths (of C type int32_t, so keys and values can be of almost unlimited size) and
they are not extended to a fixed standard length. To fasten I/O operations, the
length of each key (and value) is also stored within the base file.

The following terms are used in this chapter:

key-value pairs with databases, and keys with lists or sequences. records

only with databases and lists: area containing all file positions of
the actual records. The index section is always sorted. Sequences
do not contain an index section.

index

various information on the data file, including the maximum
number of possible records, the actual number of records, and
the type of the base (database, list, or sequence).

header

Description Section

A sample session:

First activate the package:

758 12 Input & Output

> import ads

Create a new database (file test.agb) including all administration data like number
of records, etc.:

> ads.createbase('test.agb');

Open the database for access. The variable fh is the file handle which refers to the
database file test.agb and is used in nearly all ads functions.

> fh := ads.open('test.agb');

Put an entry into the database with key `Duck` and value `Donald`.

> ads.write(fh, 'Duck', 'Donald');

Check what is stored for `Duck`.

> ads.read(fh, 'Duck'):
Donald

Show information on the database:

> ads.attrib(fh):
keylength ~ 31 # Maximum length for key
type ~ 0 # database type, 0 for relational database
stamp ~ AGENA DATA SYSTEM # name of database
indexstart ~ 256 # begin of index section in file
commentpos ~ 0 # position of a description, 0 because none
 # was given.
version ~ 300 # base version, here 3.00
maxsize ~ 20000 # maximum number of possible records. Agena
 # will automatically extend the database
 # if this number is exceeded.
indexend ~ 80255 # end of index section
creation ~ 2008/01/18-19:00:50 # number of creation
columns ~ 2 # number of columns
size ~ 1 # number of actual entries

Close the database. After that you cannot read or write any entries any longer. Use
the ads.open function if you want to have access again.

> ads.close(fh);

On all ads database types, you may use the following procedures:

ads.attrib (filehandle)

Returns a table with all attributes of the `base` file. The table includes the following
keys:

agena >> 759

stringThe description, empty string if not present.'description'

numberThe base version.'version'

numberIndicator for database (0), list (1) or sequence (2).'type'

stringThe base stamp at the beginning of the file. 'stamp'

number
the actual number of valid data sets (see ads.sizeof
as a shortcut).

'size'

numbertotal number of data sets allowed.'maxsize'

numberthe maximum length of the record key.'keysize'

numberthe last byte in the base file of the index section. 'indexend'

numberthe first byte in the base file of the index section. 'indexstart'

string
The date of creation of the base. The return is a
formatted string including date and time.

'creation'

number
The position of a comment in the base. If no
comment is present, its value is 0.

'commentpos'

numberThe number of columns in the base. 'columns'

TypeDescriptionKey

If the file is not open, attrib returns false.

See also: ads.free, ads.sizeof.

ads.clean (filehandle)

Physically deletes all entries that have become invalid (i.e. replaced by new values)
from the database or list. The file index section is adjusted accordingly and the file
shrunk to the new reduced size.

If there are no invalid records, false will be returned. If all records could be deleted
successfully, true will be returned. If the file is not open, the result will be fail. If a file
truncation error occurred, clean will quit with an error. The function will issue an error
if the file represents a sequence.

ads.close (filehandle [, filehandle2, ···])

Closes the base(s) identified by the given file handle(s) and returns true if successful,
and false otherwise. false will be returned if at least one base could not be closed.
The function also deletes the file handles and the corresponding filenames from the
ads.openfiles table.

See also: ads.open.

760 12 Input & Output

ads.comment (filehandle)

ads.comment (filehandle, comment)

ads.comment (filehandle, '')

In the first form, the function returns the comment stored to the database or list if
present. The return is a string or null if there is no comment.

In the second form, ads.comment writes or updates the given comment to the
database or list and if successful, returns true. The comment is always written to the
end of the file. If it could not successfully add or update a comment, the function
quits with an error.

In the third form, by passing an empty string or null, the existing comment is entirely
deleted from the database or list.

There is no restriction on the comment length.

If filehandle points to a sequence, an error will be issued and no comment is
written. fail will be returned, if the file is not open.

Internally, the position of the comment is stored in the file header. See ads.attrib
['commentpos'].

ads.createbase (filename
 [, number_of_records [, type [, number_of_columns

 [, length_of_key [, description]]]]])

ads.createbase (filename

 [, number_of_records [, type [, length_of_key [, description]]]])

ads.createbase (filename [, options])

Creates and initialises the index section of a new base with the given number of
columns. It returns the file handle as a number, and closes the created file.

The first form defines a database, the second form is used to create sequences
and lists.

In the third form, options may be one or more pairs, see next table.

Arguments / Options:

The maximum number of records in the base. Default is
20,000. If you pass 0, fail will be returned and the base is
not created.

Example when passed as an option: records = 10.
Alternative option name is 'recs' instead of 'records'.

number_of_records

or the option

records =
number_of_records

The path and full name of the base file.filename

agena >> 761

A string with a description of the contents of the base. A
maximum of 75 characters is allowed (including the \0
character). If the string is too long, it will be truncated.
Default: 75 spaces.

Example when passed as an option: description = 'my
database'. Alternative option name is 'desc' instead of
'description'.

description

or the option

description = (a string)

The maximum length of the base key. Note that internally,
the length is incremented by 1 for the terminating \0
character. Default: 31 including the terminating \0
character.

Example when passed as an option: keylength = 20.
Alternative option name is 'keylen' instead of 'keylength'.

length_of_key

or the option

keylength =
length_of_key

The number of columns in a database. Default: 2 (key
and value). If the base is not a database, do not pass any
value (see second form). If the number of columns is
non-positive, fail will be returned and no base will be
created.

Example when passed as an option: columns = 3.
Alternative option name is 'cols' instead of 'columns'.

number_of_columns

or the option

columns =
number_of_columns

By default, the type is 'database'. If you pass the string 'list',
then a list will be created. The string 'seq' will create a
sequence. If the type passed is not known, fail will be
returned and no base is created.

Example when passed as an option: basetype = 'list'.
Alternative option name is 'base' instead of 'basetype'.

type

or the option

basetype = type

See also: ads.open.

ads.createseq (filename)

Creates a sequence with the given filename (a string). The function is written in
Agena and can be used after issuing import ads.

ads.desc (filehandle)

ads.desc (filehandle, description)

In the first form, returns the description of a base stored in the file header. If no
description has explicitly been written, the function returns the empty string.

In the second form, ads.desc sets or overwrites the description section of a
database or list. Pass the description as a string. If the string is longer than 75
characters, fail will be returned and there are no changes to the base file. To

762 12 Input & Output

delete a description, pass the empty string or null. If the file is not open, fail will be
returned, as well. If it was successful, the return is true.

ads.expand (filehandle [, n])

Increases the maximum number of datasets by n records (n an integer). By default,
n is 10. Internally, all data sets are shifted, so that the index section in the data file
can be extended. Thus, the greater n, the faster shifting will be if the function is
called many times, which is significant for large files.

The function will return fail if the file is not open, and true otherwise. It will issue an
error if the file represents a sequence.

ads.filepos (filehandle)

Returns the current position of the file denoted by filehandle. See also: ads.attrib.

ads.find (filehandle, pattern [, column])

With databases, the function searches all entries in the given column for substring
pattern and returns all respective keys and the matching entries in a table.

If column is omitted, the second column will be searched.

If column is 0, then all columns but the first will be searched and the return is a table
of pairs with the left operand the value found and the right operand the column
where it has been found.

The function supports pattern matching, see Chapter 9.1.3.

With lists and sequences, the function always returns null. If the base is empty, null
will be returned, as well.

If the file is not open or the column does not exist, the function will return fail.

See also: ads.read, ads.getvalues.

ads.free (filehandle)

Determines the number of free data sets and returns them as an integer. If
the base has not been opened, it returns fail. See also: ads.attrib.

ads.getall (filehandle [, option])

Converts an ADS sequence to a set and returns this set. The function automatically
initialises the set with the number of entries in the ADS sequence. If the file is not
open, fail will be returned.

agena >> 763

If any option is given, an Agena sequence instead of a set will be returned with the
entries in the order of their physical presence in the database file; if one and the
same entry is stored multiple times, it will also be returned multiple times in the
sequence.

See also: ads.getkeys, ads.getvalues.

ads.getkeys (filehandle)

Gets all valid keys in a database or list and returns them in a table. Argument: file
handle (integer). If the file is not open, fail will be returned. If the base is empty, null
will be returned. The function will issue an error if the file represents a sequence.

See also: ads.get, ads.getvalues.

ads.getvalues (filehandle [, column])

By default, gets all valid entries in the second column in a database referred to by
filehandle and returns them in a table. If the optional argument column is given,
the entries in this column will be returned.

If the file is not open or if the column does not exist, fail will be returned. If the base
is empty, null will be returned. With lists, the return is always null.

See also: ads.get, ads.getkeys.

ads.index (filehandle, key)

Searches for the given key, a string, in the base pointed to by filehandle and
returns its file position as a number. If there are no entries for key, the function will
return null. If the file is not open, fail will be returned. See also: ads.indices.

ads.indices (filehandle)

Returns the file positions of all valid data sets as a table.

If the file is not open, the function will return fail. If there are no entries in the base,
the return will be an empty table, otherwise a table with the indices will be returned.
The function will issue an error if the file represents a sequence.

See also: ads.retrieve, ads.invalids, ads.peekin, ads.index.

ads.invalids (filehandle)

Returns the file positions of all invalid records in a database as a table.

If the file is not open, the function will return fail. If no invalid entries have been
found, the return is an empty table. See also ads.retrieve. Note that the function

764 12 Input & Output

also works with lists. However, since lists never contain invalid records, an empty
table will always be returned with lists.

With sequences, the function issues an error.

ads.iterate (filehandle [, key])

Iterates sequentially and in ascending order over all keys in the database or list. With
databases, both the next key and its corresponding values are returned, the values
enclosed in a table array. With lists, only the next key is returned.

The very first key can be accessed with an empty string or null, or by only passing
filehandle. If there are no more keys left, the function will return null. If the
database is empty, null will be returned, as well. If the file is not open, the function
will return fail.

Example to traverse a US zip code database - you will find the file `uszips.agb` in
the Agena test suite:

> import ads;
> fh := ads.open('uszips.ads');
> zip, data := ads.iterate(fh, null);
> while zip do
> zip, data := ads.iterate(fh, zip);
> print(zip, data)
> od;
> ads.close(fh);

With ADS sequences, the function returns an iterator function that when called
returns the next entry in it.

See also: ads.read.

ads.lock (filehandle)

ads.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 263

bytes are locked, so you have to use the second form in Windows after the file has
become larger than bytes (= 8,589,934,592 GBytes).263

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access to the file.

agena >> 765

See also: ads.unlock.

ads.open (filename [, anything])

Opens the base with name filename, a string, and returns a file handle (a number).
If it cannot find the file, or the base has not the correct version number, the
function will return fail. The base is opened in both read and write mode.

If an optional second argument is given (any valid Agena value), the base will be
opened in read mode only.

The function also enters the newly opened file into the ads.openfiles table.

See also: ads.close.

ads.openfiles

A global table containing all files currently open. Its keys are the file handles
(integers), the values the file names (strings). If there are no open files, ads.openfiles
is an empty table.

ads.peekin (filehandle, position)

With a list or sequence, returns both the length of an entry (including the terminating
\0 character) and the entry itself at the given file position as two values (an integer
and a string).

With a database, returns the length of the key including the terminating \0 and the
key itself, but not the other entries referred to by the key.

The function is safe, so if you try to access an invalid file position, the function will exit
returning fail. It will issue an error if the file represents a sequence.

See also: ads.index, ads.retrieve.

ads.read (filehandle, key)

With databases, the function returns the entry (one or more strings) to the given key
(also a string). With lists and sequences, the function will return true if it finds the key,
and false otherwise.

If the file is not open, read will return fail. If the base is empty, null will be returned.
The function uses binary search.

See also: ads.iterate, ads.find.

766 12 Input & Output

ads.remove (filehandle, key)

With databases, the function deletes a key-value pair from the database referred to
by its filehandle with the given key, a string; with lists, the key is deleted. Physically,
only the key to the record is deleted, the data itself will still reside in the record
section but cannot be found any longer.

The function returns true if it could delete the data set, and false if the record to be
deleted was not found. If the file is not open, delete will return fail. The function will
issue an error if the file represents a sequence.

If you want to physically delete all invalid records, use ads.clean.

ads.retrieve (filehandle, position)

Gets a key and its value(s) from a database or list referred to by filehandle at the
given file position, an integer. The return is a table with the key and the values. With
lists, only the key will be returned.

The function is safe, so if you try to access an invalid file position, the function will exit
and return fail.

If the file is not open, the function will return fail. The function will issue an error if the
file represents a sequence.

See also ads.indices, ads.invalids, ads.peekin.

ads.sizeof (filehandle)

Returns the number of valid records (an integer) in the base pointed to be
filehandle. If the base pointed to by the filehandle is not open, the function will
return fail.

See also: ads.attrib, ads.free.

ads.sync (filehandle)

Flushes all unwritten content to the base file referred to by filehandle. The function
returns true if successful, and fail otherwise (e.g. if the file was not opened before or
an error occurred during flushing).

See also: ads.write.

ads.unlock (filehandle)

ads.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again. For more information, see ads.lock.

agena >> 767

ads.write (filehandle, key [, value1, value2, ···])

With databases, the function writes the key (a string) and the values (strings,
numbers, Booleans) to the database file pointed to by filehandle (an integer).
Numbers and Booleans are automatically converted to strings before writing. The
values may be of almost any length, only being dependent on available disk
space.

If the third and/or following arguments are omitted, then empty strings will be written.
If you pass more values than there are columns in the database, then surplus
values will be ignored.

With lists, the function writes only the key (a string) to the database file. If you pass
values, they will be ignored. If the key already exists, nothing will be written or done
and true will be returned. Thus, lists never contain invalid records.

In both cases, the index section is updated. If a key already exists, its position in the
index section will be replaced by the new index position (in this case there is no
re-shifting). This does not remove the actual key-value pair in the record section. The
function always writes the new key-value pair to the end of the file. (The file position
after the write operation has completed is always 0.)

If the maximum number of possible records is exceeded, the base will
automatically be expanded by 10 records. You do not need to do this manually.

ads.write will return true if successful. If the file is not open, the function will return
fail.

See also: ads.sync, tostring, tostringx.

768 12 Input & Output

12.5 xml - XML Parser

As a plus package, the xml package is not part of the standard distribution and
must be activated with the import statement, e.g. import xml. It is available for
Solaris, OS/2, DOS, Mac OS X, Linux, and Windows only.

Since the XML package actually is the LuaExpat binding with some few
Agena-specific modifications, large portions of this subchapter have been taken
from the LuaExpat documentation.

12.5.1 Introduction

XML/LuaExpat is a SAX XML parser based on the Expat library. SAX is the Simple API
for XML and allows programmes to:

� process a XML document incrementally, thus being able to handle huge
documents without memory penalties;

� register handler functions which are called by the parser during the processing
of the document, handling the document elements or text.

With an event-based API like SAX the XML document can be fed to the parser in
chunks, and the parsing begins as soon as the parser receives the first document
chunk. XML/LuaExpat reports parsing events (such as the start and end of elements)
directly to the application through callbacks. The parsing of huge documents can
benefit from this piecemeal operation.

XML/LuaExpat is distributed as a library.

12.5.2 Parser objects

Usually SAX implementations base all operations on the concept of a parser that
allows the registration of callback functions. XML/LuaExpat offers the same
functionality but uses a different registration method, based on a table of callbacks.

This table contains references to the callback functions which are responsible for
the handling of the document parts. The parser will assume no behaviour for any
undeclared callbacks.

12.5.3 Shortcuts

xml.decode (str)

Reads a string str containing an XML stream and converts it into a dictionary. Its
return is rather raw, but it can cope with situations where one and the same XML
object is present multiple times on the same hierarchy.

agena >> 769

xml.decodexml (str)

Reads a string str containing an XML stream and converts it into a dictionary.

The function provides some checking (basic syntax and balanced tags), and
supports namespaces, XML and DOCTYPE declarations, comments and processing
instructions. If a XML tag includes hyphens or colons, then they are converted to
underscores in the corresponding Agena dictionary key.

The data must be included in an envelope.

The function also returns processing instructions in the xattr tag.

The function is written in Agena and included in the lib/xml.agn file.

The function does not cope well if one and the same XML object is present multiple
times on the same hierarchy. Use utils.decodexml or xml.decode instead.

xml.readxml (filename)

Reads an XML file and returns its data in an Agena dictionary. The data must be
included in an envelope.

See also: utils.readcsv, utils.readxml, xml.decode, xml.decodexml.

12.5.4 Constructor

xml.new (callbacks [, separator])

The parser is created by a call to the function xml.new, which returns the created
parser or raises a Lua error. It receives the callbacks table and optionally the parser
separator character used in the namespace expanded element names.

12.5.5 Functions

xml.close (parser)

Closes the parser, freeing all memory used by it. A call to close(parser) without a
previous call to parse(parser) could result in an error.

xml.getbase (parser)

Returns the base for resolving relative URIs.

xml.getcallbacks (parser)

Returns the callbacks table.

770 12 Input & Output

xml.parse (parser, s)

Parse some more of the document. The string s contains part (or perhaps all) of the
document. When called without arguments the document is closed (but the parser
still has to be closed).

The function returns a non null value when the parser has been successful, and
when the parser finds an error it returns five results: null, msg, line, col, and pos,
which are the error message, the line number, column number and absolute
position of the error in the XML document.

xml.pos (parser)

Returns three results: the current parsing line, column, and absolute position.

xml.setbase (parser, base)

Sets the base to be used for resolving relative URIs in system identifiers.

xml.setencoding (parser, encoding)

Sets the encoding to be used by the parser. There are four built-in encodings,
passed as strings: 'US-ASCII', 'UTF-8', 'UTF-16', and 'ISO-8859-1'.

12.5.6 Callbacks

The Agena callbacks define the handlers of the parser events. The use of a table in
the parser constructor has some advantages over the registration of callbacks,
since there is no need for the API to provide a way to manipulate callbacks.

Another difference lies in the behaviour of the callbacks during the parsing itself. The
callback table contains references to the functions that can be redefined at will.
The only restriction is that only the callbacks present in the table at creation time will
be called.

The callbacks table indices are named after the equivalent Expat callbacks:

CharacterData, Comment, Default, DefaultExpand, EndCDataSection, EndElement,
EndNamespaceDecl, ExternalEntityRef, NotStandalone, NotationDecl,
ProcessingInstruction, StartCDataSection, StartElement, StartNamespaceDecl, and
UnparsedEntityDecl.

These indices can be references to functions with specific signatures, as seen
below. The parser constructor also checks the presence of a field called _nonstrict
in the callbacks table. If _nonstrict is absent, only valid callback names are
accepted as indices in the table (Defaultexpanded would be considered an error
for example). If _nonstrict is defined, any other fieldnames can be used (even if not
called at all).

agena >> 771

The callbacks can optionally be defined as false, acting thus as placeholders for
future assignment of functions.

Every callback function receives as the first parameter the calling parser itself, thus
allowing the same functions to be used for more than one parser for example.

callbacks.CharacterData = proc(parser, string)

Called when the parser recognises an XML CDATA string.

callbacks.Comment = proc(parser, string)

Called when the parser recognises an XML comment string.

callbacks.Default = proc(parser, string)

Called when the parser has a string corresponding to any characters in the
document which wouldn't otherwise be handled. Using this handler has the side
effect of turning off expansion of references to internally defined general entities.
Instead these references are passed to the default handler.

callbacks.DefaultExpand = proc(parser, string)

Called when the parser has a string corresponding to any characters in the
document which wouldn't otherwise be handled. Using this handler doesn't affect
expansion of internal entity references.

callbacks.EndCdataSection = proc(parser)

Called when the parser detects the end of a CDATA section.

callbacks.EndElement = proc(parser, elementName)

Called when the parser detects the ending of an XML element with elementName.

callbacks.EndNamespaceDecl = proc(parser, namespaceName)

Called when the parser detects the ending of an XML namespace with
namespaceName. The handling of the end namespace is done after the handling
of the end tag for the element the namespace is associated with.

callbacks.ExternalEntityRef = proc(parser, subparser, base, systemId,

publicId)

Called when the parser detects an external entity reference.

The subparser is a XML/LuaExpat parser created with the same callbacks and Expat
context as the parser and should be used to parse the external entity.

772 12 Input & Output

The base parameter is the base to use for relative system identifiers. It is set by
setbase and may be null.

The systemId parameter is the system identifier specified in the entity declaration
and is never null.

The publicId parameter is the public id given in the entity declaration and may be
null.

callbacks.NotStandalone = proc(parser)

Called when the parser detects that the document is not `standalone`. This
happens when there is an external subset or a reference to a parameter entity, but
the document does not have standalone set to "yes" in an XML declaration.

callbacks.NotationDecl =

 proc(parser, notationName, base, systemId, publicId)

Called when the parser detects XML notation declarations with notationName.

The base parameter is the base to use for relative system identifiers. It is set by
setbase and may be null.

The systemId parameter is the system identifier specified in the entity declaration
and is never null.

The publicId parameter is the public id given in the entity declaration and may be
null.

callbacks.ProcessingInstruction = proc(parser, target, data)

Called when the parser detects XML processing instructions. The target is the first
word in the processing instruction. The data is the rest of the characters in it after
skipping all whitespace after the initial word.

callbacks.StartCdataSection = proc(parser)

Called when the parser detects the begining of an XML CDATA section.

callbacks.StartElement = proc(parser, elementName, attributes)

Called when the parser detects the begining of an XML element with
elementName.

The attributes parameter is a table with all the element attribute names and values.
The table contains an entry for every attribute in the element start tag and entries for
the default attributes for that element.

agena >> 773

The attributes are listed by name (including the inherited ones) and by position
(inherited attributes are not considered in the position list).

As an example if the book element has attributes author, title and an optional
format attribute (with `printed` as default value),

 <book author=\"Ierusalimschy, Roberto\" title=\"Programming in Lua\">

 would be represented as

 [1 ~ 'author',
 2 ~ 'title',
 author ~ 'Ierusalimschy, Roberto',
 format ~ 'printed',
 title ~ 'Programming in Lua']

callbacks.StartNamespaceDecl = proc(parser, namespaceName)

Called when the parser detects an XML namespace declaration with
namespaceName. Namespace declarations occur inside start tags, but the
StartNamespaceDecl handler is called before the StartElement handler for each
namespace declared in that start tag.

callbacks.UnparsedEntityDecl =

 proc(parser, entityName, base, systemId, publicId, notationName)

Called when the parser receives declarations of unparsed entities. These are entity
declarations that have a notation (NDATA) field.

As an example, in the chunk

 <!ENTITY logo SYSTEM "images/logo.gif" NDATA gif>

entityName would be "logo", systemId would be "images/logo.gif" and
notationName would be "gif". For this example the publicId parameter would be
null. The base parameter would be whatever has been set with setbase. If not set, it
would be null.

The separator character:

The optional separator character in the parser constructor defines the character
used in the namespace expanded element names. The separator character is
optional (if not defined the parser will not handle namespaces) but if defined it must
be different from the character '\0'.

774 12 Input & Output

12.6 json - JSON Structures

As a plus package, the json package is not part of the standard distribution and
must be activated with the import statement, e.g. import json.

It encodes an Agena table to a string representing a JSON object and can also
decode a JSON object represented by a string to an Agena table:

> import json

> data := [
> 'city' ~ 'Tel Aviv',
> 'iscapital' ~ false,
> 'founded' ~ 1909,
> 'details' ~ ['population' ~ 467875, 'area' ~ 52]
>]

> s := json.encode(data):
{"details":{"population":467875,"area":52},"iscapital":false,

 "city":"Tel Aviv","founded":1909}

> json.decode(s):
[city ~ Tel Aviv, details ~ [area ~ 52, population ~ 467875],
founded ~ 1909, iscapital ~ false] 95

The package exposes the functions json.encode and json.decode presented
above, only.

agena >> 775

12.7 tar - UNIX tar

As a plus package, the tar package is not part of the standard distribution and must
be activated with the import statement, e.g. import tar.

12.7.1 Introduction

This package lists, reads, and extracts individual files from a UNIX tar archive.

See also: gzip package.

12.7.2 Functions

tar.close (fh)

Closes an archive archived file denoted by its file handle fh and returns true on
success and false otherwise.

The function is written in Agena (see lib/tar.agn).

tar.extract (fn [, pattern])

Extracts files, directories, and symbolic links from the given tar archive fn, a file
name of type string to the given current working directory. By default, all files are
extracted. If a second argument pattern is given, then only the files matching the
given pattern - a string - are copied. pattern may include wildcards, see
strings.glob.

The return is a table of all the files extracted.

The function is written in Agena (see lib/tar.agn).

tar.lines (fh, length)

Creates an iterator function that with each call returns a new line of a file included
in a tar file. The length (in bytes) of the archived file pointed to by fh must be given
as the second argument.

fh is a numeric file handle returned by calling tar.open. Since tar.open also returns
the length as a second return, it can be easily passed to tar.lines.

If the end of the archived file has been reached, the iterator function returns null.
The iterator does not close the file connection, use tar.close to accomplish this.

The function is written in Agena (see lib/tar.agn).

776 12 Input & Output

tar.list (fn [, pattern])

Returns all files in the UNIX tar file fn (a file name), and returns a table of tables with
the following information:

� file name (key 'name'),
� file mode (key 'mode'),
� start position (key 'start', expressed as the offset to the beginning of the file),
� file length in bytes (key 'length'),
� file timestamp in UNIX time (key, 'timestamp', decimal number of seconds since

the start of a given epoch, use `os.date` to convert it into calendar date/time),
� ustar indicator ('ustar' if set, else the empty string),
� numeric owner id (key 'ownerid', decimal),
� numeric group id (key 'groupid', decimal),
� and the decimal checksum (key 'checksum').

If a second argument pattern is given, then only the files matching the given
pattern - a string - are returned. pattern may include wildcards, see strings.glob.

The function is written in Agena (see lib/tar.agn).

tar.open (tarfile, fn)

Opens an archived file fn (a file name) in the tar file given by tarfile (also a file
name), sets the file pointer to the beginning of the actual contents of the archived
file (i.e. not its tar header), and returns both a numeric file handle to the archived
file and its size.

The function is written in Agena (see lib/tar.agn).

agena >> 777

12.8 gzip - Library to Read and Write UNIX gzip Compressed Files

As a plus package, in Solaris, Linux, Mac OS X, OS/2, DOS, and Windows, this library
is not part of the standard distribution and must be activated with the import
statement, e.g. import gzip. See also: tar package.

A typical session may look like this:

> import gzip;

> fd := gzip.open('primes.dat.gz', 'r'):
gzipfile(0096A9F8)

>for keys I in gzip.lines(fd) do print(i) od;

> gzip.close(f):

true

gzip.close (filehandle [, filehandle, ···])

Closes the files denoted by the given file handles.

gzip.deflate (str [, level] [, stats])

The function compresses the string str with compression level, an integer in the
range 1 .. 9, with 9 the default. The return is the compressed string and its size, in this
order.

If stats is true, then the compression rate, size of str, number of allocated bytes,
and number of 16K blocks used are returned, too, in this order. The compression
rate is determined by dividing the size of the deflated string by the size of str with
correction for short strings, where 1 means no compression.

See also: gzip.inflate.

gzip.flush (filehandle)

This function takes a file handle and flushes all output to the working file.

gzip.inflate (str [, n])

The function decompresses a inflated string str. The size of the original
uncompressed string is given as the second argument n, which by default is
size(str) + 16383)/16384. The return is the uncompressed string.

See also: gzip.deflate.

778 12 Input & Output

gzip.lines (filehandle)

gzip.lines (filename)

Returns an iterator function that, each time it is called, returns a new line from the
file. Therefore, the construction

 for keys line in gzip.lines(file) do ... od

will iterate over all lines of the file.

If a file name is given, the file is closed when the loop ends. If a file handle is given,
the file is not closed.

gzip.open (filename [, mode])

Opens a file name. If mode is not given, a default mode 'rb' will be used. mode
can include special modes such as characters '1' to '9' that will be treated as the
compression level when opening a file for writing.

It returns a new file handle, or, in case of errors, null plus an error message.

gzip.read (filehandle, format1, ···)

Reads the file with the given file handle, according to the given formats, which
specify what to read. For each format, the function returns a string with the
characters read, or null if it cannot read data with the specified format. When
called without formats, it uses a default format that reads the entire next line (see
below).

The available formats are:

� '*a' reads the whole file, starting at the current position. On end of file, it returns
the empty string.

� '*l' reads the next line (skipping the end of line), returning null on end of file. This
is the default format.

� number reads a string with up to that number of characters, returning null on
end of file. If number is zero, it reads nothing and returns an empty string, or null
on end of file.

Unlike io.read, the '*n' format is not available.

gzip.seek (filehandle [, whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as follows:

� 'set' base is position 0 (beginning of the file),
� 'cur' base is current position,
� 'end' is the end of the file.

agena >> 779

In case of success, seek returns the final file position, measured in bytes from the
beginning of the file. If this function fails, it returns null, plus a string describing the
error.

The default value for whence is 'cur', and for offset is 0. Therefore, the call
gzip.seek(filehandle) returns the current file position, without changing it; the call
gzip.seek(filehandle, 'set') sets the position to the beginning of the file (and returns 0);
and the call gzip.seek(filehandle, 'end') sets the position to the end of the file, and
returns its size.

gzip.write (filehandle, value1, ···)

Writes the value of each of its arguments to the file specified by filehandle. The
arguments must be strings or numbers. To write other values, use tostring or
strings.format before write.

780 12 Input & Output

Chapter Thirteen

Communication

agena >> 781

782 13 Communication

13 Communication

13.1 net - Network Library

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the import statement, e.g.
import net.

13.1.1 Introduction and Examples

This package provides basic functions to pass text from a client to a server using the
IPv4 protocol. Thus it is suited to exchange information over the Internet and Local
Area Networks.

Communication is performed with `stream sockets` that ensure that data is sent
and received in the original order and hopefully without errors. A socket is being
created by a call to the net.open function.

In the following example, we will set up a one-way communication with the `client`
sending and the `server` receiving data.

A typical session might begin by setting up the server. This is because a client
cannot connect to a server until the latter is ready for it.

> import net alias
net v0.2.1 as of January 13, 2013

accept, address, bind, block, close, connect, listen, lookup, open,
opensockets, receive, remoteaddress, send, shutdown, survey

Create a socket: the net.open function returns a new socket handle:

> s := open():
932

agena >> 783

Please remember that the package only supports unencrypted data
transfer which might be insecure ! There is no SSL support.

If you do not use this package, no network functionality will be activated.

Please also note that when using net.accept, net.connect, net.receive,
net.send, and net.survey, you will give access to your computer through LANs
or the Internet, so please programme handshaking and blacklist/whitelist
methods.

Limited white and blacklisting to allow or prohibit connections is supported
through the net.whitelist and net.blacklist feature.

Now associate this socket with a port on the server machine24 by running net.bind.
In this example we expect data to be received on your own computer on port
1300.

> bind(s, '127.0.0.1', 1300):
127.0.0.1 1300

Now our socket must be converted to a server socket by calling

> listen(s):
true

and be told to get a pending connection by running net.accept.

net.accept waits until a client asks the server for a connection (see client example
below). It returns a new socket handle which later on manages this specific
connection, while the original socket is ready to wait for requests for other
connection.

net.accept also returns the IP address of the client asking for a connection, and its
port.

> t, ip, port := accept(s):
924 127.0.0.1 3230

If you do not want net.accept to wait indefinitely until something happens, call
net.block with the original server socket and false as its second argument.

Please note that you should check the incoming connection against a white or
black list so that only trusted clients can send you any data. To decline and
terminate an incoming connection, either check the incoming caller and just call
net.close with the handle returned by net.access, or use the built-in basic black
and whitelist functionality described at the end of this subchapter.

It also a good idea to validate the incoming connection with a handshaking
procedure which checks the incoming data for certain information and then
automatically decides whether to go on or shut down the connection.

Data received from the client will be returned by calling net.receive with the new
file handle returned by net.accept.

> receive(t):
Kuckuck ! 9

Finally, close both sockets (or just the handle returned by net.accept):

> close(t, s):
true

784 13 Communication

24 You may use the operating system commands ifconfig (UNIX, Mac) or ipconfig (Windows) to
determine your own IP address.

To open a client session, start Agena in another shell:

> import net alias

To connect to a server, first issue:

> d := open()
932

Now connect to the server by passing the socket handle, the IP address and port
number of the server. 'localhost' means that the server runs on the same
machine as the client.

> connect(d, 'localhost', 1300):
true

Send some text once or more.

> send(d, 'Kuckuck !'):
9

The server immediately returns the text sent. To finish a client session, type:

> close(d):
true

Call net.opensockets to have a look at the state of all open sockets.

Following now is an extended but crude example for a one-way connection which
sends one thousand hashes from the client to the server on the local host on port
1300.

Since with one single call, net.receive by default processes `only` 512 bytes in
Windows and usually 8,192 bytes in UNIX, the server uses a while loop to receive all
the data until the client closes the connection.

Since net.receive returns two results - the string and the number of characters
received - its second return will be 0 if the client terminates a network session.

agena >> 785

> import net alias

> d := open():
352

> connect(d, 'localhost', 1300):
true

> send(d, strings.repeat('#', 1m)):
1000000

> close(d):
true

> import net alias

> d := open():
132

> bind(d, 'localhost', 1300):
127.0.0.1 1300

> listen(d):
true

> e, f, g := accept(d);

> print(e,f, g);
352 127.0.0.1 49178

> x, y := receive(e);

> print(x, y);
(512 hashes) ##### 512

> while y <> 0 do
> x, y := receive(e);
> print(x, y);
> od;
(more hashes) #### 488
 0

> close(e, d):
true

ClientServer

A simple bi-directional connection:

> import net alias

> d := open():
124

> connect(d, 'localhost', 1300):
true

> send(d, strings.repeat('#', 1k)):
1000

> receive(d):
Got 512 bytes 13

> receive(d):
Got 488 bytes 13

> close(d):
true

> import net alias

> d := open():
124

> bind(d, 'localhost', 1300):
127.0.0.1 1300

> listen(d):
true

> e, f, g := accept(d);

> print(e,f, g);
344 127.0.0.1 49183

> x, y := receive(e);

> print(x, y);
etc. 512

> send(e, 'Got ' & y & ' bytes');

ClientServer

786 13 Communication

> while y <> 0 do
> x, y := receive(e);
> print(x, y);
> send(e, 'Got ' & y & '
bytes');
> od;
etc. 488
 0

> close(e, d):
true

ClientServer

Usage of black and whitelists: First initialise the net package.

> import net alias

Now put one or more a numeric (!) IPs to be blocked into the set net.blacklist to
prohibit connections to these addresses (valid for both net.connect and
net.accept).

> net.blacklist := {'127.0.0.1'}

> d := open():
3

> connect(d, '127.0.0.1', 1300):
Error in `net.connect`: partner in blacklist, closing socket 3.

Stack traceback: in `connect`
 stdin, at line 1 in main chunk

Socket d is now closed:

> opensockets():

[]

Now define a whitelist with all IPs to which a connection is allowed.

> net.whitelist := {'127.0.0.2'}

> d := open():
3

> return connect(d, '127.0.0.3', 1300)
Error in `net.connect`: partner not in whitelist, closing socket 3.

Stack traceback: in `connect`
 stdin, at line 1 in main chunk

The socket is closed, as well.

> opensockets():

[]

agena >> 787

13.1.2 Functions

net.accept (s)

Accepts a connection request from a client on the given server socket handle s. If
the server socket has been set to blocking mode, it waits until there is an incoming
connection.

The function returns a new socket handle (a number) for the data to be received
later on, and the address (a string) and port (a number) of the client socket.

Please note that the new socket created by net.accept must be closed separately
to avoid too many open sockets.

The function also checks the global sets net.blacklist and net.whitelist, in this order,
and if they exist. If you are trying to accept a connect from an address that is
included in net.blacklist, then net.accept refuses this connection, closes the new
socket that it created (see above), and issues an error. If you are trying to accept a
connection from an address that is not in net.whitelist, the function does not
establish a connection, closes the freshly created socket, and issues an error, as
well.

Please note that net.blacklist and net.whitelist must only contain numeric IPs, and
not addresses like 'sunsite.abc.xyz'. However, net.accept tries to convert the
incoming address to a numeric IP address and then checks both lists25. If an
address could not be resolved, the function does not allow a connection, and
closes the newly created socket, and finally issues an error.

You may use protect in order to intercept the errors described above, but you must
take care yourself for allowing or prohibiting a connection.

You have to set up net.blacklist and/or net.whitelist yourself after initialising the net
package.

The procedure is a binding to C's accept function.

See also: net.accept, net.bind, net.block, net.listen, net.receive, net.survey.

788 13 Communication

25 Usually, the server that tries to connect sends its numeric IP address, but probably it does not. So
this is just a precautionary action.

net.admin

Table containing various operating system-specific administrative network settings:

a table containing the supported protocolsprotocols

estimated maximum number of open sockets
allowed

maxnsockets

MeaningKey

net.address (s)

Returns two values: the IP address (a string) and port number (a number) to which
socket s is bound.

See also: net.lookup, net.remoteaddress.

net.bind (s [, address [, port]])

Associates a socket s with an IP address and a port on the local machine and
returns its IP address (a string) and the respective port on success or returns false
and a string containing the error message otherwise.

If address is not given, localhost is bound to the socket (i.e. your own computer),
otherwise the numeric IP address or host name is bound.

By default, port 1234 is connected, but you may specify another port (an integer) as
a third argument. This might require administrative rights.

The procedure is a binding to C's bind function.

To determine your own IP address, open a shell and issue the command ipconfig
in Windows, and ifconfig in Solaris, Linux, Mac, or other UNIX based platforms.

See also: net.accept, net.listen, net.receive, net.survey.

net.block (s, mode)

Sets a socket to blocking or non-blocking mode. The functions expects the socket
handle (a number) s as its first argument and the mode (a Boolean) as its second
argument. If the second argument is true, the socket is set to blocking mode, else
to non-blocking mode. The return is true on success and false otherwise.

The procedure is a binding to C's fcntl (UNIX) or ioctlsocket (Windows) function.

net.close (···)

Terminates all the given servers or clients denoted by their socket handles and
returns true on success, or false and a string containing an error message
otherwise.

agena >> 789

The procedure is a binding to C's close or closesocket function.

net.closewinsock ([anything])

The function is available only in the Windows edition. It finally terminates the current
network session and returns true on success, or issues an error otherwise if anything
is not given. If any value anything is passed to the function, in case of an error it
returns fail plus an error message of type string.

Please note that when you call this function, no further network communication will
be possible. Call net.openwinsock to enable network communication again.

The procedure is a binding to C's WSACleanup function.

See also: net.openwinsock.

net.connect (s [, address [, port]])

Connects the client denoted by it socket handle s (first argument, a number) to a
server at the specified IP address (second argument, a string) and its port (third
argument) so that data can be sent later. If address is missing, the address is set to
'localhost', if port is missing, port 1234 will be used.

If the client socket is set to blocking mode, the function waits until the server
responds; if the client socket is set to non-blocking mode, it immediately returns
without waiting for a server response.

The return is either true in case of success or false and the error message (a string)
at failure.

The function also checks the global sets net.blacklist and net.whitelist, in this order,
and if they exist. If you are trying to connect to an address that is included in
net.blacklist, then net.connect does not establish a connection, closes socket s,
and issues an error. If you are trying to connect to a server that is not in net.whitelist,
the function does not establish a connection, closes the socket, and issues an error,
as well.

Please note that net.blacklist and net.whitelist must only contain numeric IPs, and
not addresses like 'sunsite.abc.yz'. However, net.connect tries to convert address to
a numeric IP address and then checks both lists. If an address could not be
resolved, the function does not establish a connection, closes socket s and issues
an error.

You may use protect in order to intercept the errors described above, but you must
take care yourself for allowing or prohibiting the connection.

You have to set up net.blacklist and/or net.whitelist yourself after initialising the net
package.

790 13 Communication

The procedure is a binding to C's connect function.

See also: net.send.

net.isconnected ()

In Windows, checks whether you are currently connected to the internet and returns
true or false. The function is not available on other platforms.

net.listen (s [, length])

Converts the given socket s to a server socket, enabling it to accept connections.
You may optionally pass an integer in the range [1, 1024] determining the length of
the queue for pending connections.

The return is either true, or false and a string with an error message if listening failed.

You must first run this function before calling net.accept and net.receive.

The procedure is a binding to C's listen function.

net.lookup ([x])

Determines the IP, an optional alias, the official name and the supported protocol
of a given URL or numeric IP x of type string. If no argument is passed, the function
will return the information on 'localhost'.

An example:

> lookup('www.zeit.de'):
[networkaddress ~ [0.0.0.1], alias ~ [zeit.de], official ~ Die Zeit, type ~
IPv4]

> lookup('10.137.0.1'):
[networkaddress ~ [10.137.0.1], alias ~ [anything.yz], official ~ Anything,
type ~ IPv4]

See also: net.address, net.remoteaddress.

net.open ([blocking])

Creates a (client) network socket. If the optional first argument blocking is set to
false, the socket is set to non-blocking mode.

The return is the socket handle (a number), the default address 'localhost' and
default port 1234, the protocol (a number) and a Boolean indicating whether the
handle can be reused by the system after the socket has been closed. If a new
socket could not be opened, an error is issued.

net.open does not connect the client to a server - use net.connect for this.

agena >> 791

To create a server socket waiting for input, use net.bind, net.listen, and
net.accept.

The procedure is a binding to C's socket function.

See also: net.close.

net.opensockets ()

Returns all open sockets along with their respective attributes.

The return is a table with its keys the open socket handles, and their entries tables
containing information on whether the socket is a server or client (key 'server',
true or false), their own address (key 'address', a string), their own port (key
'port', a number), the protocol being used (key 'protocol', a number), whether
the socket works in blocking or non-blocking mode (key 'blocking', true or false),
and whether the socket has been connected to a server ('connected', true or
false).

The table key 'mode' holds information on the read and write status of the socket:

the socket can both send and receive data (the default)'readwrite'

the socket can only send data, but cannot receive any'write'

the socket can only receive data, but cannot send any'read'

the socket no longer can receive or send data'shutdown'

the socket is not connected'none'

MeaningValue

Please note that modifying the contents of the table returned will not have any
effect on the status of the sockets, so you cannot do any harm.

See also: net.shutdown.

net.openwinsock ([anything])

The function is available only in the Windows edition. It re-enables network
communication and returns true on success, or issues an error otherwise if anything
is not given. If any value anything is passed to the function, in case of an error it
returns fail plus an error message of type string.

When initialising the net package by calling readlib or with, Agena automatically
starts the Winsock daemon, so you do not have to call this function explicitly.

The procedure is a binding to C's WSAStartup function.

See also: net.closewinsock.

792 13 Communication

net.receive (s [, getall [, maxlength]])

Allows a server socket s to receive a string from a client. The function returns this
string and its length (a number). s should be the socket handle returned by
net.accept.

If the return is the empty string plus the value 0 (zero) for its length, the client has
closed the connection - this is also a proper check on whether a client is still
connected with a server socket. Please note that in this case, no further data can
be received on this socket and you have to close s manually.

If true has been passed for the optional argument getall, the function reads in all
data from the client until the latter closes the connection. If the client does not
close the connection, net.receive waits infinitely.

The optional argument maxlength determines the maximum number of characters
to be received. If a client tries to send more data than specified by maxlength, the
function returns false and the string 'too many bytes received'.

The maximum number of bytes to be read by one stroke is determined by
environ.kernel('buffersize') which value depends on the operating system and can
also mbe changed.

If any error occurs during receipt of the data, net.receive does not close the socket
s, but returns false and a string containing either the message 'failure during
receipt' or 'too many bytes received', the latter if maxlength and the number of
bytes received exceeded it.

The procedure is an extended binding to C's recv function.

See also: net.accept, net.bind, net.block, net.listen, net.receive, net.send,
net.survey.

net.remoteaddress (s)

Returns two values: the IP address (a string) and port (a number) of the server that
the client socket s is connected to.

See also: net.address, net.lookup.

net.send (s, str [, true])

Sends a string str (second argument) from the client denoted by its socket handle
s (first argument, a number) to a server.

The return is the number of the characters actually sent. If the kernel decides not to
send all the data in one chunk, the function might not send the complete string. If
an optional third argument, the Boolean true, is given, net.send, however, tries to
make sure that the complete string has been sent when it returns.

agena >> 793

If str is the empty string, it will not be sent to the server.

The function returns fail and the string 'socket not connected' if the socket has not
been connected before by either net.connect or net.accept. It also returns fail
and 'socket not connected' if the connection has been disconnected.

If the number of bytes actually sent is not equal to the length of the string str, the
function returns false, the string 'transfer size mismatch', and the number of
bytes sent.

The procedure is an extended binding to C's send function.

See also: net.connect, net.receive.

net.shutdown (s, what)

The function stops further sends and receives on a socket s. If what is the string
'read', then the socket can no longer receive data; if what is the string 'write', it
can lo longer send data; and if what is the string 'readwrite', it will not do both any
longer.

Please note that socket s will still be active. Call net.close if you want to release the
socket completely.

See also: net.opensockets.

net.smallping (ip, port [, iters [, delay [, message [, noprint]]]])

Opens a socket, connects to a server given by the string ip (either a domain name
or a numeric ip) on its port port, a number, optionally sends a string to the server,
and then closes the connection again. It resembles the UNIX ping command, but
works on a low-level network connection and does not use ICMP.

By default, only one connection attempt is conducted before the function returns.
You can specify the number of connection attempts by the optional argument
iters, a positive integer.

The function waits one second before connecting to the server again. You can
change this by passing a different number of seconds for the argument delay, a
positive integer.

If message is not given, the function does not send any data to the server. You can
change this by passing a string as argument message, which might also be the
empty string.

By default, the function prints the connection results at the console with each
iteration. This can be suppressed by passing any non-null value as argument
noprint. If you specify a value for noprint and if you do not want to send a string to
the server, just pass a non-string value as argument message.

794 13 Communication

The following data is printed at the console if noprint is void: Date and time,
round-trip time for the current connection in seconds, average round-trip time, a
Boolean indicating whether the connection was successful (true) or not (false), and
the number of the current iteration. Example:

> net.smallping('www.anything.foo', 80, 4, 2)
> # four iterations, 2-second delay, no message
2014/01/01 13:54:30 0.296 0.296 true 1
2014/01/01 13:54:32 0.031 0.163 true 2
2014/01/01 13:54:34 0.047 0.125 true 3
2014/01/01 13:54:36 0.047 0.105 true 4

The function returns the date and time of the final iteration as a number indicating
the number of seconds passed since a given `epoch`, the average round-trip time
in seconds as a number, and a Boolean indicating whether the last connection
attempt was successful (true) or not (false). Use skycrane.todate to convert the
numeric date into a readable format.

The function is written in Agena and included in the lib/net.agn file.

net.survey ([o], [timeout [, mode [, throw]]])

The function looks for activity on all open sockets, or of specific sockets. If you want
to scan only specific sockets, pass a sequence o of socket handles as the first
argument.

The returns are three sequences and a Boolean: the first sequence with descriptors
of sockets ready for reading, the second sequence containing all descriptors of
sockets ready for writing, and the third sequence with the descriptors of sockets
which encountered exceptional conditions. (Exceptional conditions are not failures.)
If the Boolean is true then input is available, if it is false it indicates a timeout.

By default, net.survey waits endlessly and only returns if a network action has been
detected (so-called `blocking mode`).

If the positive number timeout is passed to the function, the functions will always
return after timeout seconds even if there was no activity. if timeout is infinity, it
waits endlessly for a connection.

If mode is the string 'read', then the function only scans sockets ready for reading. If
mode is the string 'write', then the function only scans sockets ready for writing. If
mode is the string 'except', then the function only scans sockets where exceptions
occurred. In all three cases, the returns are a sequence of the respective sockets
handles and the Boolean true if input is available, or false at timeout.

If throw is set to false, then the function does not quit with an error in case the
socket status could not be determined.

agena >> 795

A socket handle returned can be passed to the net.accept function so that an
incoming connection can be further processed.

The function is a binding to C's select function.

See also: net.accept, net.bind, net.listen, net.receive.

net.wget (domain, [path [, port]])

The function downloads an HTML file from a web server.

domain, a string, specifies the domain. path, also of type string, indicates the
absolute path including the HTML file name on the web server. If port, a
non-negative integer less than 65,535 is given, then the function tries to query this
port instead of the standard HTML port 80.

If only domain is given, then it may include the absolute path. If you want to
download data from a different port than 80, however, you must pass the absolute
path as the second argument.

The function uses the HTTP 1.0 protocol along with the GET method.

The function returns the retrieved web page as a string, including its HTTP protocol
header.

Examples:

> import net

> net.wget('www.lua.org', 'about.html'):
HTTP/1.1 200 OK
Server: Zeus/4.3
...

> net.wget('www.lua.org/about.html'):

The function is written in Agena and included in the lib/net.agn file.

796 13 Communication

13.2 usb - libusb Binding

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.g. import usb.

The package provides 1:1 access to libusb functions. Please have a look at the
libusb man pages and is available in the Windows version of Agena, only.

The functions provided by this binding are:

13.2.1 CTX Functions

libusb_wait_for_eventusb.wait_for_event
libusb_unlock_eventsusb.unlock_events
libusb_unlock_event_waitersusb.unlock_event_waiters
libusb_try_lock_eventsusb.try_lock_events
libusb_set_pollfd_notifiersusb.set_pollfd_notifiers
libusb_set_debugusb.set_debug
libusb_pollfds_handle_timeoutsusb.pollfds_handle_timeouts
libusb_lock_eventsusb.lock_events
libusb_lock_event_waitersusb.lock_event_waiters
libusb_handle_events_timeoutusb.handle_events_timeout
libusb_handle_events_lockedusb.handle_events_locked
libusb_handle_eventsusb.handle_events
libusb_get_pollfdsusb.get_pollfds
libusb_get_next_timeoutusb.get_next_timeout
libusb_get_device_listusb.get_device_list
libusb_event_handling_okusb.event_handling_ok
libusb_event_handler_activeusb.event_handler_active
Corresponding libusb functionPackage function name

13.2.2 DEV Functions

libusb_openusb.open
libusb_get_max_packet_sizeusb.get_max_packet_size
libusb_get_max_iso_packet_sizeusb.get_max_iso_packet_size
libusb_get_device_descriptorusb.get_device_descriptor
libusb_get_device_addressusb.get_device_address
libusb_get_config_descriptor_by_valueusb.get_config_descriptor_by_value
libusb_get_config_descriptorusb.get_config_descriptor
libusb_get_bus_numberusb.get_bus_number
libusb_get_active_config_descriptorusb.get_active_config_descriptor
Corresponding libusb functionPackage function name

agena >> 797

13.2.3 Handles

libusb_set_interface_alt_settingusb.set_interface_alt_setting
libusb_set_configurationusb.set_configuration
libusb_reset_deviceusb.reset_device
libusb_release_interfaceusb.release_interface
libusb_kernel_driver_activeusb.kernel_driver_active
libusb_interrupt_transferusb.interrupt_transfer
libusb_get_string_descriptor_utf8usb.get_string_descriptor_utf8
libusb_get_string_descriptor_asciiusb.get_string_descriptor_ascii
libusb_get_string_descriptorusb.get_string_descriptor
libusb_get_deviceusb.get_device
libusb_get_descriptorusb.get_descriptor
libusb_get_configurationusb.get_configuration
libusb_detach_kernel_driverusb.detach_kernel_driver
libusb_control_transferusb.control_transfer
closehandleusb.close
libusb_clear_haltusb.clear_halt
libusb_claim_interfaceusb.claim_interface
libusb_bulk_transferusb.bulk_transfer
libusb_attach_kernel_driverusb.attach_kernel_driver
Corresponding libusb functionPackage function name

13.2.4 Transfer Functions

libusb_transfer_get_datausb.transfer_get_data
libusb_submit_transferusb.submit_transfer
libusb_set_iso_packet_lengthsusb.set_iso_packet_lengths
libusb_set_iso_packet_bufferusb.set_iso_packet_buffer
libusb_get_iso_packet_bufferusb.get_iso_packet_buffer
libusb_fill_iso_transferusb.fill_iso_transfer
libusb_fill_interrupt_transferusb.fill_interrupt_transfer
libusb_fill_control_transferusb.fill_control_transfer
libusb_fill_control_setupusb.fill_control_setup
libusb_fill_bulk_transferusb.fill_bulk_transfer
libusb_control_transfer_get_setupusb.control_transfer_get_setup
libusb_control_transfer_get_datausb.control_transfer_get_data
libusb_cancel_transferusb.cancel_transfer
Corresponding libusb functionPackage function name

13.2.5 Miscellaneous Functions

libusb_transferusb.transfer
libusb_open_device_with_vid_pidusb.open_device_with_vid_pid
libusb_initusb.init
Corresponding libusb functionPackage function name

798 13 Communication

13.3 com - Serial RS-232 Communication through COM Ports

As a plus package, the com package is not part of the standard distribution and
must be activated with the import statement, i.e. import com.

The com library allows to send and receive data through physical and virtual COM
ports. It is currently in an experimental state.

Typical usage for sending data to another com port:

> import com

> fd := com.open('COM4');

> com.init(fd, 9600, "sb1"):

> com.attrib(fd):

> com.write(fd, 'hallo !');

> com.close(fd);

Reading data from a com port:

> fd := com.open('COM4');

> com.init(fd, 9600, "sb1"):

> do # if nothing has been read, com.read ...
> str := com.read(fd, 80); # returns null ...
> if str :: string then print(str) fi # and a string otherwise
> od;

The functions included are:

com.open (port)

Creates a handle to the given COM port str, a string, and returns the handle, of
type userdata.

In Windows, a COM port may be denoted by the strings 'COM1', 'COM2', etc.

The function does not configure the port, see com.init.

See also: com.close.

com.close (hdl)

Closes the given port denoted by its handle hdl of type userdata.

See also: com.open.

agena >> 799

com.write (hdl, str)

Sends the entire string str to the port denoted by hdl. The number of bytes actually
sent will be returned.

See also: com.read.

com.read (hdl [, bufsize])

Reads data from the port denoted by hdl and returns it as a string. If nothing could
be read, the return is null.

The (maximum) number of bytes to be read is given by bufsize. If not given, the
function tries to read the entire in-queue. You should prefer to pass a value for
bufsize.

See also: com.write.

com.attrib (hdl)

Returns the settings of the given COM port, denoted by its handle hdl. The function
is available in Windows only.

com.init (hdl, option1, options2, ···)

Configures the COM port denoted by its handle hdl. The function re-initialises all
hardware and control settings, but it does not empty output or input queues.

Supported settings are:

� 'reset' - reset
� baud rate, a number,
� 'cs5' to 'cs8', - character size,
� 'parno', 'parodd', 'pareven' - parity
� 'sb1', 'sb2' - stop bits,
� 'foff', 'frtscts', 'fxio' - flow controls.

Example:

> com.init(fd, 9600, "sb1");

In DOS, you (obviously ?) can only use baud rates 9600, 19200 and 38400. At least
in UNIX, supported baud rates are:

9600, 19200, 38400, 57600, 115200, 230400, 460800, 500000, 576000, 921600,
1000000, 1152000, 1500000, 2000000, 2500000, 3000000, 3500000, 4000000.

800 13 Communication

com.control (hdl, option1, ···)

Sets DTR/DSR or RTS/CTS hardware flow controls to the COM port denoted by its
handle hdl. Options are:

� 'dtr' - Data Terminal Ready
� 'dsr' - Data Set Ready
� 'rts' - Request To Send
� 'cts' - Clear To Send

The function does not empty output or input queues.

com.timeout (hdl, msecs)

Sets the time-out parameters for all read and write operations on the specified
COM port, denoted by its handle hdl. msecs is in milliseconds.

com.queues (hdl, in_buffersize, out_buffersize)

Sets buffer sizes for in and out queues for the COM port denoted by its hdl handle.
*buffersizes are integers.

com.purge (hdl, mode)

Discards all characters from the output or input buffer of the given COM port,
denoted by it handle hdl. It can also terminate pending read or write operations on
the resource.

mode may be the string: 'rw', 'r' or 'w'.

com.wait (hdl, event1, ···)

Waits for an event to occur for the COM port denoted by its handle hdl. The set of
events that are monitored by this function are the strings: 'car', 'cts', 'dsr',
'ring'.

The function returns a Boolean.

agena >> 801

802 13 Communication

Chapter Fourteen

System & Environment

agena >> 803

804 14 System & Environment

14 System & Environment

14.1 os - Access to the Operating System

This library is implemented through table os.

To determine the operating system and CPU in use by Agena, see the environ.os
and environ.cpu environment variables explained in Appendix A3.

Summary of functions:

File and directory handling:

os.chdir, os.chmod, os.chown, os.curdrive, os.curdir, os.dirname, os.exists,
os.fattrib, os.fcopy, os.filename, os.fstat, os.ftok, os.gettemppath,
os.inode, os.isdir, os.isfile, os.islink, os.iterate, os.list, os.listcore, os.mkdir,
os.mklink, os.move, os.prefix, os.readlink, os.realpath, os.remove,
os.rmdir, os.suffix, os.symlink, os.tmpdir, os.tmpname, os.whereis.

Hardware access:

os.battery, os.beep, os.cdrom, os.endian, os.freemem, os.hasnetwork,
os.isdocked, os.isdriveletter, os.ismounted, os.isremovable, os.isvaliddrive,
os.meminfo, os.screensize.

Operating System Access:

os.codepage, os.computername, os.cpuinfo, os.cpuload, os.drives,
os.drivestat, os.environ, os.execute, os.exit, os.getdirpathsep, os.getenv,
os.getip, os.getlanguage, os.getlocale, os.getloadeddlls, os.getmodule-
filename, os.getwinsysdirs, os.groupinfo, os.isansi, os.isarm, os.isdos,
os.isdow, os.islinux, os.islinux386, os.islocale, os.ismac, os.isos2, os.isppc,
os.isunix, os.iswindows, os.isx86, os.login, os.netdomain, os.netsend,
os.netuse, os.os2info, os.pause, os.pid, os.setenv, os.settime, os.setlocale,
os.system, os.terminate, os.userinfo, os.wait, os.winver.

Date and Time:

os.clock, os.date, os.datetosecs, os.difftime, os.esd, os.isdst, os.lsd,
os.now, os.secstodate, os.speed, os.time, os.tzdiff, os.uptime, os.usd.

agena >> 805

os.battery ()

On Windows 2000 and later, the function returns the current battery status of your
system (usually laptops) as a table with the following information:

the battery lifetime in seconds when at full charge, a number
(or undefined if it could not be determined)

'fulllifetime'

the remaining battery lifetime in seconds, a number (or
undefined if it could not be determined)

'lifetime'

the battery flag, a number'flag'

true if battery is currently being charged, or false otherwise'charging'

either 'low' (capacity < 33%), 'medium' (capacity > 32% and
<67 %), 'high' (capacity > 66%), 'critical' (capacity < 5%),
'charging', 'no battery', 'unknown'

'status'

battery life in percent; a value > 100 indicates that a battery is
not installed (see 'status' entry)

'life'

true if a battery is present, and false otherwise'installed'

'on', 'off', or 'unknown''acline'

MeaningKey

On OS/2 Warp 4 and higher, with APM running, the functions returns the status of the
battery as a table with the following information:

true if power management is switched on, or false if not.
'power-
management'

OS/2 power flags'flags'

either 'high', 'low', 'critical', 'charging', 'unknown', or 'invalid''status'

battery life in percent, or 'undefined' if not available'life'

'on', 'off', 'unknown', or 'invalid''acline'

MeaningKey

On other operating systems, the function returns fail.

os.beep ()

os.beep (freq, dur)

In the first form, the functions sounds the loudspeaker with a short `beep` and
returns null.

The second form sounds the loudspeaker with frequency freq Hz (a positive integer
in the range 37 .. 32767) for dur seconds (a positive float) in Windows, DOS and
OS/2. In UNIX, the loudspeaker beeps dur times, and the frequency is ignored (just
pass any number to freq). Returns null if a sound could be created successfully, or
fail if non-positive arguments were passed.

806 14 System & Environment

os.cdrom (d, action)

Opens and closes the tray of an optical disk drive d. It can also eject any other
removable drive d. If action is 'open' or 'eject', the tray is opened or the media is
ejected. If action is 'close', the tray is closed. The function is available in the OS/2,
Linux, and Windows edition of Agena only.

See also: os.drives, os.drivestat, os.unmount.

os.chdir ([str [, any]])

Changes into the directory given by string str on the file system. Returns true on
success and issues an error on failure otherwise if any has not been given. If you
pass any second argument, the function will not issue an error and will return false if
the given path does not exist, or fail if you have no permission to enter the directory.

If no argument is given or null is passed for str, the name of the current working
directory will be returned as a string. Otherwise, the function will commit the change
of directory and return true.

See also: os.curdir, os.dirname, os.isdir, os.iterate, os.list.

os.chmod (fn, m)

Takes a file path fn (a filename, thus a string) and a mode m (an integer) denoting a
three-digit octal number and changes the file permissions accordingly. Contrary to
os.fattrib, mode m must not be preceded by the `0o` token. The function returns
true on success and issues an error otherwise. It is available in the UNIX versions of
Agena, only.

See also: os.chown, os.fattrib.

os.chown (fn, o [, g])

The function changes the owner of the file fn (a filename, thus a string) to owner o,
and optionally to group g.

o and g may be numbers or strings. If a number is passed for o or g, it denotes a
user id (uid) or group id (gid), respectively. If a string is passed, it denotes a user or
group name. If g is not given, the default group of user o is set.

The function returns true on success and issues an error message otherwise. It is
available in the UNIX versions of Agena, only.

See also: os.chmod, os.fattrib.

agena >> 807

os.clock ()

Returns the processor time used by Agena in milliseconds. The function can count
beyond 24.8 days and resets only after many years.

See also: time, os.time.

os.codepage ()

os.codepage (p)

In Windows, in the first form, returns - in the following order: input code page, output
code page, the input code page name and the output code page name.

In OS/2, in the first form, returns - in the following order: input code page and output
code page. In DOS, in the first form, returns the output code page.

In OS/2 and Windows only, in the second form, sets the input and output code
page. To change the input code page, pass the pair 'input':<code page
number>. To change the output code page, pass the pair 'ouput':<code page
number>.

In all other operating systems, the function is not available.

See also: os.getlocale, os.setlocale.

os.computername ([option])

Returns the name of the computer in Windows, OS/2, DOS, Mac OS X and UNIX. The
return is a string. On other architectures, the function returns fail.

If called with any option, returns detailed information on the NetBIOS or DNS name
associated with the local computer in a table.

See also: os.netdomain.

os.cpuinfo ()

Returns various information on the CPU in use: its type, frequency, and number of
cores. It is available in Windows 2000 and later, OS/2, DOS, Solaris, Linux, and Mac
OS X only26. The return is a table with the following fields:

808 14 System & Environment

26 In Solaris, you may issue io.pcall('kstat') and parse its return.

xxx
vendor ID, e.g. 'GenuineAMD',
'GenuineIntel'.

'vendor'

xxxx

architecture: in Windows the string:
'x86', 'x64', 'ARM', 'Itanium', or
'unknown'; on a Mac: 'x86', 'x64',
'ppc', 'ppc64', 'MC680x0',
'MC88000', MC98000', HPPA',
'ARM', 'sparc', 'i860', or 'unknown'. In
Linux: a posint.

'type'

xsupported instruction sets'support'

xxprocessor stepping, a posint'stepping'

xprocessor revision, a posint'revision'

xxxnumber of cores, a posint'ncpu'

xxprocessor model, a posint'model'

xxprocessor level, a posint'level'

xxxclock rate in MHz, a posint'frequency'

xdetailed information on the CPU'cputype'

xx
detailed information on the
underlying CPU hardware returned
by the C function __cpuid.

'cpuid'

xxx
information on L1/L2/L3 caches
(Intel only)

'cache'

xxxprocessor name, a string27'brand'

xcrude measurement of CPU speed'bogomips'

xxxx
endianness: true means Big
Endian, false Little Endian, and fail
undetermined.

'bigendian'

LinuxMacWin-
dows

OS/2MeaningField

On all supported operating systems, all data is determined by querying the first
processor on the platform, assuming that all other cores have the same features.
The returns may be platform-dependent - especially, the return regarding 'level'
may have a different meaning.

On other platforms, the function returns fail.

The Linux version has been written in Agena, see the lib/library.agn file; the other OS
versions have been implemented in C.

See also: os.cpuload, os.endian.

os.cpuload ()

In OS/2, Linux and Mac OS X, returns the 1, 5 and 15 minute load averages of the
computer as a sequence of three numbers in the range [0 , 1]. In Windows Vista

agena >> 809

27 The return may include leading or trailing blanks.

and later, it just returns a sequence containing the current average load, the load
caused by the kernel and the load caused by user programmes - all three in the
range [0, 1] - plus the number of elements in the CPU queue, the number of
context switches per second and the number of interrupts per second - in this order.

If the load could not be returned, the function just returns fail.

On all other platforms, the function returns fail.

See also: os.cpuinfo, os.speed.

os.curdir ()

Determines the current working directory and returns its absolute path.

See also: os.chdir.

os.curdrive ()

In OS/2, DOS, and Windows returns the letter of the current drive, a one-character
string with an appending colon.

os.date ([format [, time]])

os.date ([format [, obj]])

os.date (format, year, month, day [, hour [, minute [, second]]])

Returns a string or a table containing date and time, formatted according to the
given string format.

The time argument represents the number of seconds elapsed since a given
epoch (usually January 01, 1970, or try os.now(0)). When time is not given, os.date
formats the current time. To convert a date and time to seconds, see
os.datetosecs.

In the second form, receives a format and a date and optionally time of the form
year, month, date [, hour [, minute [, second]]], with all values in table, sequence or
register obj. Alternatively, in the third form, year, month, day and optionally hour,
minute, and second can be passed directly.

If format starts with '!', then the date is formatted in Co-ordinated Universal Time.
After this optional character, if format is *t, then date returns a table with the
following fields: year (four digits), month (1..12), day (1..31), hour (0..23), min (0..59),
sec (0..59), msec (0..999) - if milliseconds could be determined, wday (weekday,
Monday is 1, Sunday is 7), yday (day of the year, where 1 is January 01, and
December 31 either 365 or 366), and isdst (daylight saving flag, a boolean). By
setting environ.kernel(iso8601 = false), the weekday return 1 means Sunday and 7
Saturday.

810 14 System & Environment

If the format is *j, the Julian date, a number, will be returned. If the format is *l, the
Lotus 1-2-3 Serial Date, a number, will be returned. For more information on the
Lotus Serial Date value returned, see os.lsd. If the format is *e, the Excel Serial Date,
a number, will be returned, see os.esd. *sdn computes the Julian date in the Julian
calendar (whereas *j, *l, *e , *t compute it in the Gregorian calendar).

If format is not *t, *e, *l, *j, or *sdn, then date returns the date as a string,
formatted according to the same rules as the C function strftime.

When called without arguments, os.date on all supported platforms returns a string
of the format 'YYYY/MM/DD mm:hh:ss.xxx', where .xxx denotes milliseconds, if they
could be determined; otherwise the return would simply be in the format
''YYYY/MM/DD mm:hh:ss'.

Examples:

> os.date('%a, %d %b %Y %H:%M:%S, %z'):
Mon, 02 Nov 2015 17:22:09, W. Europe Standard Time

> os.date('%A, %d %B %Y %H:%M:%S, %z'):
Monday, 02 November 2015 01:02:28, W. Europe Standard Time

The following date specifiers always refer to the current locale, and may not be fully
supported by your operating system, if not, an empty string will be returned:

does not work on Windowshour in the range 0 .. 12, like %H, padded
with a blank

%l

does not work on Windowshour in the range 0 .. 23, like %H, padded
with a blank

%k

‘001’three-digit day of year in the range 001 ..
366

%j
’01’two-digit hour in the range 00 .. 12%I
‘01’two-digit hour in the range 00 .. 23%H
does not work on Windowsabbreviated name of month%h

do not work on Windowsyear corresponding to the ISO week
number, but without the century

%g,
%G

does not work on Windowsdate of the format %Y-%m-%d%F

does not work on Windowsday of the month like with %d, but
padded with blank instead of a zero

%e
does not work on Windowsdate of the format %m/%d/%y%D
’03’day of the month as two-digit integer%d

does not work on Windowscentury of the year, greatest integer not
greater than year divided by 100.

%C
‘05/19/17 20:33:13’ for UKpreferred calendar time representation%c
‘April’full month name%B
‘Apr’ for Aprilabbreviated month name%b
‘Friday’full weekday name%A
‘Fri’ for Fridayabbreviated weekday name%a
Example (w/o the quotes)MeaningSpec

agena >> 811

‘%’character ‘%’%%

Windows returns time zone as
words

abbreviation of time zone %Z

Windows returns time zone as
words

numeric time zone%z
‘1949’full year number%Y
‘17’year in the range 00 .. 99%y
‘21:09:02’ for UKpreferred time of day representation%X
‘05/03/17’ for UKpreferred date representation%x

‘18’week number of current year in the range
00 .. 53, starting with the first Monday as
the first day of the first week

%W

‘1’day of week in the range 0 (Sunday) to 6%w

‘18’week number in the range 00 ..53,
starting with the first Sunday as the first day
of the first week

%U,
%V

does not work on Windowsday of week as a decimal number range
1 (Monday) to through 7

%u
does not work on Windowstime of day of format %H:%M:%S%T
’01seconds in the range 00 .. 60%S
does not work on Windowsnumber of seconds since the epoch%s
does not work on Windowshour and minute, like%H:%M%R
does not work on Windowsam or pm%P
‘PM’AM or PM%p
does not work on Windowsnewline%n
’01’minute in the range 00 .. 59%M
’05’month in the range 01 .. 12%m
Example (w/o the quotes)MeaningSpec

Please note that the behaviour is undefined if the date passed is earlier than the
epoch.

See also: astro.cweek, astro.hdate, os.now, os.time, utils.checkdate.

os.datetosecs ([obj])

os.datetosecs (year, month, day [, hour [, minute [, second]]])

In the first form, receives a date and optionally time of the form year, month, date [,
hour [, minute [, second]]], with all values in table, sequence or register obj being
integers, and transforms it to the number of seconds elapsed since the start of an
`epoch` (usually January 01, 1970, try os.now(0)). By default, hour, minute, and
second are 0. and If no argument is given, returns the number of seconds elapsed
from the epoch till the current date and time.

In the second form, receives the given integers, and conducts the same operation.

812 14 System & Environment

The time zone acknowledged may depend on your operating system.

The function returns -1 if the date is older than the start of the epoch.

See also: os.time, os.secstodate, utils.checkdate.

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and
some other systems, this value is exactly t2-t1.

See also: time, os.time.

os.dirname (path)

Returns the directory name of the given path, a string. If path has no separator, then
the function returns '.'. If you would like to test relative paths, apply os.realpath to
path before calling this function. In DOS-like systems, when only a drive letter along
with a colon is passed, then a trailing slash is appended to the result, e.g. 'c:' d
'c:/'.

See also: os.filename, os.isdir, os.prefix, os.suffix.

os.drives ()

In Windows, OS/2 and DOS, the function returns all the logical drives available at the
local computer. The return is a sequence of drive letters. In DOS, floppy drives are
not checked to avoid "Insert floppy disk" messages. In other systems, the return is
fail.

os.drivestat (drive)

In Sun Solaris, Linux, OS/2, DOS and Windows, the function returns information of the
given logical drive in a table. In DOS-based systems, the drive letter may be
followed by a colon. In UNIX, pass just '.'. The following data will be returned:

number of bytes per sector'bytespersector'

number of sectors per cluster
'sectorsper
cluster'

number of free clusters to non-superusers (UNIX only)'freeuserclusters'

number of free clusters (OS/2: allocation units)'freeclusters'

total number of clusters (OS/2: allocation units)'totalclusters'

the total number of physical bytes'totalsize'

the number of free space in bytes'freesize'

the type of the drive, i.e. 'Removable', 'Fixed', 'Remote',
'CD-ROM', or 'RAMDISK'

'drivetype'

the file system (e.g. NTFS, FAT32, JFS, HPFS, etc.)'filesystem'

the drive label'label'

MeaningKey

agena >> 813

FSD Attach Data, returned only if available (OS/2 only).'rgFSAData'

unknown meaning, FSALLOCATE data type item
`idFileSystem`(OS/2 only)

'idFileSystem'

1 = Resident character device, 2 = Pseudo-character
device, 3 = Local drive, 4 = Remote drive attached (OS/2
only)

'iType'

drive letter of device, including colon (OS/2 only)'driveletter'

FAT32-formatted drive (DOS only)'isfat32'

number of bits used by the FAT (12, 16 or 32, DOS only)'fatsize'

DOS device name (Windows only)'dosdevice'

solid-state disk indicator (Windows only)'trim'

number of free file nodes (UNIX only)'freenodes'

total number of nodes (UNIX only)'totalnodes'

maximum number of characters in a filename (Linux only)'maxnamelength'

MeaningKey

In other systems, the return is fail.

Example:

> os.drivestat('c:'): # get information on drive C:\
[bytespersector ~ 512, drivetype ~ Fixed, filesystem ~ NTFS, freeclusters ~
62051077, freesize ~ 254161211392, label ~ <none>, sectorspercluster ~ 8,
totalclusters ~ 122070527, totalsize ~ 500000878592]

See also: os.cdrom, os.drives, os.ismounted, os.isremovable, os.isvaliddrive.

os.endian ()

Determines the endianness of your system. Returns 0 for Little Endian, 1 for Big
Endian, and fail if the endianness could not be determined.

See also: os.cpuinfo.

os.environ ()

Returns all environment variables of the underlying operating system and their
current settings as a table of key ~ value pairs of type string.

See also: os.getenv, os.getwinsysdirs, os.setenv.

os.esd ([year, month, day [, hour [, minute [, second]]]])

os.esd (x)

The function computes the Excel Serial date for the given date or - if no argument
is given - the current date and time. The Excel Serial represents the number of days
that have elapsed since 31st December 1899, 00:00h, where midnight January 01,
1900 is day 1.

814 14 System & Environment

If no argument is given, the current Lotus Serial Date is computed. Otherwise, at
least year, month, and day - all numbers - must be given. Optionally, you may add
an hour, minute, or second, where all three default to 0. The arguments can also be
passed in a table or sequence.

The returns is a number, where the fractional portion represents the decimal time.

In the second form, if the Excel Serial Date x - a number - is given, the function
returns the corresponding Gregorian year, month, day, the decimal fraction of the
day - in the range [0, 1) -, the hour, minute, and second, all numbers. x may be 60,
returning February 29, 1900.

The function implemented here takes no account of daylight saving time (which
os.lsd does): at Winter time change, it returns the same values for (as an example)
02:00 a.m. before and after time change. Also, there is a `gap` in the values
returned at Summer time change between 02:00 a.m. and 03:00 a.m.

In case of a non-existing date or if the date is older than the start of the epoch, the
function issues an error. Thus, the function never returns 60 for February 29, 1900, the
bug in the original Lotus 1-2-3 formula.

See also: os.lsd, os.now, os.usd, utils.checkdate.

os.execute ([command [, option]])

This function is equivalent to the C function system. It passes the string command to be
executed by an operating system shell. It returns a status code, which is
system-dependent. If command is absent, then it returns non-zero if a shell is available
and zero otherwise.

If any option is given, the function runs command and returns the entire output of the
command as one string. Any carriage returns ('\r') are removed from the result,
but keeps newlines ('\n') untouched.

See also: io.pcall.

os.exists (filename)

Checks whether the given file or directory (filename is of type string) exists and the
user has at least read permissions for it. It returns true or false.

See also: os.exists.

os.exit ([code])

os.exit (code [, false])

In the first form, calls the C function exit, with an optional code to be passed to the
environment in which Agena has been started, to terminate the host programme.

agena >> 815

The default value for code is the success code, usually 0. (In Windows, query
ERRORCODE in the shell for the exit status.)

The function by default also closes the interpreter state - this can be prevented by
passing the optional Boolean value false.

os.faccess (path [, mode])

os.faccess (path [, flags])

Checks whether a directory or file can be accessed. path represents the path to
the file, directory or symbolic link.

In the first form, mode specifies the accessibility through the integer constants:

� os.f_ok = check for existence
� os.x_ok = file is executable
� os.w_ok = write access is granted
� os.r_ok = read access is permitted (the default)

You can either specify the constant os.f_ok for mode, or a bitwise-OR mask of the
constants os.r_ok, os.w_ok and/or os.x_ok created by calling the || operator, see
example below.

Please note that the integer values these constants represent vary across platforms,
so it is recommended to always use the constant names in the calls to the function.

In the second form, a string flags of one or more unique characters, in any order,
specifies the permissions to be queried:

� 'f' = check for existence
� 'x' = file is executable
� 'w' = write access is granted
� 'r' = read access is permitted (the default)

You cannot mix the 'f' flag with the other flags.

In both forms, if at least one bit in the mask asked for a permission is denied, the
function returns false, and true otherwise. If the specified access is not granted, a
string describing the kind of error will be returned, too.

Example:

> # check for read access to a non-existent folder
> os.faccess('nofolder'):
false file or directory does not exist

> # check for both read and write access to an existing file
> os.faccess('myfile.txt', os.r_ok || os.w_ok):
true

816 14 System & Environment

> # dito
> os.faccess('myfile.txt', 'rw'):
true

See also: os.fattrib, os.fstat, os.exists.

os.fattrib (fn, mode)

os.fattrib (fn, oct)

os.fattrib (fn, time)

In the first form, sets or deletes file permission flags given by the mode string to the file
denoted by the filename fn.

The mode argument must consist of at least three characters and have the following
form:

'a'- user, group, and
other

'x' - execute permission'o'- other
'w' - write permission'-' - remove permission'g'- group
'r' - read permission'+' - add permission'u' - user
Character 3, etc.Character 2Character 1

The first character in mode denotes the owner of the file, the second character
indicates whether to set or delete a permission, and the following characters
indicate which permissions to set or remove.

In Windows and OS/2 the following permission flags are additionally supported:

'r' - read-only flag
'h' - hidden flag
's' - system flag
'a' - archive flag
Character 3, etc.

In the second form, the file mode is set according to the octal number oct. This
number is the same as the numeric argument to the UNIX chmod command, so -
for example - pass 0o444 (instead of 444) to the function to set a file to read-only
mode for all users.

In the third form, the function changes the modification and access time of the file
denoted by its name fn to the date and time given in table time. The table must
include at least integers representing a year, month, and day. It may optionally
include an hour, a minute, and a second. If they are missing, they default to zero.

File timestamps can only be changed in OS/2, UNIX, Windows, Mac OS X, and DOS.

The function returns true on success, and fail otherwise.

agena >> 817

Examples:

> os.fattrib('file.txt', 'a-wx'); # deletes write and execute permissions

> os.fattrib('file.txt', 0o444); # sets read-only for all users

> os.fattrib('file.txt', [2012, 05, 23, 12, 30, 0]); # sets timestamp

See also: os.fstat, os.now.

os.fcopy (infile, outfile [, overwrite])

os.fcopy (infile, dir [, overwrite])

In the first form, copies the file and its permissions denoted by the filename infile
to the new file called outfile. If outfile already exists, an error will be issued, but
you may overrule this by passing true for overwrite. The function internally uses
environ.kernel['buffersize'] for the number of bytes to be copied at the same time,
which you may change to another positive integer.

In the second form, the function copies the file infile to the existing directory dir.

The function returns true on success, and fail and infile otherwise. It also returns
fail and infile if the file could be copied, but the file permissions could not be set.
The function issues errors if a file could not be read or created, or if the source and
target file are identical.

Use skycrane.fcopy if you want to use wildcards/file globbing.

os.filename (path [, option])

Returns the filename of the given path, a string. This is equivalent to the C
basename function. If you would like to test relative paths, apply os.realpath to
path before calling this function.

If any option is given in Windows, then the 8.3 DOS filename is also returned if the
file exists, otherwise null will be returned as the second result.

See also: os.dirname, os.isfile, os.prefix, os.suffix.

os.freemem ([unit])

Returns the amount of free physical RAM available on Windows and Mac OS X and
UNIX machines. In OS/2, the function returns the amount of free virtual RAM.

If no argument is given, the return is in bytes. If unit is the string 'kbytes', the return
is in kBytes; if unit is 'mbytes', the return is in Mbytes; if unit is 'gbytes', the return is
in Gigabytes; if unit is 'tbytes', the return is in TeraBytes. On other architectures,
the function returns fail.

818 14 System & Environment

See also: environ.used, os.meminfo.

os.fstat (fn)

os.fstat (fh)

Returns information on the file, symbolic link (UNIX and Windows only), or directory
given by the string fn in a table. You can also pass a file handle fh returned by
io.open or binio.open, but not in OS/2.

The table includes the following information:

Access permissions to the file or directory are returned with the
owner, group (UNIX only), and other (UNIX only) keys which each
reference tables with information on read, write, and execute
permissions. These tables have the following form: ['read' ~
<boolean>, 'write' ~ <boolean>, 'execute' ~ <boolean>],
where <boolean> is either true or false.

'owner',
'group',
'other'

The permission bits, a string similar to that in UNIX and DOS, e.g.
'-rw-rw-r--:-----' or '----------:-drhas' where the bits to the left of the
colon are set in the UNIX and DOS versions of Agena, while in
Windows and OS/2, the bits to the right of the colon are set. The
letters indicate:
'r' - read permission granted (UNIX & DOS)
'w' - write permission granted (UNIX & DOS)
'x' - execute permission granted (UNIX & DOS)
'd' - indicates directory (OS/2 only)
'r' - readonly file (OS/2 and Windows)
'h' - hidden file (OS/2 and Windows)
'a' - archived file (OS/2 and Windows)
's' - system file (OS/2 and Windows)

'bits'

file attributes coded in a decimal integer, use
math.convertbase to convert the integer x into its octal
representation (from base 10 to base 8).

'perms'

last file attribute change date in the form yyyy, mm, dd, hh,
mm, ss

'attribchange'

last file access date in the form yyyy, mm, dd, hh, mm, ss'lastaccess'

last modification date in the form yyyy, mm, dd, hh, mm, ss'date'

the compressed size of the file in bytes (Windows only)'compressed'

the size of the file in bytes'length'

'FILE' if fn is a regular file, 'LINK' if fn is a symbolic link (UNIX
and Windows only), 'DIR' if fn is a directory, 'CHARSPECFILE' if
fn is a character special file (a device like a terminal),
'BLOCKSPECFILE' if fn is a block special file (a device like a disk),
or 'OTHER' otherwise

'mode'

MeaningKey

agena >> 819

(UNIX only) group ID'gid'

(UNIX only) user ID'uid'

binary type of an executable: "Win16", "Win32", "Win64", "DOS",
"OS2/16", "PIF", "POSIX" or "unknown"

'binarytype'

(Windows only) 8.3 DOS name of the file'dosname'

(OS/2, Windows & UNIX-like OSs only) Unique file serial
number/index node. In OS/2 & Windows, a pair of two 32-bit
integers representing the higher and lower parts is returned. On
all other systems it is a pair, where the left-hand side is always 0,
and the right-hand side a 32-bit integer depicting the actual
inode. Only returned when given a file name, not a handle.

'inode'

(Windows & UNIX-like OSs only) Volume serial number; only
returned when given a file name, not a handle.

'device'

(UNIX only) Optimal block size for reading or writing this file, in
bytes.

'blocksize'

(UNIX only) Disk space occupied by the file, measured in units
of 512-byte blocks.

'blocks'

In OS/2 and Windows, the file attributes 'hidden', 'readonly',
'archived', and 'system' are also returned in the subtable with
key 'owner'.

MeaningKey

On DOS-based systems append a trailing slash to drive letters if you want to check
an entire drive, such as 'c:/', otherwise the function will return fail.

See also: os.fattrib.

os.ftok (path, id)

The function uses the identity of the file, i.e. its index node (inode, see os.fstat)
named by the given path name, a string, and the least significant 8 bits of id (which
must be non-zero) to generate a signed 4-byte integral System V IPC (Inter Process
Communications) key.

On UNIX platforms, the return is one integer, and on OS/2 & Windows two integers,
the first for the higher part of the file index and the second for its lower part. On all
other systems, the function issues an error.

The result is the same for all pathnames that name the same file, when the same
value of id is used.

The value returned should be different when the (simultaneously existing) files or the
given ids differ.

See also: hashes.ftok.

820 14 System & Environment

os.getadapter ()

On Windows, returns various information on the network adapters installed on the
host: MAC addresses, adapter names, IPs, masks, gateways, types, plus DHCP and
WINS availability. On all other platforms, returns fail.

See also: os.getip, os.getmac, os.netdomain.

os.getdirpathsep ()

Returns both the directory and path separators of the underlying platform. Examples
are '\' and ';' in DOS-based systems.

os.getenv (varname)

Returns the value of the system environment variable varname, or null if the variable
is not defined.

See also: os.setenv, os.environ, os.getwinsysdirs.

os.getextlibpath ()

In OS/2, returns the current paths to be searched before and after system LIBPATH,
when trying to locate DLLs.

The first return is the path to be searched before the LIBPATH, the second one after
the LIBPATH.

The function is not available in other operating systems.

See also: os.setextlibpath.

os.getip ([domain])

Returns the IPv4 address for a given domain, a string. If no domain is given, the
function tries to retrieve the IP of the host. The function does not work in DOS.

See also: os.getadapter, os.getmac.

os.getlanguage (id)

Returns the name of the language by number id. The return is a string. Available in
Windows only. See also: os.getlocale.

agena >> 821

os.getloadeddlls ([pid])

In Windows only, returns Agena's current process id. It also returns all the DLLs along
with their absolute paths used by the interpreter as a table. You can also pass any
valid Windows process id pid to explore the modules loaded by another
application. On other platforms or in case of an error, returns null.

See also: os.getmodulefilename.

os.getlocale ()

Returns various information on the current locale including decimal point and
thousands separators, currency, and monetary formatting suggestions. The return is
a table of the key~value pairs listed below. A value of '' (the empty string) means
`unspecified`.

boolean
recommendation whether currency symbol
and negative monetary amount are
separated by a blank

'n_sep_by_space'

boolean
recommendation whether currency symbol
and non-negative monetary amount are
separated by a blank

'p_sep_by_space'

boolean
recommendation whether currency symbol
precedes negative monetary amount

'n_cs_precedes'

boolean
recommendation whether currency symbol
precedes positive monetary amount

'p_cs_precedes'

number
recommended number of decimal places
of monetary amounts according to local
standard

'frac_digits'

number
recommended number of decimal places
of monetary amounts according to
international standard

'int_frac_digits'

stringsymbol for negative values'negative_sign'

stringsymbol for positive values'positive_sign'

stringthousands separator for monetary amounts'mon_thousands_sep'

string
decimal point separator for monetary
amounts

'mon_decimal_point'

stringlocal currency symbol like XXX'currency_symbol'

string
international currency symbol according to
international standard ISO 4217 "Codes for
the Representation of Currency and Funds"

'int_curr_symbol'

stringthousands separator'thousands_sep'

stringdecimal-point separator'decimal_point'

string
current character classification category of
the C locale

'charset'

stringcurrent locale of your system'locale'

Value typeValueKey

822 14 System & Environment

table

(Windows only) for an attached keyboard,
the return has the following fields: 'hex'
depicts the language ID as a hexadecimal
string; and 'name' contains the associated
language name as a string; 'langid' is the
language ID, an integer.
'primarylangid' includes the primary
language ID as an integer; 'sublangid'
represents the sublanguage ID as an
integer; 'UserDefaultLangID' and
'SystemDefaultUILangID' are integers.
'UserDefaultLangName' and
'SystemDefaultUILangName' are strings and
represent the respective Windows settings.
Warning: On mixed systems (e.g. default
language UK and German keyboard) the
information returned may be wrong.

'keyboard'

stringditto'mon_grouping'

stringunknown meaning *)'grouping'

number

indicator how to position the sign for
non-negative and negative monetary
quantities:
0: currency symbol and quantity to be
enclosed in parentheses
1: print sign before quantity and currency
2: print sign after quantity and currency
3: print sign right before currency symbol
4: print sign right after currency symbol
any other number: unspecified

'p_sign_posn',
'n_sign_posn'

Value typeValueKey

*) See description of the C function localeconv on the web.

See also: environ.decpoint, os.codepage, os.getlanguage, os.setlocale.

os.getmac (ip)

For the given IPv4 address, returns the associated MAC address on the host or fail if
it could not be found. The function works in Windows only.

See also: os.getadapter, os.getip.

os.getmodulefilename ()

In OS/2, Linux and Windows, returns the absolute path to the currently executing
programme as a string. On other platforms or in case of an error, returns null.

See also: os.getloadeddlls, os.pid.

agena >> 823

os.gettemppath ()

Retrieves the path of the directory designated for temporary files, of type string.
Note that on non-Windows systems, the function issues an error if the environment
variables TEMP, TMP and TMPDIR are all unassigned.

See also: os.tmpdir, os.tmpname.

os.getwinsysdirs ()

Returns both the Windows directory and the system directory, in this order. On all
other operating systems, returns fail twice. See also: os.environ, os.getenv.

os.groupname (groupname)

os.groupname (gid)

The function receives a group name (a string) or a group id (an integer) and returns
a table with keys 'groupname' denoting the group name (a string) and 'gid'
denoting the group id (a number). It is available in the UNIX versions of Agena, only.

On all other systems, the function just returns fail.

See also: os.login, os.userinfo.

os.hasnetwork ()

The function returns true if the system is connected to any network, and false
otherwise. The function is available in Windows, only. The result is usually true. On all
other architectures, the function returns fail.

os.inode (path)

On UNIX-like systems and DOS, for the given path, a string, the function returns the
device ID and the index node (inode), i.e. two unsigned 4-byte integers.

On OS/2 and Windows, the function returns the volume serial number, an unsigned
4-byte integer, along with two additional unsigned 4-byte integers representing the
higher and lower parts of the file index.

On all other platforms, the function issues an error.

os.isansi ()

Returns true on Agena editions compiled with the LUA_ANSI (strict ANSI C) option,
and false otherwise.

See also: os.isdos, os.islinux, os.ismac, os.isos2, os.isppc, os.isunix, os.iswindows,
os.isx86.

824 14 System & Environment

os.isarm ()

Returns true if Agena is run on an ARM CPU, 32- or 64-bit, and false otherwise.

See also: os.isarm32, os.isarm64, os.isdos, os.islinux, os.ismac, os.isos2, os.isppc,
os.isunix, os.iswindows, os.isx86.

os.isarm32 ()

Returns true if Agena is run on ARM Raspberry Pi OS 32-bit, and false otherwise.

See also: os.isarm, os.isarm64.

os.isarm64 ()

Returns true if Agena is run on ARM Raspberry Pi OS 64-bit, and false otherwise.

See also: os.isarm, os.isarm32.

os.isdir (path)

Checks whether the given path refers to a directory and returns true or false.

See also: os.chmod, os.chown, os.dirname, os.isfile, os.islink, os.issysdir.

os.isdocked ()

The function returns true if the computer is in docking mode, and false otherwise.
The function is available in Windows, only. On all other architectures, the function
returns fail.

os.isdos ([any])

Checks whether Agena is run in the DOS environment and returns true or false.

The procedure is quite dumb: if you are running the DOS version of Agena, it will
always return true regardless whether it is actually being run in DOS, OS/2 or
Windows.

If you pass any argument, the function returns additional information in the following
order: the name of the DOS edition, the official major and minor version if
available, and the internal major and minor version from which you may deduce
the actual DOS version. Furthermore, the internal OEM version number if returned. In
FreeDOS, the kernel version number will also be given as the last return.

See also: environ.os, os.isansi, os.isdow, os.islinux, os.ismac, os.isos2, os.isunix,
os.iswindows.

agena >> 825

os.isdow ()

Checks whether Agena is run in the DOS, OS/2 or Windows environment and returns
true or false.

See also: os.isdos, os.isos2, os.iswindows.

os.isdriveletter (d)

Checks whether its input string d represents a drive letter, such as `c:`, `d:/` or `e:\`.
The function does not check whether the drive exists on your system.

See also: os.isvaliddrive, os.realpath.

os.isdst ([year, month, day [, hour [, minute [, second]]]])

Receives a date and optionally time of the form year, month, date [, hour [, minute [,
second]]], with all values being integers, checks whether Daylight Saving Time is
active for a given date. Alternatively, you may pass the date and time in a table,
sequence or register.

The function returns true or false. By default, hour, minute and second are 0.

If no argument is given, returns the number of seconds elapsed from the epoch till
the current date and time.

The function issues an error if a non-existing date has been passed.

See also: os.date, os.tzdiff, utils.checkdate.

os.isfile (path)

Checks whether the given path refers to a file and returns true or false.

See also: os.chmod, os.chown, os.filename, os.isdir, os.issysdir.

os.islink (path)

Checks whether the given path refers to a link and returns true or false.

See also: os.chmod, os.chown, os.filename, os.mklink.

os.islinux ()

The function determines whether Agena runs on Linux and returns true or false.

See also: environ.os, os.isansi, os.isdos, os.islinux386, os.ismac, os.isos2, os.isunix,
os.iswindows.

826 14 System & Environment

os.islinux386 ()

The function determines whether the Agena executable has been compiled on
32-bit x86 Linux and returns true or false.

See also: os.isarm32, os.isarm64, os.islinux.

os.islocale (l)

The function checks whether the given locale l - represented as a string - is
supported by the operating system and returns true or false. If the locale is
supported, a description (of type string) will be returned as a second result.

The function - contrary to os.setlocale - never changes the current locale.

Examples for locales are 'UK' for the United Kingdom (at least in Windows localised
to the United Kingdom), 'he_IL' for Hebrew (Israel), 'de_AT' for Austrian and
'zh_Hans_SG' for Simplified Chinese (Singapore).

os.ismac ()

The function determines whether Agena runs on Mac OS X (Darwin) and returns true
or false.

See also: environ.os, os.isansi, os.isdos, os.islinux, os.isos2, os.isunix, os.iswindows.

os.ismounted (d)

Checks whether the given drive d has been mounted. It is available in the Windows
edition of Agena only. d may be the single drive letter, optionally combined with a
colon.

See also: os.cdrom, os.drived, os.drivestat, os.isdriveletter, os.isremovable,
os.isvaliddrive.

os.isos2()

The function determines whether Agena runs on OS/2 and returns true or false.

See also: environ.os, os.isansi, os.isarm, os.isdos, os.islinux, os.ismac, os.isunix,
os.iswindows.

os.isppc ()

Returns true if Agena is run on a PowerPC CPU, 32- or 64-bit, and false otherwise.

See also: os.isarm, os.isdos, os.islinux, os.ismac, os.isos2, os.isunix, os.iswindows,
os.isx86.

agena >> 827

os.isremovable (d)

Checks whether the given drive d is removable. It is available in the Windows and
DOS editions of Agena only. d may be the single drive letter, optionally combined
with a colon.

See also: os.cdrom, os.drives, os.drivestat, os.ismounted, os.isvaliddrive.

os.issysdir (path)

Checks whether the given path refers to a Windows system directory, such as
'PerfLogs' or 'AppData', and returns true or false. If path is invalid, the function
returns fail. A whole drive is not considered a system directory. On operating
systems other than Windows, the function always returns false.

See also: os.chmod, os.chown, os.dirname, os.isdir, os.isfile, os.islink.

os.isunix ()

Returns true if Agena is being run in a UNIX environment (i.e. Solaris, Linux, and
OpenSolaris), and false otherwise.

The function is written in Agena and included in the libary.agn file.

See also: environ.os, os.isansi, os.isdos, os.islinux, os.ismac, os.isos2,
os.iswindows.

os.isvaliddrive (d)

Checks whether the given drive d is part of the file system. It is available in the OS/2,
DOS and Windows edition of Agena. d may be the single drive letter, optionally
combined with a colon. On all other platforms, the function returns fail.

See also: os.cdrom, os.drivestat, os.ismounted, os.isremovable.

os.iswindows ()

Checks whether the Agena version for Windows is being run and returns true or
false.

See also: environ.os, os.isansi, os.isarm, os.isdos, os.islinux, os.ismac, os.isos2,
os.isunix.

828 14 System & Environment

os.isx86 ()

Returns true if Agena is run on an x86-compatible CPU, 32- or 64-bit, and false
otherwise.

See also: os.isarm, os.isarm32, os.isarm64, os.isdos, os.islinux, os.islinux386,
os.ismac, os.isos2, os.isppc, os.isunix, os.iswindows.

os.iterate (path [, option])

Creates an iterator that when called traverses directory path. You may also use the
'.' , '*' or '*.*' abbreviations for path, which all indicate the current working
directory. The iterator returns the name of the file, link, directory, etc.

The optional boolean second argument true causes the iterator to additionally
return the type, i.e. 'FILE', 'DIR' (for directory), 'SYSDIR' (for Windows system
directory), 'LINK', 'CHARSPECFILE', 'BLOCKSPECFILE' or 'OTHER'. After the directory
has been completely traversed, the function returns null.

The iterator does not return the '.' and '..' placeholders depicting the current
and parent directories, respectively. In Windows, if path points to a system directory
such as `PerfLogs` or `AppData`, for example, the iterator will just return null.

The iterator cannot recurse into a subdirectory, just create another iterator instead.

See also: os.chdir, os.list, os.listcore.

os.list (d [, options])

Lists the contents of a directory d (given as a string) by returning a table of strings
denoting the files, subdirectories, and links. The second return is a string with the
absolute path to the main directory scanned. If d is null or the empty string, the
current working directory is evaluated. If the return is null and a warning text, then d
does not exist.

d may include the ? and * jokers known from UNIX, OS/2, DOS or Windows to select
a subset of files, e.g. os.list('*.c') to return all files with suffix .c. Jokers can only
be used to select files, but not to parse subdirectories if they exist.

If no option is given, files, links, and directories are returned. If the optional argument
'files' or 'file' is given, only files are returned. If the optional argument 'dirs' or
'dir' is given, directories are returned exclusively. If the optional argument 'links'
or 'link' is given, links are returned (UNIX only). The 'r' option forces a recursive
descent into all subfolders of d. Multiple options can be given.

If d is '.', then the current working directory is examined. If d is '..', then the
directory one level higher than the current one is searched.

agena >> 829

If the string 'r' is passed as an option, the function traverses all subfolders in d.

The function is written in Agena and included in the lib/library.agn file.

See also: os.iterate.

os.listcore (d)

os.listcore (d [, options] [, pattern])

In the first form, returns a table with all the files, links and directories in the given path
d. If d is void or the string '.', the current working directory is evaluated. It is the core
function used by os.list.

In the second form, by giving at least one of the options 'files' or 'file', 'dirs'
or 'dir', or 'links' or 'link', the file, directory name, or link names are returned,
respectively. These three options can be mixed.

Another option may be a pattern of type string which can include the wildcards ?
or *. If given, the function will only return those entries which match this pattern.

os.login ()

Returns the login name of the current user as a string. The return is a string. In DOS,
the function returns fail. See also: os.username, os.groupname.

os.lsd ([year, month, day [, hour [, minute [, second]]]] [, option])

os.lsd (x)

The function computes the Lotus 1-2-3 Serial Date, which is also used in Excel
(known there as `Excel Serial Date`). It represents the number of days that have
elapsed since 31st December 1899, 00:00h, where midnight January 01, 1900 is
day 1.

The function always returns a Standard Time value even if Daylight Saving Time is
active for the given date. By passing the option false, the function takes into
account Daylight Saving Time, however.

In the first form, if no argument is given, the current Lotus Serial Date is computed.
Otherwise, at least year, month, and day - all numbers - must be given. Optionally,
you may add an hour, minute, or second, where all three default to 0.

The first return is a number, where the fractional portion represents the decimal time.
Also, the second return true or false indicates whether Daylight Saving Time has
been active for the current or given date (if no option has been passed) so that you
may add 1/24 to the first result to receive a value Microsoft Excel would return in DST
situations. In case of a non-existing date, the function issues an error. Thus, the
function never returns 60 for February 29, 1900, the bug in the original Lotus 1-2-3
formula.

830 14 System & Environment

In the second form, if the Lotus Serial Date x - a number - is given, the function
returns the corresponding Gregorian year, month, day, the decimal fraction of the
day - in the range [0, 1) -, the hour, minute, and second, all numbers. x may be 60,
returning February 29, 1900.

To compute the Julian date from the Lotus Serial Date, add 2415018.5.

See also: os.esd, os.now, os.usd, utils.checkdate.

os.meminfo ([unit])

os.memstate ([unit])

(Windows, UNIX, Mac OS X, DOS and OS/2 only.) Returns a table with information on
current memory usage. With no arguments, the return is the respective number of
bytes (integers). If unit is the string 'kbytes', the return is in kBytes; if unit is 'mbytes',
the return is in Mbytes; if unit is 'gbytes', the return is in Gigabytes, if unit is 'tbytes',
the return is in Terabytes.

The resulting table will contain the following values, an 'x' indicates which values are
returned on your system.

xmemory reactivated'reactivated'

x
memory that cannot be paged
out

'wireddown'

x
unknown meaning, see vm_stat.c
source code.

'speculative'

xinactive memory'inactive'

x
maximum commitable amount
of memory for the current process

'totalpagefile'

x
current committed memory limit
for the current process

'freepagefile'

xactive memory'active'

x
maximum number of shareable
bytes available

'maxshmem'

x
maximum number of bytes
available for the active process,
same as 'freephysical'

'maxprmem'

xoccupied resident pages'resident'

xxxxpage size in bytes'pagesize'

xtotal virtual memory'totalvirtual'

xxfree virtual memory'freevirtual'

xxxxinstalled physical RAM'totalphysical'

xxxxfree physical RAM'freephysical'

MacUNIX
Win-
dows

OS/2DescriptionKey

agena >> 831

On Mac, the function returns Mach virtual memory statistics. Type man vm_stat in a
shell to get more information on the meaning of the above mentioned
Mac-specific values.

The values returned in DOS should be self-explanatory. 'ems_major' and
'ems_minor' are memory manager version numbers.

On other architectures, the function returns fail.

See also: environ.used, os.freemem.

os.mkdir (str)

Creates a directory given by string str on the file system. Returns true on success,
and issues an error on failure otherwise.

The function is available on OS/2, DOS, UNIX, Mac OS X, and Windows based
systems only.

os.mklink (obj, linkname [, symbolic])

By default creates a symbolic link to the existing file system object obj with link
name linkname, both arguments of type string. On UNIX-based systems creates a
hard link if symbolic is set to false, otherwise ignores the flag. In Windows, the
function always automatically appends the file suffix '.lnk' to linkname.

The function returns true on success and false otherwise. If obj does not exist or the
target already exists, the function issues an error and does nothing.

os.monitor (action)

The function switches the monitor on and off (Windows and Linux), and can also put
it on stand-by if the monitor supports this feature (Windows only).

Pass the string 'off' as the only argument to switch off the monitor; pass 'on' to
switch it on, and 'standby' to put it into stand-by mode if supported. If no argument
is given, the Monitor is switched on (which has no effect, if the screen is already
active).

On success, the function returns true, and false and a string containing the error
analysis otherwise. The 'on' switch does not work on every hardware running
Windows.

You might also want to call os.wait before and/or after this function in order to
ignore any keypresses or mouse movements.

832 14 System & Environment

os.mouse ([mhd])

In OS/2, DOS and Windows, the function returns various information on the attached
mouse by returning a table with the following entries:

OS/2 only: column scaling factor'columnscale'

OS/2 only: row scaling factor'rowscale'

OS/2 only: mouse data in mickeys, not "pels"'inmickeys'

OS/2 only: number of mickeys per centimeter; a mickey is
the amount that a mouse has to move for it to report that it
has moved

'mickeys'

OS/2 & Windows only: the two mouse threshold values, x and
y co-ordinates, as a pair of two numbers

'threshold'

Windows only: an integer between 1 (slowest) and 20
(fastest)

'speed'

Windows only: true if the left and right mouse buttons have
been swapped

'swapbutton'

Windows only: true if the mouse features a vertical mouse
wheel, and false if not

'mousewheel'

Windows only: true if the mouse features a horizontal mouse
wheel, and false if not

'hmousewheel'

number of mouse buttons; if more than one mouse is
attached, the sum of all mouse buttons is computed

'mousebuttons'

MeaningKey

In OS/2 you have to supply a mouse handle mhd, see os.mouseopen.

On all other platforms, the function returns fail.

os.mouseflush (mhd)

In OS/2, flushes the queue of the mouse denoted by mhd and returns true on
success and false otherwise. The function is not available in all other operating
systems. See also: os.mouseopen.

os.mouseopen ()

In OS/2 only, returns a mouse handle - an integer - that is needed with other
os.mouse* functions.

os.mouseclose (mhd)

In OS/2 closes the connection to the mouse denoted by mhd. See os.mouseopen.

agena >> 833

os.mousestate ([mhd,] [mask [, threshold]])

In OS/2 and Windows, returns information on the position of the attached mouse
and on button clicks plus some operating system-dependent data. In OS/2 you
have to supply a mouse handle mhd, see os.mouseopen.

If the bit-mask is 0b0 (equals 0 decimal, the default), the function does not check
whether the mouse is being moved at invocation. If mask is 0b1 = 1 decimal),
movement is being checked. If mask is 0b10 (= 2 decimal), the function in Windows
tries to transform absolute to window coordinates (default: false, may not work on
every Windows version), and if mask is 0b11 (=3 decimal) both coordinates are
converted and motion is being tracked.

In Windows, the threshold to detect mouse movement is 0.001 seconds. You can
choose other values by passing a number to optional threshold. In OS/2, the
setting is ignored.

The function is not available in all other operating systems.

OS/2 only: event queue is busy with I/O (true, false otherwise)
'eventqueuebusy
withio'

OS/2 only: block read is in progress (true, false otherwise)'blockread'

OS/2 only: mouse flush is in progress (true, false otherwise)'flush'

OS/2 only: check EDM/2 Website on the MouGetEventMask
API function for a description

'eventmask'

mouse is being moved (true) or not moved (false)'motion'

table of three Booleans: the first for the left mouse button,
the second for the middle button, and the third for the right
button, where true depicts `button clicked` and false
otherwise (experimental in OS/2)

'button'

vertical position of the mouse'column'

horizontal position of the mouse'row'

MeaningKey

os.move (oldname, newname [, option])

Renames or moves a file or directory named oldname to newname. The function
returns true on success, and issues an error on failure otherwise.

If you pass the option true, then the function does not issue an error if oldname does
not exist or if newfile already exists. Instead, the function just returns fail.

See also: skycrane.move.

834 14 System & Environment

os.netdomain (servername)

On Windows, returns the domain name and the name of the primary domain
controller (PDC). If servername is null or not given, the local computer is used.

See also: os.computername, os.getadapter, os.getip, os.getmac.

os.netsend (server, user, message)

On older Windows flavours, sends a message (a string) to a user (a string) on a given
server (a string). If server is null or not given, the local computer is used.

os.netuse (letter [, path])

On Windows, connects or disconnects a drive letter to a network path. The drive
letter must be followed by a colon. For drive letters already in use, see os.drives.

Example:

># connect drive with label 'drive_c' on computer TITANIA to drive Z:
> os.netuse('z:', '\\\\TITANIA\\drive_c');

> os.netuse('z:'); # disconnect

The function returns true on success and issues an error otherwise.

os.now ([secs])

os.now (year, month, day [, hour [, minute [, second]]])

Returns rather low-level information on the current or given date and time in form of
a dictionary.

If no argument is passed, the function returns information on the current date and
time. If a non-negative number is given which represents the amount of seconds
elapsed since the start of the epoch (try os.now(0)), information on this date and
time are determined (see os.datetosecs to convert a date to seconds).

In the second form, the given date year, month, date and optionally time hour,
minute, second, where all the optional values default to 0, is used. Alternatively, you
may pass the date and time in a table, sequence or register.

The `gmt` table in the return of the function represents the current date and time in
GMT/UTC. The `localtime` table includes the same information for your local time
zone.

agena >> 835

The `tz` entry represents the difference between your local time zone and GMT in
minutes with daylight saving time cancelled out, and east of Greenwich. The `td`
entry represents the difference between your local time zone and GMT in minutes
including daylight saving time, and east of Greenwich.

`East of Greenwich` means: A positive integer indicates that your computer is
located east of Greenwich, a negative value means that you are in a time zone to
the west of Greenwich, and 0 means your computer is using GMT. The `jd` entry
features the Julian date and time, the `lsd`key represents the Lotus 1-2-3 Serial
Date, also known as Excel Serial Date.

The `seconds` entry is the number of seconds elapsed since some given start time
(the `epoch`), which on most operating systems is January 01, 1970, 00:00:00. The
`mseconds` entry represents milliseconds; it may be missing if milliseconds could
not be determined on your platform. The `dst` entry indicates whether daylight
saving time is in effect.

The `gmt` and `localtime` entries have the same structure: it is a table of data of
the following order: year, month, day, hour, minute, second, number of weekday
(where 0 means Sunday, 1 is Monday, and so forth), the number of full days since
the beginning of the year (in the range 0:365), whether daylight saving time is in
effect at the time given (0: no, 1: yes), the strings 'AM' or 'PM', the month in English (a
string), and the weekday in English (a string).

If the date and time could not be determined, fails are returned.

See also: utils.calendar, utils.checkdate, os.datetosecs, os.lsd, os.secstodate,
os.time, os.tzdiff.

os.os2info ()

os.os2info (···)

In the first form, returns all 31 OS/2 settings that can be queried via the C API
function DosQuerySysInfo, in a table.

In the second form, you can pass any of the following options, to individually query
the current settings, either in upper or lower case:

"QSV_MAXHSHMEM""QSV_VERSION_MINOR"
"QSV_MAXHPRMEM""QSV_VERSION_MAJOR"
"QSV_NUMPROCESSORS""QSV_PAGE_SIZE"
"QSV_FOREGROUND_PROCESS""QSV_MAX_SLICE"
"QSV_FOREGROUND_FS_SESSION""QSV_MIN_SLICE"
"QSV_MAX_COMP_LENGTH""QSV_MAX_WAIT"
"QSV_TIMER_INTERVAL""QSV_DYN_PRI_VARIATION"
"QSV_MAXSHMEM""QSV_BOOT_DRIVE"
"QSV_MAXPRMEM""QSV_MAX_VDM_SESSIONS"
"QSV_TOTAVAILMEM""QSV_MAX_PM_SESSIONS"
"QSV_TOTRESMEM""QSV_MAX_TEXT_SESSIONS"
"QSV_TOTPHYSMEM""QSV_MAX_PATH_LENGTH"

836 14 System & Environment

"QSV_TIME_HIGH"
"QSV_INT10ENABLED""QSV_TIME_LOW"
"QSV_VIRTUALADDRESSLIMIT""QSV_MS_COUNT"
"QSV_MAXPROCESSES""QSV_VERSION_REVISION"

See: http://www.edm2.com/os2api/Dos/DosQuerySysInfo.html.

os.pause ([n [, msg]])

Waits for an amount of time or any user input and emulates the ZX Spectrum
command PAUSE: if no argument is given or n = 0, the function waits forever until
the user presses any key.

If n is a positive number, then the function waits for n seconds - n may be a fraction
- unless the user presses any key - in the latter case, the function quits waiting
immediately and exits. If an optional string msg is given, the function prints it on
screen - you may terminate the string with a newline ('\n') to force a linefeed. The
function returns the number of seconds including milliseconds the function waited.

See also: os.wait.

os.pid ()

Returns Agena's process ID as a number. See also: os.getloadeddlls.

os.prefix (filename)

Returns filename, a string, without suffix if there is one. If filename includes a path, it
is included in the return.

The function is written in the Agena language and part of the lib/library.agn file.

See also: os.dirname, os.filename, os.suffix, strings.chomp.

os.readlink (linkname)

Returns the target of the symbolic link linkname as a string. If the link does not exist or
if an error occurred, it returns fail and optionally a string indicating the type of error.

In Windows, the function only recognises classical Windows shortcut files, it cannot
resolve NTFS symbolic links or junctions.

The function is available in UNIX including Mac OS X, and Windows.

See also: os.symlink.

agena >> 837

os.realpath (pathname [, option])

Converts the pathname argument of type string to an absolute pathname, with
symbolic links resolved to their actual targets and no . or .. directory placeholders.

The return is a string.

In Windows, OS/2 and DOS, the function returns the path with slashes instead of
backslashes by default. You can override this by passing an optional false.

os.remove (filename [, option])

Deletes the file or directory with the given name. Directories must be empty to be
removed. Returns true on success, and issues an error on failure otherwise.

If you pass the option true, then the function does not issue an error if the file to be
deleted does not exist. Instead, the function returns fail.

os.rmdir (dirname [, option])

Deletes a directory denoted by the string dirname on the file system. Returns true on
success, and issues an error on failure otherwise.

If you pass the option true, then the function does not issue an error if the directory
to be deleted does not exist. Instead, the function returns fail.

os.screensize ()

In OS/2 and Windows, returns the current horizontal and vertical resolution of the
display as a pair of width:height. On all other platforms, the function issues fail.

os.secstodate (secs)

Takes the number of seconds secs elapsed since the start of an epoch, in your
local time zone, and returns a table of integers in the order: year, month, day, hour,
minute, second. In case of an error, fail will be returned. See also: os.datetosec.

os.setenv (var, setting)

Sets the environment variable in the underlying operating system. var must be a
string. If setting is a string or number, the environment variable var is set to setting.
If var has already been assigned before, its value is overwritten.

If setting is null, then the environment variable var is deleted (not supported in
DOS).

See also: os.getenv, os.environ.

838 14 System & Environment

os.setextlibpath (path [, option])

In OS/2, sets the path to be searched before and after system LIBPATH, when trying
to locate DLLs. If option is 0, then the path is set to the beginning of LIBPATH; if it is
non-zero, the path is set to its end.

The function returns true on success and false otherwise.

The function is not available in other operating systems.

See also: os.getextlibpath.

os.setlocale (locale [, category])

Sets the current locale of the programme. locale is a string specifying a locale, the
empty string returns the locale of your operating system (and not the locale you
have set in Agena); category is an optional string describing which category to
change: 'all', 'collate', 'ctype', 'monetary', 'numeric', or 'time'; the default
category is 'all'.

The function returns the name of the new locale, or null if the request cannot be
honoured.

When called with null as the first argument or no argument at all, this function only
returns the name of the current locale for the given category.

Hint: You might have to pass the full name of the language instead of its
abbreviation to successfully set a locale - so for example 'Czech' instead of 'cz' or
'cs_CZ').

See also: os.codepage, os.islocale, skycrane.getlocales.

os.settime (secs)

os.settime (year, month, day [, hour [, minute [, second]]])

In the first form, takes the number of seconds secs elapsed since the start of an
epoch, in your local time zone, and sets the system clock accordingly. In the
second form, the given date year, month, date and optionally time hour, minute,
second, where all the optional values default to 0, is used. Alternatively, you may
pass the date and time in a table, sequence or register.

Agena must be run in root mode in order to change the system time. In case of an
error, fail will be returned. The function is available only in the Windows, Solaris, OS/2,
and Linux versions of Agena.

See also: os.datetosecs, utils.checkdate.

agena >> 839

os.strerror ([n])

Returns the text message for the given integral error code n, or the latest error issued
by the underlying operating system if no argument is given. The result varies across
platforms.

os.suffix (filename)

Returns the last suffix in filename (a string) and also the position (an integer) of the
last suffix in filename.

If there is no suffix in filename, the function returns the empty string and 0 (zero).

The function is written in the Agena language and part of the lib/library.agn file.

See also: os.dirname, os.filename, os.prefix, strings.chomp.

os.symlink (target, linkname)

In UNIX, the function creates a symbolic link named linkname to the file called
target. In Windows, the function creates a classical regular Windows shortcut file
that points to a real file. It does not create NTFS junctions or NTFS symbolic links.

Both arguments must be strings. The function is not available in DOS.

See also: os.readlink.

os.system ()

Returns information on the platform on which Agena is running.

Under Windows, it returns a table containing the string 'Windows', the major version
(e.g. 'NT 4.0', '2000', etc.) as a string, the Build (dwBuildNumber) as a number, the
platform ID (dwPlatformId) as a number, the major version (dwMajorVersion) as a
number, the minor version (dwMinorVersion) as a number, the product type
(wProductType) as a number, maintainence information (szCSDVersion) usually
depicting an installed service pack as a string, and a summary string combining all
the previously mentioned data in a human-readable fashion, all in this order. For an
alternative, see: os.winver.

In UNIX, Mac OS X, OS/2, and DOS, it returns a table of strings with the name of the
operating system (e.g. 'SunOS', 'OS/2' or 'MS-DOS'), the release, the version, and the
machine, in this order. Note that Mac OS X is recognised as 'Darwin'. In OS/2, the
major and minor revision, along with the revision, are returned as numbers, as well.

In Linux and Windows, the function also checks whether the underlying platform runs
in 32 or 64-bit mode, and returns the result with key 'bits'.

840 14 System & Environment

If the function could not determine the platform properly, it returns fail.

See also: environ.os.

os.terminate (action)

The function halts, reboots, sleeps, or log-offs Windows, OS/2 or Mac OS X. In
Windows, it can also lock the current user session or hibernate the system.

The function makes sure that no data loss occurs: if there is any unsaved data, the
function does not start termination and just quits.

To put the system into energy-saving sleep mode, pass the string 'sleep' as the
only argument. To hibernate (save the whole system state and then shut off the PC),
pass 'hibernate' (Windows only); to shut down the computer completely, pass
'halt'; to reboot the system, pass 'reboot'; to lock the current user session without
logging the user off, pass 'lock' (Windows only); to log-off the open session of the
current user, pass 'logoff'.

The OS/2 version solely supports system halt ('halt' argument, without power-off)
and reboot.

By default, the function waits for 60 seconds before initiating the termination
process. You can change this time-out period to another number of seconds by
setting the optional second argument to any non-negative integer.

On all other platforms, the function returns fail and does nothing.

os.time ([obj])

Returns the current time when called without arguments, or a value representing the
date and time specified by the given table or sequence obj.

If a table is given, it must either:

� have fields year, month, and day, and may have fields hour, min, sec, and
isdst, see example below,

� or at least three integers representing year, month, day, and optionally also
hour, minute, second.

If obj is a sequence, it must contain a four-digits year, the month, and the day, all
integers, in this order. It may additionally include the hour, the minute, and the
second, all integers, too, in this order. The optional seventh entry must either be the
Boolean true or false and indicates whether daylight saving time is in effect (default
is false). See example below.

The returned values are two number, whose meaning depends on your system. In
POSIX, Windows, and some other systems, this number counts the number of

agena >> 841

seconds and milliseconds since some given start time (the `epoch`). In other
systems, the meaning is not specified, and the number returned by os.time can be
used only as an argument to os.date and os.difftime.

If the return is null, then the given date lies before the start of the epoch (check
os.now(0)). The function process dates between the start of 1900 and the end of
2099, only.

If a second number is returned, it will denote the millisecond portion of the current
time in the range [0, 999].

Examples:

> os.time(['year' ~ 2013, 'month' ~ 5, 'day' ~ 23,
> 'hour' ~ 1, 'min' ~ 2, 'sec' ~ 3]):
1369263723 791

> os.time(seq(2013, 5, 23, 1, 2, 3, false)):
1369267323 791

See also: time, os.clock, os.date, os.datetosecs, os.difftime, os.now,
utils.checkdate.

os.tmpdir ([p])

Creates a unique temporary directory from pattern p which ends in six 'X' characters
and returns its name. By default, the function uses the pattern 'agn_XXXXXX'
(non-DOS) or 'agXXXXXX' (DOS).

In case of an error, the function returns null and an error message. You have to
manually remove the directory if it is not needed any longer.

See also: os.gettemppath, os.tmpname.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file or directory.
The file must be explicitly opened before its use and explicitly removed when no
longer needed. The same applies to directories: you have to manually create and
remove it. Depending on the platform, the name might denote an absolute or
relative path.

See also: os.gettemppath, io.tmpfile, io.mkstemp, os.tmpdir.

842 14 System & Environment

os.tzdiff ([secs])

os.tzdiff (year, month, day [, hour [, minute [, second]]])

Computes the difference between the system's local time zone and UTC in minutes,
taking into account whether Daylight Saving Time is active, plus a Boolean
indicating whether Daylight Saving Time is active.

If no argument is being passed, the function will use the current date and time. If a
non-negative number secs is given - representing the amount of seconds elapsed
since the start of the epoch -, this date and time will be used to compute the result.

In the second form, the given date year, month, date and optionally time hour,
minute, second, where all the optional values default to 0, is used. You may also
pass this date and time data as a table, sequence or register.

See also: os.isdst, os.now.

os.unmount (fs [, force])

The function unmounts the filesystem fs, which has to be passed as a string. If the
option true is given for the second argument force, the function forces a
disconnection even if the filesystem is in use by another process. The default is
false. If your system cannot force a `umount`, this flag is simply ignored.

The function works only if Agena is run with superuser rights. Depending on the
operating system, it may only unmount filesystems that the UNIX kernel directly
supports (in Linux, look into /proc/filesystems folder), e.g. ntfs-3g filesystems using the
FUSE driver may not be unmounted.

On success, os.unmount returns true, and false plus a string indicating the error
reason, otherwise.

See also: os.cdrom, os.execute.

os.uptime ([qpc])

Returns the number of seconds a system has been running. It is available in OS/2,
Windows, Solaris, and Linux.

In Windows XP and earlier, there may be an overflow if the system has been up for
more than 49.7 days. You may pass any argument instead in Windows to query the
performance counter, a high resolution (1 microsecond or better) time stamp, if
any argument qpc is given. In this case the return is in microseconds, not seconds.

agena >> 843

os.usd ([year, month, day [, hour [, minute [, second]]]])

os.usd (x)

The function computes the UTC Serial date, a number, for the given date or - if no
argument is given - the current date and time, where the time zone is assumed to
be UTC.

The UTC Serial represents the number of days that have elapsed since 31st
December 1899, 00:00h, where midnight January 01, 1900 is day 1.

If no argument is given, the UTC Serial Date for the current date and time is
computed. Otherwise, at least year, month, and day - all numbers - must be given.
Optionally, you may add an hour, minute, or second, where all three default to 0.

In the second form, if the UTC Serial Date x - a number - is given, the function
returns the corresponding Gregorian year, month, day, the decimal fraction of the
day - in the range [0, 1) -, the hour, minute, and second, all numbers. x may be 60,
returning February 29, 1900.

Since the date and time is considered to be UTC, the function implemented here
takes no account of daylight saving time: at Winter time change, it returns the
same values for (as an example) 02:00 a.m. before and after time change.

Also, there is a `gap` in the values returned at Summer time change between
02:00 a.m. and 03:00 a.m.

In case of a non-existing date or if the date is older than the start of the epoch, the
function issues an error.

See also: os.esd, os.lsd, os.now, utils.checkdate.

os.username ([groupname])

os.username ([uid])

The function receives a user name (a string) or a user id (an integer) and returns a
table with the following key ~ value pairs:

user's default shell (undefined means system default)'shell'

user's home directory, or initial working directory (undefined means
system default)

'homedir'
user's real name, etc.'realname'
user's default group ID number'gid'
user ID number'uid'
user's login name'username'
ValueKey

If no argument is given, data for the current user is being determined.

844 14 System & Environment

The function is available in the UNIX versions of Agena, only. On all other systems,
the function just returns fail.

See also: os.login, os.groupinfo.

os.vga ()

In OS/2, DOS and Windows, the function returns a table with the following
information on the display:

number of colours (OS/2 only)'colours'

screen mode, an integer (unknown meaning, DOS only)'mode'

the vertical refresh rate in Hertz (Windows only)'vrefresh'

the number of monitors attached to the system (Windows only)'monitors'

an integer indicating the colour depth in bits'depth'

a pair with the number of rows and columns of the shell'dimension'

a pair with the horizontal and vertical number of pixels (OS/2 and
Windows)

'resolution'

MeaningKey

See also: os.monitor, os.screensize.

os.wait (x)

Waits for x seconds and returns null. x may be an integer or a float. This function
does not strain the CPU, but execution cannot be interrupted. The function is
available on OS/2, DOS, UNIX, Mac OS X, and Windows based systems only.

On other architectures, the function returns fail.

See also: os.pause.

os.whereis (file, dir [, options])

Searches case-insensitively for the given file, link or directory in directory dir and
returns a table of all the hits.

If dir is '.' or '*', the current working directory will be searched. If option is 'r', the
subfolders in dir are also scanned, returning the files found with their relative paths.
If option is 's', the search is case-sensitive. You can mix both options.

file may include the wildcards ? and *, where ? represents exactly one unknown
character, and * represents zero or more unknown characters. In Windows, the
functions does not check system directories as it cannot traverse them, see
os.issysdir.

agena >> 845

Example:

> os.whereis('agena*', '..', 'r'):

See also: os.chdir, os.list, strings.glob.

os.winver ([argument])

This function is an alternative to os.system and returns the internal Windows release
number (a float). If any argument is given, it also returns the service pack major (an
integer) and minor version (an integer), whether the operating system is a
workstation (true) or server (false) and the build number (an integer), in this order.

On all other platforms other than Windows, the function returns undefined, which, if
used in a relation, always evaluates to false.

Windows 1111.0
Windows Server 2016 & 2019, Windows 1010.0
Windows Server 2012 R2, Windows 8.16.3
Windows Server 2012, Windows 86.2
Windows Server 2008 R2, Windows 76.1
Windows Vista, Windows Server 20086.0

Windows XP 64-Bit Edition, Windows Server 2003,
Server 2003 R2

5.2

Windows XP5.1
Windows 20005.0
Official ReleaseInternal Version Number

846 14 System & Environment

14.2 environ - Access to the Agena Environment

This package comprises functions to access the Agena environment, explore the
internals of data, read settings, and set defaults.

environ.anames ([option])

Returns all global names that are assigned values in the environment. If called
without arguments, all global names are returned. If option is given and option is a
string denoting a basic or user-defined type (e.g. 'boolean', 'table', etc.), then all
variables of that type are returned.

The function is written in Agena and included in the lib/library.agn file.

environ.arithstate ()

The function returns information encoded in a bit field on the kind of numerical
exception encountered by the inc, dec, mul, div, intdiv and mod operators:

add, sub:
0b0000: no exception
0b0010: very large value to be added to (subtracted from) value close to zero
0b0100: very large values to be added (or subtracted)
0b1000: both operands are close to zero:

mul:
0b0000: no exception
0b0010: very large value to be multiplied by value close to zero
0b0100: very large values to be multiplied
0b1000: both operands are close to zero

div, intdiv, mod:
0b0000: no exception
0b0001: denominator is zero
0b0010: very large value to be divided by value close to zero
0b1000: indicates both operands are close to zero

See also: environ.kernel/closetozero setting.

environ.arity (f)

The function returns the number of parameters of a function f and additionally a
Boolean indicating whether its parameter list includes a `?` (varargs) token or not,
plus the number of upvalues used in functions created by factories. The first return
does not count a varargs token.

See also: debug.getinfo.

agena >> 847

environ.attrib (obj)

The function returns various internal status information on structures and procedures.

With the table obj, returns a new table with

� the current maximum number of key~value pairs allocable to the array and
hash parts of obj; in the resulting table, these values are indexed with keys
'array_allocated' and 'hash_allocated', respectively,

� the number of key~value pairs actually assigned to the respective array and
hash sections of obj; in the resulting table, these values are indexed with keys
'array_assigned' and 'hash_assigned',

� an indicator 'array_hasholes' stating whether the array part contains at least
one hole,

� an indicator 'bytes' stating the estimated number of bytes reserved for the
structure,

� an indicator 'metatable' denoting whether a metatable has been attached to
the structure,

� if present, a user-defined type is indexed by the 'utype' key, otherwise fail,
� if present, a weak table is indexed by the 'weak' key, otherwise fail,
� the 'length' entry contains the estimated number of elements in a table (see

tables.getsize & tables.getsizes),
� the 'lowest' and 'keys' represent the lowest and highest index positions in the

array part; they are set to zero if there is no array part in the table;
� the 'dummynode' entry indicates whether a table has no allocated hash part.
� See also: tables.borders, tables.indices, tables.maxn.

With the set obj, returns a new table with

� the current maximum number of items allocable to the set; in the resulting
table, this value is indexed with the key 'hash_allocated'.

� the number of items actually assigned to obj; in the resulting table, this value is
indexed with the key 'hash_assigned',

� an indicator 'bytes' stating the estimated number of bytes reserved for the
structure,

� an indicator 'metatable' betoking whether a metatable has been attached to
the structure,

� if present, a user-defined type is indexed by the 'utype' key, otherwise fail.

With the sequence obj, returns a new table with

� the maximum number of items assignable; in the resulting table, this value is
indexed with the key 'maxsize'. If the number of entries is not restricted,
'maxsize' is infinity.

� the current number of items actually assigned to obj; in the resulting table, this
value is indexed with the key 'size',

� an indicator 'bytes' stating the estimated number of bytes reserved for the
structure,

848 14 System & Environment

� an indicator 'metatable' betoking whether a metatable has been attached to
the structure,

� if present, a user-defined type is indexed by the 'utype' key, otherwise fail,
� if present, a weak table is indexed by the 'weak' key, otherwise fail.

With the register obj, returns a new table with

� the total number of items assigned; in the resulting table, this value is indexed
with the key 'size'.

� the current top indexed by the key 'top',
� an indicator 'bytes' stating the estimated number of bytes reserved for the

structure,
� an indicator 'metatable' indicating whether a metatable has been attached to

the structure,
� if present, a user-defined type is indexed by the 'utype' key, otherwise fail,
� if present, a weak table is indexed by the 'weak' key, otherwise fail.

With the pair obj, returns a new table with

� an indicator 'bytes' stating the estimated number of bytes reserved,
� an indicator 'metatable' betoking whether a metatable has been attached to

the structure,
� if present, a user-defined type is indexed by the 'utype' key, otherwise fail,
� if present, a weak table is indexed by the 'weak' key, otherwise fail.

With function obj returns a new table with

� the information whether the function is a C or an Agena function. In the resulting
table, this value is indexed with the key 'C';

� the information whether a function contains a remember table, indicated by the
key 'rtableWritemode', where the entry true indicates that it is an rtable (which is
updated by the return statement), where false indicates that it is an rotable
(which cannot be updated by the return statement), and where fail indicates
that the function has no remember table at all,

� the information whether an internal storage table is present, in the 'storage'
field, see Chapter 6.2.5,

� an indicator 'bytes' stating the estimated number of bytes reserved,
� if present, a user-defined type is indexed by the 'utype' key, otherwise fail,
� the number of parameters excluding varargs (?) in the 'arity' field (with OOP

methods, the result includes the self variable),
� a Boolean indicating whether the varargs tokern (?) is part of the parameter list,

in the 'varargs' field,
� the number of upvalues in the 'nupvals' field.

See also: tables.getsizes, tables.isarray, tables.ishash.

agena >> 849

environ.callable (obj)

Returns obj if obj is a function. If obj is a structure and has a '__call' metamethod,
returns this metamethod (see Chapter 6.19). Otherwise returns nothing which is
equivalent to null if tested. The Agena counterpart is:

> environ.callable := proc(x) is
> if x :- procedure then
> x := (getmetatable(x) or []).__call
> end;
> if x :: procedure then
> return x
> end
> end;

The function is useful to first check whether a value f is callable like a function before
actually running it:

> r := environ.callable(f) and f(...);

environ.decpoint ()

Returns the decimal point separator used in the current locale. It is an alternative to
the expression os.getlocale.decimal_point, but is faster.

environ.gc ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different
functions according to its first argument, opt:

• 'stop': stops the garbage collector.
• 'restart': restarts the garbage collector.
• 'collect': performs a full garbage-collection cycle (if no option is given, this is

the default action).
• 'count': returns the total memory in use by Agena (in Kbytes).
• 'step': performs a garbage-collection step. The step 'size' is controlled by arg

(larger values mean more steps) in a non-specified way. If you want to
control the step size you must experimentally tune the value of arg. Returns
true if the step finished a collection cycle.

• 'setpause': sets arg/100 as the new value for the pause of the collector.
• 'setstepmul': sets arg/100 as the new value for the step multiplier of the

collector.
• 'status': determines whether the garbage collector is running or has been

stopped, and returns true - i.e. collection has been activated - or false.

environ.getfenv (f)

Returns the current environment in use by the function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function

850 14 System & Environment

calling getfenv. If the given function is not an Agena function, or if f is 0, getfenv
returns the global environment. The default for f is 1.

environ.getopt (args, format)

The function parses command-line options passed from the underlying operating
system to an Agena script.

Each option (switch) may consist of exactly one letter, preceded by a dash or slash,
multi-letter switches are not supported and will be incorrectly processed.

Examples:

Valid: agena script.agn -h
Valid: agena script.agn /h
Valid: agena script.agn -apx (expanded to -a -p -x)
Valid: agena script.agn /apx (expanded to /a /p /x)
Valid: agena script.agn -val 3.141592654
Valid: agena script.agn -val=3.141592654
Invalid: agena script.agn -help (would be split into the switches -h, -e, -l and -p.

The function takes the args system table and a format string denoting the switches
to detect and - if found - returns the switch name without a preceding dash or
slash, an optional value if given, and the index of the next args entry to be
processed in a subsequent call. If args is null, the function simply returns.

Depending on their position in the call from the operating system, unknown options
might be ignored.

Example:

> for switch, optarg, nextidx in environ.getopt(args, 'ab:c::d') do
> print(switch, optarg, nextidx)
> end

In this example, the format string 'ab:c:p' has the following meaning, and you can
use combinations in any order:

� 'a' - check for just the /a or -a switch.
� 'b:' - check for the /b or -b switch succeeded by a mandatory value; the

switch and the value may be separated by a blank or an equals sign ('=');
� 'c::' - check for the /c or -c switch optionally succeeded by a value, both

separated by a blank or an equals sign ('=');
� 'd' - check for just the /d or -d switch.

For an example script, check file getopt.agn in the share/scripting folder of your
Agena installation.

agena >> 851

The function is a port to a modified version of the C library function getopt.

environ.globals (f)

Determines28 whether function f includes global variables (names which have not
been defined local). The return is a sequence of pairs: their left-hand side the
variable name of type string, the right-hand side the respective line number (of type
number). If no global variables could be found, the function returns null.

environ.isequal (obj1, obj2)

Compares two objects obj1, obj2 for equality and returns true or false. Note that
the function considers two structures (tables, sequences, registers and pairs) a and
b of the same type to be different if they do not reference one another. Thus, for
example, with a := [1] and b := [1], the function returns false, whereas a and b with
a := [1] and b := a are equal.

See also: =, == operators.

environ.isselfref (obj)

Checks whether a structure obj (table, set, sequence, or pair) references to itself. It
returns true if it is self-referencing, and false otherwise.

The function is written in Agena and included in the lib/library.agn file.

environ.kernel ([setting])

environ.kernel (setting:value)

Queries or defines kernel settings that cannot be changed or deleted automatically
by the restart statement.

In the first form, by passing the given setting as a string, the current configuration
will be returned. If no argument is given, then all current settings are returned in a
table.

In the second form, by passing a pair of the form setting:value, where setting is a
string and value the respective setting given in the table below, the kernel is set to
the given configuration.

The return is the new configuration.

Settings are:

852 14 System & Environment

28 Note that the function not always returns all global names.

print strings in double quotes, default: false.true or false'enclosedouble'

print strings in backquotes, default: false.true or false'encloseback'

print strings in single quotes, default: false.true or false'enclose'

If set true (the default), two input regions
are always separated by an empty line. If
set false, no empty line is inserted.

true or false'emptyline'

Turns duplicate declarations (shadowing)
warnings on (true) and off. Default: true.

true or false'duplicates'

Gets and sets DoubleEps variable; default
is 2.2204460492503131e-16.

a number'doubleeps'

Sets the number of digits used in the output
of numbers. Note that this setting does not
affect the precision of arithmetic
operations. The default is 14. See also -D
command-line switch in Appendix A5.5.

an integer in
[1, 17]

'digits'

Prints debugging information if the
initialisation of a C dynamic library failed.
Also prints information while the import
statement is being executed.

true or false'debug'

Issue a syntax error if a numeric constant
(binary, octal, decimal, hexadecimal) is
out-of-range. Default: false. See also -B
command-line switch in Appendix A5.5.

true or false'constanttoobig'

Turn constants feature on or off. Default: on
(true). See also -C command-line switch in
Appendix A5.5.

true or false'constants'

threshold so that the binary inc, dec, mul,
div, intdiv and mod operators can
recognise operators close to zero. Default is
DoubleEps.

a number'closetozero'

Ticks per second measured by the os.clock
function, read-only.

an integer'clockspersec'

Denotes the CPU architecture Agena has
been built on.

a string'builtoncpu'

The default buffer size for file operations for
the os.fcopy, net.receive, and
binio.readlines functions. Must be set to
[512 .. 10243] It is equal to the C constant
BUFSIZ in stdio.h. Grep LUAL_BUFFERSIZE in
the C sources.

a number'buffersize'

string "long" word-boundary in bytesa number'blocksize'

Number of bits in a C int, should mostly be
32.

a number'bitsint'

Indicates whether your system aligns data
along the 4- or 8-byte word boundary. The
check is done at runtime, the setting is not
compiled into the interpreter.

true or false'alignable'

DescriptionValueSetting

agena >> 853

If set to true, Kahan-Babuška round-off error
prevention in numeric for loops instead of
the original Kahan algorithm. Default is
false.

true or false'kahanbabuska'

If set to true, then Agena is running in
Windows.

true or false'isWindows'

If set to true, then Agena is running in
Solaris.

true or false'isSolaris'

If set to true, then Agena is running in OS/2
and successors.

true or false'isOS/2'

If set to true, then Agena is running in Mac
OS X.

true or false'isMac'

If set to true, then Agena is running in Linux.true or false'isLinux'

If set to true, then Agena is running on an
Intel-compatible CPU.

true or false'isIntel'

If set to true, then Agena is running in DOS.true or false'isDOS'

If set to true, then Agena is running on an
ARM CPU.

true or false'isARM'

If set to true, then Agena has been
compiled in 64-bit mode.

true or false'is64bit'

If set to true, then Agena has been
compiled in 32-bit mode.

true or false'is32bit'

If set to true, os.date determines weekdays
according to the ISO 8601 norm. Default is
true.

true or false'iso8601'

Gets and sets hEps variable; default is
1.4901161193847656e-12. Also controls
auto-correction features in numerical for
loops, see Chapter 5.2.2.

a number'hEps'

If set true, tells the interpreter that it has
been invoked by AgenaEdit. Default is
false.

true or false'gui'

Dito, but with respect to the minor GLIBC
version.

a number'glibcminor'

When Agena has been compiled with
GCC, denotes the major GLIBC version
linked during compilation. Otherwise is null.

a number'glibc'

Controls auto-correction of iteration values
x close to zero in numeric for loops with
fractional step sizes. Default is true, i.e. x will
be set to zero if x < hEps.

true or false'foradjust'

Stores the maximum number of characters
to be displayed per line in syntax error
messages. Default is 70.

a positive
integer

'errmlinebreak'

Stores the accuracy threshold epsilon used
by the ~= operator and the approx
function.

a number'eps'

DescriptionValueSetting

854 14 System & Environment

Sets the default size of registers, the number
must be a non-negative integer.

a number'regsize'

Returns the names of all libraries manually
imported in a session by import, readlib,
initialise.

a set'readlibbed'

If set to true, prints an empty line between
the input and output regions. Default is
false.

true or false'promptnewline'

The token that separates paths in libname;
by default is ';', cannot be changed. Grep
LUA_PATHSEP in the C sources.

a string'pathsep'

Returns the maximum path length
accepted by the operating system, an
integer.

a string'pathmax'

Number of bytes in an unsigned C long.a number'nbytesulong'

Number of bits in an 8-word integer.a number'nbits64'

Number of bits in a 4-word integer.a number'nbits'

Minimum internal stack size, i.e. the number
of preallocated slots slots. Cannot be
changed.

a number'minstack'

Minimum value of a signed 32-bit integer,
usually -2,147,483,648.

a number'minlong'

Maximum value of an unsigned 32-bit
integer, usually 4,294,967,295.

a number'maxulong'

Maximum value of a signed 32-bit integer,
usually 2,147,483,647.

a number'maxlong'

Maximum representable 4-byte signed
integer used internally

a number'maxinteger'

If set true, then each key~value pair in a
table will be printed at a separate line,
otherwise a table will be printed like sets or
sequences. Default is false.

true or false'longtable'

largest possible exponent value in long
doubles

a number'longmaxexp'

Number of digits in the floating point
mantissa for C data long doubles

a number'longmantdigs'

Returns the names of all basic libraries
initialised at start-up of the interpreter.

a set'loaded'

If set true, the restart statement resets
libname and mainlibname to their original
values. Default is false.

true or false'libnamereset'

Largest accurately representable integer
(usually 253).

a number'lastcontint'

If set to true, Kahan-Ozawa round-off error
prevention in numeric for loops instead of
the original Kahan algorithm. Default is
false.

true or false'kahanozawa'

DescriptionValueSetting

agena >> 855

When set to true, real and imaginary parts
of complex values close to zero are
rounded to zero on output. (Note that
internally, complex values are not
rounded.) Default is false.

true or false'zeroedcomplex'

When just reading this setting, returns a
number: 0 - warning system is off; 1 - ready
to start a new message; 2 - previous
message is to be continued.
Setting the warning mode requires a
Boolean: true - switch on warnings, false -
switch them off.

an integer or
Boolean

'warnings'

Smallest normal number (usually 2-1022).a number'smallestnormal'

If set to true, does not read the main library
file lib/library at restart. Default is false.

true or false'skipmainlib'

If set to true, does not read the Agena
initialisation files agena.ini / .aganea.init at
restart. Default is false.

true or false'skipinis'

If set to true, the interpreter has been
started with the -a option, ignoring the
setting of the AGENAPATH environment
variable. Default is false.

true or false'skipagenapath'

If set to true, the bitwise operators &&, ~~,
||, ^^, <<<, >>>, <<<< and >>>>
internally use signed integers (the default),
otherwise they use unsigned integers.

true or false'signedbits'

If set to false, Agena does not free memory
when you remove sequence values;
default is true.

true or false'seqautoshrink'

Returns or sets the current rounding method
(beware, this may cause unwanted results;
see also math.rint): 'downward' rounds
down to the next lower integer, 'upward'
rounds up to the next greater integer,
'nearest' rounds up or down toward
whichever integer is nearest (default on
most systems), 'zero' rounds toward zero.

a string'rounding'

DescriptionValueSetting

Examples:

> environ.kernel('signedbits'):
false

> environ.kernel(signedbits = true):
true

See also: environ.system.

856 14 System & Environment

environ.onexit ()

If assigned a function to the name environ.onexit, this function is automatically
called when quitting or restarting Agena. For more information, see bye.

environ.pointer (obj)

Converts obj to a generic C pointer (void*) and returns the result as a string. obj
may be userdata, a table, set, sequence, register, pair, thread or function;
otherwise, pointer returns fail. Different objects will give different pointers, which
gives a unique string identifier.

environ.ref (tbl, obj [, option])

Creates a unique integer reference for any argument obj and inserts obj into table
tbl at position ref (i.e. tbl[ref] :=obj).

The function returns ref. Do not manually put any integer keys into tbl or delete
them, always use environ.ref and environ.unref to modify tbl.

By default, obj is always inserted into tbl, even if it is already stored there.

If the optional third argument is 'reference' or 'full', then a check is performed
to ensure that obj has not already been included in tbl. If obj is already in tbl, it is
not inserted again and the integer index of obj in tbl is simply returned.

If option is 'reference', the function uses environ.isequal for the check, whereas
with the option 'full', the standard = equality operator is being used.

See also: environ.unref, sema.open, utils.uuid.

environ.setfenv (f, table)

Sets the environment to be used by the given function. f can be an Agena function
or a number that specifies the function at that stack level: Level 1 is the function
calling setfenv. setfenv returns the given function.

As a special case, when f is 0 setfenv changes the environment of the running
thread. In this case, setfenv returns no values.

environ.system ()

Returns a table with the following system information:

� The size of various C types (char, int, long, long long, float, double, long double,
uint16_t, int32_t, int64_t),

� the smallest and largest numeric values for C doubles (fields 'mindouble',
'maxdouble'),

� the largest numeric values for C unsigned short ints (16-bit, 'maxushort'),

agena >> 857

� the smallest and largest numeric values for C long ints (32-bit, fields 'minlong',
'maxlong'),

� the smallest and largest numeric values for C long long ints (fields 'minlonglong',
'maxlonglong'),

� the largest numeric values for C unsigned long ints (field 'maxulong'),
� the number of bits in an C unsigned char (field 'bitschar')
� the number of bits in a 32-bit integer (field 'bitsint'),
� the endianness of your platform (field 'endianess'),
� the hardware (field 'hardware') and
� the operating system (field 'OS') for which the Agena executable has been

compiled.
� The 'floatradix' key represents the GNU C FLT_RADIX environment variable, which

usually is 2.
� The 'doubleradix' key represents the base of C doubles which usually is 2.

See also: environ.kernel.

environ.unref (tbl, ref)

With tbl a table and ref an integer, deletes value tbl[ref] and returns it. See also:
environ.ref.

environ.used ([opt])

By default, returns the total memory in use by Agena in Kbytes. If opt is the string
'bytes', 'kbytes', 'mbytes', 'gbytes' or 'tbytes', the number will be returned in
the given unit.

See also: os.freemem, os.memstate.

environ.userinfo (f, level [, ···])

Writes information to the user of a procedure f depending on the given level, an
integer. The information to be printed is passed as the third, etc. arguments and
may be either numbers or strings.

At first the procedure should be registered in the environ.infolevel table along with
a level (an integer) indicating the infolevel setting at which information will be
printed, e.g. environ.infolevel[myfunc] := 1.

If you do not enter an entry for the function to the environ.infolevel table, then
nothing is printed.

> f := proc(x) is
> environ.userinfo(f, 1, 'primary info to the user: ', x, '\n');
> environ.userinfo(f, 2, 'additional info to the user: ', x, '\n')
> end;

858 14 System & Environment

If the level argument to userinfo is equal or less than the environ.infolevel table
setting, then the information is printed, otherwise nothing is printed.

> environ.infolevel[f] := 2;

> f('hello !');
primary info to the user: hello !
additional info to the user: hello !

Now the infolevel is decreased such that less information will be output.

> environ.infolevel[f] := 1;

> f('hello !');

primary info to the user: hello !

See also: environ.warn.

environ.warn (str [, ···])

Emits a warning with a message composed by the concatenation of all its
arguments (which should be strings or numbers).

By convention, a one-piece message starting with '@' is intended to be a control
message, which is a message to the warning system itself. In particular, the
standard warning function in Lua recognizes the control messages "@off", to stop
the emission of warnings, and "@on", to (re)start the emission; it ignores unknown
control messages.

If called without arguments, returns a Boolean indicating whether the warning
system is on or off, and the current warning state as an integer:

� 0 - warning system is off;
� 1 - ready to start a new message;
� 2 - previous message is to be continued.

See also: environ.infolevel, environ.userinfo.

agena >> 859

14.3 package - Modules

The package library provides a basic facility to inspect which packages have been
loaded in a session.

package.checkclib (pkg)

Checks whether the package denoted by the string pkg and stored to a C dynamic
library has already been initialised. If not, it returns a warning printed on screen and
creates an empty package table. Otherwise it does nothing.

package.loadclib (packagename, path)

Loads the C library packagename (with extension .so in UNIX and Mac, or .dll in
Windows) residing in the folder denoted by path. path must be the name of the
folder where the C library is stored, and not the absolute path name of the file. The
function returns true in case of success and false otherwise. On successful
initialisation, the name of the package is entered into the package.readlibbed
set.

See also: readlib, with.

package.loaded

A table containing all the names of the packages that have been initialised, either
at start-up or later on in a session.

package.packages ()

Returns a set with all the names of Agena's standard libraries that are initialised at
start-up. The set does not include packages that have been loaded manually later
on in a session, for example by the import statement or the readlib or with
functions.

package.readlibbed

A set with all the names of the packages that have been initialised with the readlib
and with functions, and the import statement. This set may be deprecated in future
versions of Agena.

860 14 System & Environment

14.4 rtable - Remember Tables

This package comprises functions to administer remember tables.

rtable.defaults (f)

rtable.defaults (f, tab)

rtable.defaults (f, null)

Administrates read-only remember tables of functions. As it works exactly like the
remember function, except that it creates remember tables that cannot be
updated by the return statement, please refer to the description of the
rtable.remember function for further details.

rtable.remember (f)

rtable.remember (f, tab)

rtable.remember (f, null)

Administers remember tables.

In the first form, the remember table stored to procedure f will be returned. See
rtable.get for more information.

In the second form, remember adds the arguments and returns contained in table
tab to the remember table of function f. If the remember table of f has not been
initialised before, remember creates it. If there are already values in the remember
table, they are kept and not deleted.

If f has only one argument and one return, the function arguments and returns are
passed as key~value pairs in table tab.

If f has more than one argument, the arguments are passed in a table. If f has
more than one return, the returns are passed in a table, as well.

Valid calls are:

import rtable alias remember;

remember(f, [0 ~ 1]); # one argument 0 & one return 1
remember(f, [[1, 2] ~ [3, 4]); # two arguments 1, 2 & two returns 3, 4
remember(f, [1 ~ [3, 4]]); # one argument 1 & two returns 3, 4
remember(f, [[1, 2] ~ 3]]; # two arguments 1, 2 & one return 3

In the third form, by explicitly passing null as the second argument, the remember
table of f is destroyed and a garbage collection run to free up space occupied by
the former rtable.

remember always returns null. It is written in Agena and included in the
lib/library.agn file.

agena >> 861

See Chapter 6.18 for examples. See also: rtable.defaults.

rtable.forget (f)

Empties the remember table or read-only remember table of procedure f entirely,
giving back the space formerly occupied to the interpreter. It also enforces an
immediate garbage collection. The function returns null.

rtable.get (f [, option])

Returns the contents of the current remember table or read-only remember table of
procedure f. If any value for option is given, the internal remember table including
all the hash values are returned.

> fib := proc(n) is
> assume(n >= 0);
> return fib(n - 2) + fib(n - 1)
> end;

> rtable.remember(fib, [0 ~ 0, 1 ~ 1]);

> rtable.get(fib):
[[0] ~ [0], [1] ~ [1]]

You cannot destroy the internal remember table by changing the table returned by
rtable.get.

rtable.init (f)

Creates a remember table (an empty table) for procedure f. The procedure must
have been written in Agena; reminisce that rtables for C API functions are not
supported and that in these cases the function quits with an error.

If there is already a remember function for f, it is overwritten. init returns null.

rtable.mode (f)

Returns the string 'rtable' if function f has a remember table, 'rotable' if f has a
read-only remember table (that cannot be updated by the return statement), and
the string 'none' otherwise.

rtable.purge (f)

Deletes the remember table or read-only remember table of procedure f entirely. It
also enforces an immediate garbage collection. The function returns null.

rtable.roinit (f)

Creates a read-only remember table (an empty table) for procedure f, which may
be either a C function or an Agena procedure.

862 14 System & Environment

If there is already a remember function for f, it is overwritten. roinit returns null.

rtable.put (f, arguments, returns)

The function adds one (and only one) function-argument-and-returns `pair` to the
already existing remember table or read-only remember table of procedure f.

arguments must be a table array, returns must also be a table array. If the
argument(s) already exist(s) in the remember table, then the corresponding result(s)
are replaced with returns.

Given a function f := << x -> x >> for example, valid calls are:

rtable.put(f, [1], [2]); rtable.put(f, [1, 2], [2]);
rtable.put(f, [1], [1, 2]).

agena >> 863

14.5 registry - Access to the Registry

This package provides limited access to the registry (see Chapter 6.31). It should be
used carefully.

Its library functions are:

registry.anchor (key, value)

Inserts a new key ~ value pair into the registry, where the key is a unique string, and
the value the corresponding data. To delete entries in the registry, pass null for
value.

The function returns nothing.

See also: registry.get.

registry.anyid (key)

The function has become obsolete and just returns the string key given.

See also: registry.get, utils.uuid.

registry.get (key)

The function returns the registry value indexed by key, which may be any type. If the
registry entry is occupied by userdata, refers to loaded libraries or open files, the
function just returns null. Otherwise, the entry is simply returned.

If a C library metatable contains the __metatable read-only `metamethod`, null
will be returned, as well.

With metatables defined by C libraries, it is still possible to delete or change
metamethods, so extreme care should be taken when referencing to metatables
returned. Especially, the __gc metamethod must not be deleted or changed.

See also: registry.anchor.

864 14 System & Environment

14.6 stack - Built-In Number, Character & Value Stacks

The functions and operators in this package work with one of the seven built-in
numerical, character or cache stacks, internal last-in-first-out data structures that
can either store numbers in a numeric stack or characters only in a character stack
- or any kind of data with a cache stack. The stacks are addressed by their stack
number and not variable names.

Stacks 1 to 3 are number stacks, stacks 4 to 6 are character stacks and stack 7 is
the cache stack. The default stack is stack 1, i.e. a number stack.

Never use or change numeric stack 0 which is used by Agena internally as some
sort of fixed-sized register array for numeric and other operations.

You may switch between the stacks by calling switchd(1) for the first stack, switchd(2)
which is the second stack, etc.

While any element in - for example - a sequence occupies 24 bytes of memory, a
number in a numeric stack takes only eight bytes, and a character in a character
stack only one byte. A value of a cache stack takes 24 bytes but operations are
much faster than with Agena's tables, sequences and registers.

You can push a theoretically unlimited amount of numbers or characters onto the
currently selected stack, with 128 pre-allocated slots after Agena initialisation. A
cache stack - or `cache` for short -, however, can store a maximum of 2,048
values.

If more values, numbers or characters are added, Agena automatically enlarges
the current stack. However, if values are removed, Agena itself does not shrink the
allocated memory. Call stack.shrinkd to accomplish this if required, and
stack.sized to query the amount of used and internally allocated space. Allocated
space in caches cannot be freed.

Example: to convert a decimal number into the binary system, you might use a
numerical stack:

> tobinary := proc(x :: number) is # for positive numbers only
> local base := 2; # new base
> local r := '';
> stack.resetd(); # always clear stack before usage, destructive !
> while x > 0 do
> pushd(x % base); # push the remnant onto the stack (0 or 1)
> x := x \ base
> od;
> while allotted() do # now traverse the stack from top to bottom
> r := r & popd() # and also remove the remnants one after another
> od;
> return r # return result as a string
> end;

> switchd(1): # select a numeric stack

agena >> 865

> tobinary(6):
110

The names of functions and operators usually end in a final `d`.

The basic library functions and operators are:

allotted ([n])

If given no argument and if the stack contains one or more elements, the function
returns the number of values in the stack, else it returns null. It can be easily used in
while loops to traverse a stack, see example above.

If given a stack number n, it either returns the number of elements currently in the
given stack or null if no values are in this stack.

See also: stack.sized.

cell (idx)

The operator returns the element stored at the absolute or relative position idx of
the current stack. While -1 refers to the top of the stack, -2, to the element just
below the top, etc., 0 refers to the first element at the bottom of the stack, 1 one
step `above`, etc. If the stack is empty or idx is out-of-bounds, null will be returned.

popd ([n [, anyoption]])

The function pops n numbers, values or characters from the top of the current stack,
or if n is not given, the element at the current top of the stack. If the stack is empty,
null will be returned.

By default, the popd returns the last value popped. This can be suppressed if any
second argument is given.

All slots that are discarded by a call to the operator are nullified, i.e. set to null.

See also: pushd, stack.sized.

pushd (x [, ...])

pushd (s)

In the first form, the statement pushes one or more numbers, strings or single
characters x onto the current stack. With a cache, pushes all the given values.

In the second form, the command pushes all the numbers, strings or single
characters in the sequence s. With strings, all the characters in the string are
pushed, with the last character put at the stack top, and all the preceding
characters below.

866 14 System & Environment

The function returns nothing.

You may or may not enclose the arguments in brackets.

If the current stack is a character stack and x or an element in s is an integer in the
range 0 to 9, both inclusive, the operator converts x to a character and inserts this
character into the stack. If you insert an empty string and dump the string using - for
example - stack.dumpd later, the resulting string is terminated at the position you
inserted the empty string.

Hint: If the very last argument is the pair 'stack':<stacknumber>, which is equal to
stack = <stacknumber>, with <stacknumber> an integer, the values are pushed
onto the given stack <stacknumber>. Using this option, however, may slow down
the operation since processing an option takes quite some computation time.

See also: stack.pushstringd.

switchd (n)

The statement switches to stack n with n an integer. Valid values for n are 1 to 3 for
numeric stacks, 4 to 6 for character stacks and 7 for the cache stack.

You may not or may not enclose the argument in brackets.

switchd memorises the formerly active stack. To change back to it, just pass -1 for
n.

See also: stack.selected, stack.switchto.

The stack library features the following auxiliary procedures:

stack.attribd ()

Returns various status information on the current stack in a table with the keys:
'currentstack' (number of the current stack), 'defaultsize' (number of default
slots), 'isnumstack' (true if the stack stores Agena numbers, false if not),
'iscachestack' (true if the stack is a cache, false if not), 'stackmax' (maximum
number of allocated slots), 'stacktop' (current stack top, counting from 0).

stack.choosed ()

Returns the ID of both the number and character stack with the least number of
values in them. The first return is the ID of the smallest number stack, the second
return the one of the smallest character stack.

See also: switchd, stack.selected.

agena >> 867

stack.dequeued ()

Removes the value at the bottom of the current stack, returns it, and moves all
elements to close the space. It is equivalent to stack.removed(0).

With a cache stack, the former top position is automatically nullified, i.e. set to null.

See also: stack.enqueued.

stack.dumpd ([n] [, option])

With a numeric stack or a cache, returns all values in the current stack in a new
sequence if given no argument, or the last n values pushed onto the stack, and
pops them all from the stack. The number of pre-allocated slots is not changed,
see stats.shrinkd.

With a character stack, when given no argument, all characters are returned as
exactly one string, first-in first-out style. If n is given, the last n characters inserted are
returned in exactly one string.

If passed true as the very last argument, the selected numbers or characters are
returned in reverse order. This saves an expensive call to stack.reversed.

If the stack is empty, the function just returns null.

All slots that are discarded by a call to the function are nullified, i.e. set to null.

See also: stack.explored.

stack.enqueued (x)

Inserts the number, value or character x at the bottom of the current stack, shifting
up other elements to open space. The function returns nothing. It works like
stack.insertd(0, x).

See also: stack.dequeued.

stack.explored ()

Returns the entire contents of the current stack without modifying it. If the current
stack is numeric, the return is a sequence of numbers; if the current stack is a
cache, the return is a sequence of values, otherwise a string will be returned.

If the stack is empty, the function just returns null.

See also: stack.dumpd.

868 14 System & Environment

stack.insertd (idx, x)

Inserts the number, value or character x at the given relative stack position idx,
shifting up other elements to open space. The function returns nothing.

If idx is a non-negative integer, 0 represents the bottom of the stack, 1 the position
just above the bottom, etc. If idx is negative, -1 represents the stack top, -2 the
element just below the top, etc. If no argument is given, idx is set to -1 by default,
i.e. the top element.

See also: stack.dequeued, stack.enqueued, stack.removed.

stack.mapd ([idx,] f, [···] [, true])

stack.mapd (true, f, [, true])

In the first form, if idx is not given or if idx = -1, the default, maps function f on the
top element of the current character or numeric stack. With a character stack, the
result of the call to f must be a character, and with a number stack the result must
be a number, otherwise the function issues an error. Cache stacks are supported,
as well.

If idx is a negative integer, the stack.mapd applies f on the |idx|-th value in the
stack.

If f is a multivariate function, its second, third, etc. argument must be passed right
after f.

In the second form, by passing the Boolean true and a univariate or multivariate
function f of n parameters, stack.mapd takes the n top stack values, passes them
as arguments to f, with the value at the top of the stack the last argument, and
returns the result. If the parameter list of f contains a ?-varargs token, then all stack
elements are passed to f. Example:

We have a function of three parameters x, y, z that returns x*y + z. The call puts the
top three argumements 3, 2, 4

> pushd 3, 2, 4

into the argument list, pops them from the stack, pushes the result of the function
call onto the stack and returns it:

> stack.mapd(true, << x, y, z -> fma(x, y, z) >>):
10

In both the first and the second form, the stack element(s) is (are) replaced by the
result of the function call if true is not given as the last argument, but the rest of the
stack is left unchanged. Otherwise, if you pass true, the stack element(s) is (are) not
replaced and the result is just put onto the stack top.

agena >> 869

With a cache stack, all slots that are discarded by a call to the function are nullified,
i.e. set to null.

stack.pushstringd (str)

Pushes all the characters in string str onto a character stack. After the operation,
str[-1] resides at the top of the stack, str[-2] just below, etc. The return is the size of
str, i.e. size str.

See also: pushd.

stack.pushvalued (idx)

Pushes the value residing at the given relative stack position idx to the top of the
stack. The original value also remains at position idx.

If idx is a non-negative integer, 0 represents the bottom of the stack, 1 the position
just above the bottom, etc. If idx is negative, -1 represents the stack top, -2 the
element just below the top, etc. If no argument is given, idx is set to -1 by default,
i.e. the top element.

stack.removed (idx)

Removes the value residing at the given relative stack position idx, returns it, and
moves all elements to close the space.

If idx is a non-negative integer, 0 represents the bottom of the stack, 1 the position
just above the bottom, etc. If idx is negative, -1 represents the stack top, -2 the
element just below the top, etc. If no argument is given, idx is set to -1 by default,
i.e. the top element.

With a cache stack, the former top position is automatically nullified, i.e. set to null.

See also: stack.insertd, stack.dequeued, stack.enqueued.

stack.readbytes (filehandle [, bytes] [, options])

By default, the function reads environ.kernel('buffersize') bytes from the file
denoted by filehandle and writes them to the current number or character stack.

Open the file with binio.open before the first call and when you are finished, call
binio.close to release the file.

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call to various stack.readbytes.

870 14 System & Environment

You may change the kernel buffer size value to any other values in order to read
less or more bytes.

If bytes is given, the function writes bytes bytes from the file denoted by filehandle
to the current stack.

To write the file contents to another than the current stack, pass the optional stack
option with the preferred stack number, e.g.:

> stack.readbytes(fh, stack=6);

By default, the function ignores any newlines (ASCII 10) or carriage returns (ASCII 13)
in the file. You can change this by setting the ignore option and passing a string of
explicit characters that shall be skipped, e.g.:

> stack.readbytes(fh, ignore=" .\n"); # skip white space, dot & newline

By default the function reads in embedded zeros and treats them as every other
byte. If you pass the eof option and set it to true, then the function quits if it
encounters an embedded zero in the file. The file pointer is automatically reset to
the position of the embedded zero. The default is false, i.e. the whole file is read in.

The function returns both the number of bytes read from the file and the number of
bytes written to the stack. If the end of the file has been reached, null will be
returned. In case of an error, it quits with the respective error.

Cache stacks are not supported.

See also: binio.writebytes.

stack.replaced (idx, x)

Replaces the value at stack position idx with the value, number or one-character
string x. The value replaced will be returned.

If idx is a non-negative integer, 0 represents the bottom of the stack, 1 the position
just above the bottom, etc. If idx is negative, -1 represents the stack top, -2 the
element just below the top, etc. If no argument is given, idx is set to -1 by default,
i.e. the top element.

Note that with character stacks, if x should be the empty string, the string returned
by strings.dumpd will be terminated at position idx.

agena >> 871

stack.resetd ([···])

If given no arguments, clears the entire stack so that it becomes empty. The
functions does not return anything and should be used cautiously as another
function might still need elements in the stack.

If passed one or more valid stack numbers (integers), the function conducts the
same for the given stack(s).

The number of pre-allocated slots is not reset, however, see stack.shrinkd.

With a cache stack, all slots that are discarded by a call to the function are nullified,
i.e. set to null.

stack.reversed ([n])

If n is not given, reverses the positions of all the elements in the current stack. If n is
given, only the last n elements pushed onto the stack are reversed. The function
returns nothing.

See also: strings.reverse.

stack.rotated ([n])

Moves all the elements in the current stack n places from the bottom to the top if n
is positive, and n places from the top to the bottom if n is negative. The default is n
= +1. The function returns nothing.

stack.selected ()

Returns the number of the currently selected stack and the formerly active stack, in
this order.

See also: switchd, stack.choosed, stack.switchto.

stack.shrinkd ([any])

With no argument, shrinks the number of pre-allocated but not assigned slots in the
current stack if possible. If any argument is given, all stacks are shrunk. Cache
stacks are not supported.

The function returns the new number(s) of pre-allocated slots but does not pop any
elements. The function is useful to reduce memory consumption if a lot of values
have been removed from the stack.

See also: stack.resetd.

872 14 System & Environment

stack.sized ()

Returns the current number of elements in the current stack along with the current
maximum number of slots internally allocated by the system. See also: allotted.

stack.sorted ([n])

Sorts all or the last n values pushed onto the current number or characher stack in
ascending order using the fast Introsort algorithm. If no argument is passed, all
elements in the current stack are processed. The function returns nothing. Cache
stacks are not supported.

The function works with numeric stacks only.

stack.swapd (i, j)

Swaps the values stored at position i and j of the current stack.

stack.switchto ([x])

Determines the current stack number p, and then switches to the number stack q
with the least number of elements if any number x or no argument is given, or to
the character stack q with the least number of elements if any string x is given.

The function returns p and q, in this order.

You can use p later to switch back to the former stack with the switchd statement.

The function issues an error if the current stack is a cache.

The function memorises the formerly active stack. To change back to it, just issue
the stament `switchd -1`.

stack.writebytes (filehandle [, bytes])

By default, writes all the values in a number or character stack to the file denoted
by filehandle. If bytes is given, the number of bytes starting from the bottom of the
stack are written. The function does not change the stack.

See also: stack.readbytes.

agena >> 873

The following functions perform real arithmetic on a numeric stack:

stack.addtod (x [, true])

Adds its argument x, a number, to the top element of the current numeric stack.

The top stack element is replaced by the resulting sum if true is not given as the last
argument, but the rest of the stack is left unchanged. Otherwise, if you pass true,
the top stack element is not replaced and the result is just put onto the stack top.

The function also returns the sum computed. It uses the Kahan-Babuška algorithm
to prevent round-off errors.

See also: stack.mulby, stack.powd, stack.sumupd.

stack.mulbyd (x [, true])

Multiplies its argument x, a number, by the top element of the current numeric
stack.

The top stack element is replaced by the resulting product if true is not given as the
last argument, but the rest of the stack is left unchanged. Otherwise, if you pass
true, the top stack element is not replaced and the result is just put onto the stack
top.

The function also returns computed product.

See also: stack.addto, stack.mulupd, stack.powd, stack.recipd.

stack.absd ([true])

Computes the absolute value of the top element of the current numeric stack.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

The function also returns the result.

stack.negated ([true])

Multiplies the top numeric stack element by -1.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

874 14 System & Environment

The function also returns the result.

stack.recipd ([true])

Computes the reciprocal of the top element of the current numeric stack.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

The function also returns the result.

stack.intd ([true])

Rounds the number on the top of a numeric stack to the nearest integer towards 0.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

The function also returns the result.

stack.fracd ([true])

Converts the number on the stack top to its fractional part.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

The function also returns the result.

stack.intdivd (x [, true])

Integer division of the top element of the current numeric stack and the given
number x; works like the \ operator.

The top stack element is replaced by the result if true is not given as the last
argument, but the rest of the stack is left unchanged. Otherwise, if you pass true,
the top stack element is not replaced and the result is just put onto the stack top.

The function also returns the result.

See also: stack.modd.

agena >> 875

stack.modd (x [, true])

Modulus of the top element of the current numeric stack and the given number x;
works like the % operator.

The top stack element is replaced by the result if true is not given as the last
argument, but the rest of the stack is left unchanged. Otherwise, if you pass true,
the top stack element is not replaced and the result is just put onto the stack top.

The function also returns the result.

See also: stack.intdivd.

stack.powd (power [, true])

Raises the top element of the current numeric stack to the given power, a number.

The top stack element is replaced by the result if true is not given as the last
argument, but the rest of the stack is left unchanged. Otherwise, if you pass true,
the top stack element is not replaced and the result is just put onto the stack top.

The function also returns the result.

See also: stack.antilogd, stack.rootd.

stack.pythad ([true])

Computes the hypotenuse or inverse hypotenuse of the number below the stack
top and the number on the top and returns the computed result. The function
avoids over- and underflows and treats subnormal numbers accordingly.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.hypotd, stack.invhypotd.

stack.squared ([true])

Raises the top element of the current numeric stack to the power of 2.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.
The function also returns the result.

See also: stack.antilogd, stack.powd, stack.rootd.

876 14 System & Environment

stack.rootd (n [, true])

Computes the non-principal n-th root of the top element of the current numeric
stack. n must be an integer and is 2 by default.

The top stack element is replaced by the result if true is not given as the last
argument, but the rest of the stack is left unchanged. Otherwise, if you pass true,
the top stack element is not replaced and the result is just put onto the stack top.

See also: stack.cbrtd, stack.powd, stack.sqrtd.

stack.cbrtd ([true])

Computes the cubic root of the top element of the current numeric stack.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.powd, stack.rootd, stack.sqrtd.

stack.sqrtd ([true])

Computes the square root of the top element of the current numeric stack.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.cbrtd, stack.powd, stack.rootd.

stack.fmad ([true])

Computes x*y + z, where x represents the second number below the stack top, y
the number below the stack top and z the number on the top and returns the
computed result. The function avoids over- and underflows and treats subnormal
numbers accordingly.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

agena >> 877

stack.hypotd ([true])

stack.invhypotd ([true])

Computes the hypotenuse or inverse hypotenuse of the number below the stack
top and the number on the top and returns the computed result. The function
avoids over- and underflows and treats subnormal numbers accordingly.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.pythad, stack.hypot4d.

stack.hypot4d ([true])

Computes , where x represents the number below the stack top and y thex2 − y2

number on the top and returns the computed result. The function avoids over- and
underflows and treats subnormal numbers accordingly.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.hypotd.

stack.lnd ([true])

Returns the natural logarithm of the top element of the current numeric stack.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.antilogd, stack.expd, stack.logd.

stack.logd (base [, true])

Returns the logarithm of the top element of the current numeric stack to the given
base, with base a number. For the natural logarithm, pass E for base.

The top stack element is replaced by the result if true is not given as the last
argument, but the rest of the stack is left unchanged. Otherwise, if you pass true,
the top stack element is not replaced and the result is just put onto the stack top.

See also: stack.antilogd, stack.lnd.

stack.antilogd (base [, true])

878 14 System & Environment

Raises the given base, a number, to the power of the top element of the current
numeric stack.

To compute the exponential function ex, x should be the top stack element and
pass E as function argument base.

The top stack element is replaced by the result if true is not given as the last
argument, but the rest of the stack is left unchanged. Otherwise, if you pass true,
the top stack element is not replaced and the result is just put onto the stack top.

See also: stack.expd, stack.exp2d, stack.exp10d.

stack.expd ([true])

Raises E = exp(1) to the power of the number at the stack top and returns it.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.exp2d, stack.exp10d.

stack.exp2d ([true])

Raises 2 to the power of the number at the stack top and returns it.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.expd, stack.exp10d.

stack.exp10d ([true])

Raises 10 to the power of the number at the stack top and returns it.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

See also: stack.expd, stack.exp2d.

agena >> 879

stack.sind ([true])

stack.cosd ([true])

stack.tand ([true])

Returns the sine, cosine or tangent of the top element of the current numeric stack,
in radians.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

stack.sinhd ([true])

stack.coshd ([true])

stack.tanhd ([true])

Returns the hyperbolic sine, hyperbolic cosine or hyperbolic tangent of the top
element of the current numeric stack, in radians.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

stack.arcsind ([true])

stack.arccosd ([true])

stack.arctand ([true])

Returns the arcus sine, arcus cosine or arcus tangent of the top element of the
current numeric stack, in radians.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

stack.arcsinhd ([true])

stack.arccoshd ([true])

stack.arctanhd ([true])

Returns the inverse hyperbolic sine, inverse hyperbolic cosine or inverse hyperbolic
tangent of the top element of the current numeric stack, in radians.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

880 14 System & Environment

stack.arctan2d ([true])

Computes the arc tangent of y/x of the two top elements of the current numeric
stack, in radians, where x represents the value just below the top and y the value at
the top of the stack.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

stack.meand ([n] [, true])

Computes the arithmetic mean of all or a given number n of values in the current
numeric stack and either pushes the result onto the top of the stack if true has been
passed as the last argument; or pops all the values processed and pushes the
result on top of the stack if only n or no argument has been given.

The function in general also returns the arithmetic mean.

By dividing each element before summation, the function avoids arithmetic
overflows and also uses the Kahan-Babuška algorithm to prevent round-off errors
during summation. Computation is done from top to bottom.

stack.sumupd ([n] [, true])

Sums up all or a given n number of values in the built-in numeric stack and either
pushes the result onto the top of the stack if true has been passed as the last
argument; or pops all the values summed-up and pushes the sum on top of the
stack if only n or no argument has been given.

Summation is done from top to bottom. The function uses the Kahan-Babuška
algorithm to prevent round-off errors during summation and also returns the sum.

stack.mulupd ([n] [, true])

Multiplies all or a given n number of values in the built-in numeric stack and either
pushes the result onto the top of the stack if true has been passed as the last
argument; or pops all the values multiplied and pushes the product on top of the
stack if only n or no argument has been given.

Multiplication is done from top to bottom. The function in general also returns the
product.

The following functions perform operations on the two values at the top of the stack,
i.e. the value at the top and the value just below it. They have been deliberately
kept lean for maximum performance:

agena >> 881

stack.addtwod ()

Adds up the two numbers on top of the current stack and replaces them with the
result; also returns the sum.

stack.subtwod ()

Subtracts the number on top of the current stack from the number below it and
replaces them with the result; also returns the difference.

stack.multwod ()

Multiplies the number on top of the current stack by the number below it and
replaces them with the result; also returns the product.

stack.divtwod ()

Divides the number below the stack top by the number on the top and replaces
them with the result; also returns the quotient.

stack.intdivtwod ()

Performs an integer division of the number below the stack top by the number on
the top and replaces them with the result; also returns the integer quotient.

stack.modtwod ()

Like stack.intdivtwod but computes the modulus.

stack.powtwod ()

Raises the number below the stack top to the power on the top and replaces both
numbers with the result; also returns the power.

882 14 System & Environment

The following functions perform operations on a character stack:

stack.absd ()

Returns the ASCII value of the top element of the current numeric stack.

The function does not modify the stack.

stack.lowerd ([true])

Converts the character at the stack top to lower-case and returns it.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

stack.upperd ([true])

Converts the character at the stack top to upper-case and returns it.

The top stack element is replaced by the result if true is not given as an argument,
but the rest of the stack is left unchanged. Otherwise, if you pass true, the top stack
element is not replaced and the result is just put onto the stack top.

agena >> 883

14.7 sema - Unique Identifiers

The package provides functions to create and administer unique, non-negative
integer identifiers, called `semaphore ids` in this context, in a memory-saving
fashion (see sema.state and sema.open for details).

There are two types of `semaphores`: a global built-in one, and one or more
instances represented by userdata objects:

> sema.open(): # create a new global semaphore id
0

> s := sema.new(): # create a semaphore instance s
sema(01CCD3B8)

> sema.open(s): # create a new semaphore id for semaphore s

0

> sema.open(s):
1

> sema.open(s):
2

> t := sema.new(): # create another semaphore instance t
sema(01CCD298)

> sema.open(t): # create a new semaphore id for semaphore t
0

sema.close (id, [···])

sema.close (s, id, [···])

In the first form, closes the given global semaphore id, and optionally other
semaphores, as well. If sema.open is called thereafter, it will return id. The function
returns nothing. Note that if id is not the last semaphore id opened before, then
Agena automatically switches to dynamic memory management consuming "O(n)"
of memory space instead of using just one 8-byte integer for the internal counter.

In the second form, the id of semaphore s is closed.

See also: sema.open, sema.shrink.

sema.isopen ([s,] id)

Checks whether the given global semaphore id or the id of the semaphore s is
open and returns true or false.

884 14 System & Environment

sema.open ([s,] [id])

Without any argument, creates a new global semaphore id, a non-negative
integer. With the very first call, returns 0, counting up by 1 subsequently as along as
sema.close or sema.reset are not executed.

If the non-negative global integer id id is passed and id has not yet been created
by sema.open, the function creates it. If s is being passed, then semaphore s
returns the next free id or the given id.

This feature also allows you to write functions dumping the current semaphore state
to a file and re-load it later, see binio.writechar, binio.readchar, bytes.tobytes.

If the current internal administrative memory is exceeded, the function
automatically expands it. Note that if id is not the next semaphore id opened just
before, then Agena automatically switches to dynamic memory management
consuming "O(n)" of memory space instead of using just one 8-byte integer for the
internal counter.

See also: environ.ref, factory.count, utils.uuid.

sema.reset ([s])

Closes all allocated semaphores ids and also shrinks the internal memory used to
administer the semaphores to the default size, if possible. If semaphore s is given,
then all ids of this semaphore are reset.

The function returns nothing. See also: sema.shrink.

sema.shrink ([s])

Without any argument, shrinks the internal memory used to administer all global
semaphores ids so that it consumes the least necessary space. The same applies
to semaphore s if given. If internal memory size could be reduced, it returns true
and false otherwise. Note that due to performance reasons, sema.close does not
try to reduce memory consumption.

See also: sema.reset.

sema.state ([s])

Returns administrative information on the current global semaphore state if not
argument is given or on semaphore instance s, in a table.

The semaphores are internally stored using an 8 * 32 bits array by default. Each
32-bit chunk is called a `slot`.

agena >> 885

The 'firstfreeslot' field contains the number of the first slot that might harbour a
new semaphore. Note that once you have used sema.close, this may just be an
estimate.

The 'slot' sequence returns the bits set in all slots, as decimal non-negative
integers.

Field 'current' is an estimate of the last allocated semaphore id.

Key 'minopen' denotes the semaphore id with the smallest ID, 'maxopen' the one
with the largest ID.

'nextfree' denotes the number of the semaphore id if sema.open would be
called next.

'simplecounter_active' indicates whether the memory-efficient counting is active
(true) or dynamic memory management of the semaphore ids is in use (false).

'simplecounter' depicts the current semaphore id.

886 14 System & Environment

14.8 Coroutines

The operations related to coroutines comprise a sub-library of the basic library and
come inside the table coroutine. To find out what coroutines are, please have a
look at the website of the Lua programming language.

coroutine.resume (co [, val1, ···])

Starts or continues the execution of coroutine co. The first time you resume a
coroutine, it starts running its body. The values val1, ··· are passed as the arguments
to the body function. If the coroutine has yielded, resume restarts it; the values val1,
··· are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed
to yield (if the coroutine yields) or any values returned by the body function (if the
coroutine terminates). If there is any error, resume returns false plus the error
message.

coroutine.running ()

Returns the running coroutine, or null when called by the main thread.

coroutine.setup (f)

Creates a new coroutine, with body f. f must be an Agena function. Returns this
new coroutine, an object with type 'thread'.

coroutine.status (co)

Returns the status of coroutine co, as a string: 'running', if the coroutine is running
(that is, it called status); 'suspended', if the coroutine is suspended in a call to yield,
or if it has not started running yet; 'normal' if the coroutine is active but not running
(that is, it has resumed another coroutine); and 'dead' if the coroutine has finished
its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f. f must be an Agena function. Returns a
function that resumes the coroutine each time it is called. Any arguments passed to
the function behave as the extra arguments to resume. Returns the same values
returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield (···)

Suspends the execution of the calling coroutine. The coroutine cannot be running a
C function, a metamethod, or an iterator. Any arguments to yield are passed as
extra results to resume.

agena >> 887

14.9 debug - Debugging

This library provides the functionality of the debug interface to Agena programmes.
You should exert care when using this library. The functions provided here should be
used exclusively for debugging and similar tasks, such as profiling. Please resist the
temptation to use them as a usual programming tool: they can be very slow.
Moreover, several of its functions violate some assumptions about Agena code
(e.g., that variables local to a function cannot be accessed from outside or that
userdata metatables cannot be changed by Agena code) and therefore can
compromise otherwise secure code.

All functions in this library are provided inside the debug table. All functions that
operate over a thread have an optional first argument which is the thread to
operate over. The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters.
Using simple commands and other debug facilities, the user can inspect global
and local variables, change their values, evaluate expressions, and so on. A line
containing only the word cont finishes this function, so that the caller continues its
execution.

Note that commands for debug.debug are not lexically nested within any function,
and so have no direct access to local variables.

debug.funcname (level)

Returns the name of the function in which it (i.e. debug.funcname) has been
called. The return is a string. It is a wrapper for "debug.getinfo(level, "n").name". By
default, level 1 is used, but you may pass another level. If level is out of range,
then fail will be returned. If the function name could not be determined, null will be
returned. The function may be useful to create more flexible error messages.

debug.getconstants ()

Returns the internal set that stores global constants.

debug.getfenv (obj)

Returns the environment of object obj.

See also: debug.setfenv.

888 14 System & Environment

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook
function, the current hook mask, and the current hook count (as set by the
debug.sethook function).

debug.getinfo ([thread,] function [, what])

Returns a table with information about a function. You can give the function
directly, or you can give a number as the value of function, which means the
function running at level function of the call stack of the given thread: level 0 is the
current function (getinfo itself); level 1 is the function that called getinfo; and so on.
If function is a number larger than the number of active functions, then getinfo
returns null.

The returned table may contain all the fields returned by lua_getinfo, with the string
what describing which fields to fill in. The default for what is to get all information
available, except the table of valid lines. If present, the option 'f' adds a field
named func with the function itself. If present, the option 'L' adds a field named
activelines with the table of valid lines. If present, the option 'g' adds a field
named globals with a table of variables that have been globally assigned. The 'a'
option adds a field called arity that includes the number of arguments - excluding
possible varargs - expected by function. When given the 'v' formatter, the 'varargs'
entry indicates whether varargs can be passed to the function (? in its parameter
list). 'V' returns a table of all parameters and locally declared variables along with
their current values. 'c' returns activation record ar->i_ci setting.

For instance, the expression debug.getinfo(1, 'n').name returns a name of the
current function, if a reasonable name can be found, and debug.getinfo(print)
returns a table with all available information about the print function.

See also: debug.funcname.

debug.getlocal ([thread,] level, local)

This function returns the name and the value of the local variable with index local
of the function at level level of the stack. (The first parameter or local variable has
index 1, and so on, until the last active local variable.) The function returns null if
there is no local variable with the given index, and raises an error when called with
a level out of range. (You can call debug.getinfo to check whether the level is
valid.)

Variable names starting with '(' (open parentheses) represent internal variables
(loop control variables, temporaries, and C function locals).

See also: debug.getlocals, debug.setlocal.

agena >> 889

debug.getlocals (level [, option])

Like debug.getlocal, but returns a table of all local variables of a function running
at level level of the stack. The array part of the table includes the variable names,
the hash part the variables and their current values as key ~ value pairs. The other
returns, in the following order are: number of local variables including procedure
parameters, number of procedure parameters, a boolean indicating whether ?
(varargs) is part of the parameter list, a table with all unassigned local variables.

By passing any option, only an array of parameter and local variable names plus
the number of parameters (first entries in the array) will be returned.

debug.getmetatable (object)

Returns the metatable of the given object or null if it does not have a metatable.

See also: debug.setmetatable.

debug.getregistry ()

Returns the registry table, see Chapter 6.31. Do not change values with integer keys
- this would destroy occupied by userdata and could lead to undefined behaviour
of the interpreter.

debug.getrtable (f)

Returns a reference to the internal remember table of procedure f. Opposed to
rtable.rget, the function gives you direct read and write access to the remember
table, so use it with care.

debug.getstore (f)

Returns a reference to the internal storage table of procedure f. You can both
inspect this table as well as inject values into it. See debug.setstore or source file
lib/mapm.agn or Chapter 6.25 for an example of how to store precomputed
values, here Chebyshev coefficients, in a function, to be used later at function
invocation.

debug.getupvalue (f, up)

This function returns the name and the value of the upvalue with index up of the
function f. The function returns null if there is no upvalue with the given index.

See also: debug.getupvalues, debug.nupvalues, debug.setupvalue.

890 14 System & Environment

debug.getupvalues (f)

Returns all upvalues of an Agena closure f in a table, plus the number of upvalues.
The first entry in the table depicts the first upvalue, and so on. If there are no
upvalues, the return is null plus zero. The function does not accept closures written
in C.

See also: debug.getupvalue, debug.nupvalues, debug.setupvalue.

debug.nupvalues (f)

Returns the number of upvalues in an Agena closure. The function does not accept
closures written in C.

See also: debug.getupvalue, debug.getupvalues.

debug.setfenv (object, t)

Sets the environment of the given object to the given table t. Returns object.

See also: debug.getfenv.

debug.sethook ([thread,] hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe
when the hook will be called. The string mask may have the following characters,
with the given meaning:

• 'c': The hook is called every time Agena calls a function;
• 'r': The hook is called every time Agena returns from a function;
• 'l': The hook is called every time Agena enters a new line of code.

With a count different from zero, the hook is called after every count instructions.

When called without arguments, debug.sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has
triggered its call: 'call', 'return' (or 'tail return'), 'line', and 'count'. For line
events, the hook also gets the new line number as its second parameter. Inside a
hook, you can call getinfo with level 2 to get more information about the running
function (level 0 is the getinfo function, and level 1 is the hook function), unless the
event is 'tail return'. In this case, Agena is only simulating the return, and a call
to getinfo will return invalid data.

agena >> 891

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index local of the
function at level level of the stack. The function returns null if there is no local
variable with the given index, and raises an error when called with a level out of
range. (You can call getinfo to check whether the level is valid.) Otherwise, it returns
the name of the local variable.

See also: debug.getlocal.

debug.setmetatable (object, t)

Sets the metatable for the given object to the given table t (which can be null).

See also: debug.getmetatable.

debug.setstore (f, t)

If not yet established, sets up a store for procedure f with the contents of table t. If
already established, adds all the key~value pairs in table t to the internal store of
procedure f. If t is null, then the store is deleted entirely.

See also: debug.getstore.

debug.setupvalue (f, up, value)

This function assigns the value value to the upvalue with index up of the function f.
The function returns null if there is no upvalue with the given index. Otherwise, it
returns the name of the upvalue.

See also: debug.getupvalue.

debug.system ()

Returns a table with the following system information: The size of various C types
(char, int, long, long long, float, double, int32_t, int64_t), the smallest and largest
numeric values for C doubles, C long ints, C long long ints, and C unsigned long
ints (all compiled into the Agena binary), the endianness of your platform, the
hardware and the operating system for which the Agena executable has been
compiled.

See also: environ.kernel.

892 14 System & Environment

debug.traceback ([thread,] [message])

Returns a string with a traceback of the call stack. An optional message string is
appended at the beginning of the traceback. This function is typically used with
xpcall to produce better error messages.

agena >> 893

894 14 System & Environment

Chapter Fifteen

Graphics

agena >> 895

896 15 Graphics

15 Graphics

15.1 gdi - Graphic Device Interface package

As a plus package, this graphics interface is not part of the standard distribution
and must be activated with the import statement, e.g. import gdi.

The gdi package provides functions to plot graphics either to a window or a PNG,
GIF, JPEG, FIG, or PostScript file. It is available for the Solaris, Linux, Mac OS X for Intel
CPUs, and Windows editions of Agena. There is an experimental OS/2 - ArcaOS
version that is still experimental and it can create FIG and PostScript files only. The
package is not available in the 64-bit editions.

The gdi package provides procedures to plot basic geometric objects such as
points, lines, circles, ellipses, rectangles, etc.

It also provides means to easily plot graphs of univariate functions and geometric
objects where the user does not need pay attention for proper axis ranges,
mapping to the internal coordinate systems, etc.

15.1.1 Opening a File or Window

Operation starts by opening a device - window or file - with the gdi.open function.
The function returns a device handle for later reference. Almost all functions
provided by the package request this device handle.

> import gdi;

> d := gdi.open(640, 480);

15.1.2 Plotting Functions

Plot a point to the window at x=200 and y=100:

> gdi.point(d, 200, 100);

Plot a line between two points [200, 150] and [300, 200]:

> gdi.line(d, 200, 150, 300, 200);

Draw a circle and a filled circle. Besides giving the device number, pass a centre (x
and y co-ordinates) and a radius.

> gdi.circle(d, 320, 240, 50);

> gdi.circlefilled(d, 400, 240, 50);

agena >> 897

15.1.3 Colours, Part 1

All functions accept a colour option passed as an additional - the last - argument.

The colour must be given as an integer that must be determined by a call to the
gdi.ink function. gdi.ink requires the device number, and three RGB colour values
in the range [0 .. 1]. Each colour should be determined only once.

There are 26 predefined colours with numbers 0 to 25, automatically set at each
invocation of a new device (call to the gdi.open function). Thus, these 26 basic
colours do not need to be explicitly set with gdi.ink.

The default colours are:

purple20khaki13sky-blue6
red19light lilac12cyan5

yellow25light sky-blue18lilac11greenish4
light lilac24light greenish17bordeaux10light blue3
purple23bright green16light sky-blue9blue2
dark orange22grey-blue15greenish8black1
purple21grey14light green7white0

> cyan := gdi.ink(d, .1, .5, .5);

> gdi.rectanglefilled(d, 200, 200, 400, 400, cyan);

If you want to set a default colour for all subsequent drawings, use gdi.useink.

15.1.4 Closing a File or Window

To finally close the window, use gdi.close.

> gdi.close(d);

15.1.5 Supported File Types

To create image files, simply pass the name of the file as the third argument to
gdi.open. Agena determines the type of the image file from its suffix.

If a file name ends in .png, it creates a PNG file. If a file name ends in .gif, it
creates a GIF file. If a file name ends in .jpg, it creates a JPEG file. Likewise, the
suffix .fig creates a FIG, and .ps generates a PostScript file.

898 15 Graphics

15.1.6 Plotting Graphs of Univariate Functions

The gdi.plotfn function plots graphs of functions in one real to a window or file. It
accepts various options for colour, line thickness, line style, sizing, axis type, etc. The
function takes care for opening a device, plotting the graph and axes, so that the
user does not need to draw them manually. The function requires a function and
the left and right border on the x-axis.

> import gdi alias

> plotfn(<< x -> x*sin(x) >>, -10, 10);

For further details and examples see gdi.plotn. For available plot options, see
gdi.options. See calc.nokspline which along with gdi.plotfn generates a smoothed
graph through a given list of interpolation points.

15.1.7 Plotting Geometric Objects Easily

Like gdi.plotfn, the gdi function plot outputs geometric objects in the Cartesian
co-ordinate system with the point [0, 0] its centre. It accepts options for user-defined
colours, window sizes, axis types, etc. The function opens a device automatically,
plots all the objects that are stored in a PLOT data structure optionally along with
axes, a user-defined background colour, etc.

The function requires the PLOT structure as the first argument, and any options as
additional arguments. Contrary to gdi.plotfn, it does not accept left, right, lower or
upper borders, for it determines the borders automatically.

A PLOT data structure is a sequence of the user-defined type 'PLOT', and contains
the geometric objects with their positions and respective colours.

The following geometric objects can be drawn with gdi.plot:

TRIANGLEFILLEDfilled triangleELLIPSEFILLEDfilled ellipse
TRIANGLEtriangleELLIPSEellipse
RECTANGLEFILLEDfilled rectangleCIRCLEFILLEDfilled circle
RECTANGLErectangleCIRCLEcircle
POINTpointARCFILLEDfilled arc
LINElineARCarc
NameObjectNameObject

A line stretching from [0, 0] to [1, 1] in grey colour (RGB values 0.5, 0.5, 0.5) for
example is represented as follows:

LINE(0, 0, 1, 1, [0.5, 0.5, 0.5])

A PLOT structure can be created with the gdi.structure function that optionally
accepts the minimum number of entries (for speed).

agena >> 899

> import gdi alias;

> s := structure();

Any geometric objects is inserted into the structure with its respective gdi.set*
function. The line LINE(0, 0, 1, 1, [0.5, 0.5, 0.5]) for example is added with the
gdi.setline function:

> setline(s, 0, 0, 1, 1, [0.5, 0.5, 0.5]);

A PLOT structure can include any number of objects:

> setcircle(s, 0, 0, 0.5, [1, 0, 0]);

Finally, the plot statement puts them onto the screen:

> plot(s);

The following table shows the various functions to create objects:

settriangle-
filled

filled
triangle

setpoint
pointsetcircle-

filled
filled
circle

settriangletrianglesetlinelinesetcirclecircle

setrectangle-
filled

filled
rectangle

setellipse-
filled

filled
ellipse

setarcfilled
filled
arc

setrectanglerectanglesetellipseellipsesetarcarc
FunctionObjectFunctionObjectFunctionObject

15.1.8 Colours, Part 2

The following colour names (of type string) are built in and are accepted by the
gdi.plot and gdi.plotfn functions only, so that you must not define colours with
gdi.useink or gdi.ink when plotting sets of points or graphs of functions:

'aquamarine', 'black', 'blue', 'bordeaux', 'brown', 'coral', 'cyan',
'darkblue', 'darkcyan', 'darkgrey', 'gold', 'green', 'grey', 'khaki',
'lightgrey','magenta', 'maroon', 'navy', 'orange', 'pink', 'plum', 'red',
'sienna', 'skyblue', 'tan', 'turquoise', 'violet', 'wheat', 'white',
'yellow', 'yellow2'.

15.1.9 GDI Functions

gdi.arc (d, x, y, r1, r2, a1, a2 [, colour])

Draws an arc around the centre [x, y] with x radius r1, y radius r2, and the starting
and ending angles a1, a2, given in degrees [0 .. 360], on device d. A colour (an
integer, see Chapter 15.1.3), may be given optionally.

900 15 Graphics

gdi.arcfilled (d, x, y, r1, r2, a1, a2 [, colour])

Draws a filled arc around the centre [x, y] with x radius r1, y radius r2, and the
starting and ending angles a1, a2, given in degrees [0 .. 360], on device d. The arc
is filled with either the default colour, or the one given by colour (an integer, see
Chapter 15.1.3).

gdi.autoflush (d, state)

Sets the auto flush mode for device d to either true or false (second argument). If
state is true (the default), then after each graphical operation the output is flushed
so that it is immediately displayed.

This may decrease performance significantly with a large number of graphical
operations - Sun Sparcs seem to be the only exceptions -, so it is advised to

1. set state to false right after opening device d before calling any other function
that plots something,

2. call gdi.flush after the graphical operations have been completed,
3. set state to true thereafter.

gdi.background (d, c)

Sets the background colour on device d. c must be a number determined by
gdi.ink, see Chapter 15.1.3. Note that in Windows, the image is also cleared so that
the background is properly displayed, whereas in UNIX, the image is not reset.

gdi.circle (d, x, y, r [, colour])

Draws a circle around the centre [x, y] with radius r, on device d. A colour (an
integer, see Chapter 15.1.3), may be given optionally.

gdi.circlefilled (d, x, y, r [, colour])

Draws a filled circle around the centre [x, y] with radius r, on device d. The circle is
filled with either the default colour, or the one given by colour (an integer, see
Chapter 15.1.3).

gdi.clearpalette (d)

Removes all inks on device d.

gdi.close (d)

Closes the window or file referred to by device id d. If d points to a file, all image
contents is saved to it.

agena >> 901

gdi.dash (d, s)

Sets the line dash on device id d. The sequence s includes a vector of dash lengths
(black, white, black, ...). If s is the empty sequence, a solid line is restored.

gdi.ellipse (d, x, y, r1, r2 [, colour])

Draws an ellipse around the centre [x, y] with x radius r1, and y radius r2, on device
d. A colour (an integer, see Chapter 15.1.3), may be given optionally.

gdi.ellipsefilled (d, x, y, r1, r2 [, colour])

Draws a filled ellipse around the centre [x, y] with x radius r1, and y radius r2, on
device d. The ellipse is filled with either the default colour, or the one given by
colour (an integer, see Chapter 15.1.3).

gdi.flush (d)

Writes all buffered contents to the window or file referred to by device id d.

See also: gdi.autoflush.

gdi.fontsize (d, s)

Sets the font size s for text written by gdi.text, for device d.

See also: gdi.text.

gdi.hasoption (t, o)

Iterates a table t and returns true if one of its keys is equal to o.

See also: gdi.options.

gdi.initpalette (d)

Sets up basic colours on device d.

gdi.ink (d, r, g, b)

Returns a palette colour value - an integer - for the colour given by its RGB values r
(red), g (green), and b (blue), for device d. r, g, and b must be numbers x with 0 x [
 1. The palette colour value can be given as an optional argument in most of the[

gdi functions, or be used in the gdi.useink function. Subsequent calls with the same
arguments return different palette values.

902 15 Graphics

gdi.lastaccessed ()

Returns the id of the last accessed device as a number.

gdi.line (d, x1, y1, x2, y2 [, colour])

Draws a line from the first point [x1, y1] to the second point [x2, y2] on device d. A
colour, an integer (see Chapter 15.1.3), may be given optionally.

gdi.lineplot (p [, options])

gdi.lineplot ([p1 [, p2, ···]], [, options])

Takes one or more tables or sequences consisting of points xk:yk and generates a
plot with all points connected by lines. xk and yk must be finite numbers. The function
automatically determines the common proper borders automatically.

For more information see: gdi.pointplot, as gdi.lineplot is just a wrapper for the
former with the 'connect' option set to true.

gdi.mouse (d [, offset])

Returns three numbers: the current horizontal and vertical positions of the mouse
relative to the screen, and its button state button_state. The button state is coded
as a positive integer.

By applying a bitmask to the button state, you can query whether the left or the right
mouse button has been pressed:

� button_state && 0x0100 = 0x0100: left button has been pressed,
� button_state && 0x0400 = 0x0400: right button has been pressed.

gdi.open (width, height)

gdi.open (width, height, filename)

In the first form, opens a window with the given width and height and returns a
device number (an integer) for later reference needed by all other gdi functions.

In the second form, creates the image file with name filename, the given width
and height and returns a device number (an integer) for later reference needed by
all other gdi functions.

The type of the image file format is determined by the suffix in filename:

'output.ps'PostScript format (DIN A4 size).ps
'c:/images/circle.png'PNG format.png
'c:/images/fractal.jpg'JPEG format.jpg
'c:/images/fractal.gif'GIF format.gif
'/export/home/misc/fern.fig'FIG format.fig
ExampleResulting image file formatSuffix

agena >> 903

gdi.options (···)

Checks the given plotting options for correctness and returns them in a new table,
along with the defaults for options that have not been passed to this function. The
function currently only works with the gdi.plot, gdi.pointplot, and gdi.plotfn
functions.

Valid options (all key~value pairs) are:

'square':true
in a plot, uses the same scale for the
y-axis as given for the x-axis

'square'

'res':(1024:768)
resolution of the window or image file in
pixels (pair of numbers)

'res'

'mouse':true

prints the current position of the mouse to
the console. Click the right mouse button
to finish. Default is false.

'mouse'

'maxtickmarks':5
sets the maximum number of tickmarks
on both axes, by default is (around) 20.

'maxtickmarks'

'linestyle':10

sets the dash style (a positive number) for
the graph to be plotted (gdi.plotfn,
gdi.lineplot, and gdi.pointplot functions
only)

'linestyle'

'labelsize':6
sets the font size (a positive number) for
axis labels (gdi.plotfn function only)

'labelsize'

'labels':false
if set to false, no labels are printed
(default is true)

'labels'

'file':'image.png'
indicates the name of the file (a string) to
be created

'file'

'colourfn':
 << x -> ... >>sets a colouring function'colourfn'

'colour':'navy'

sets the default colour (a string, see
Chapter 15.1.3) for the objects to be
plotted. Note that the individual colour of
an object overrides the one given by this
option

'colour'

'bgcolour':
 'yellow'

sets the background colour (a colour
string, see Chapter 15.1.3)

'bgcolour'

'axescolour':'red'
defines the colour of the axes (a colour
string, see Chapter 15.1.3)

'axescolour'

'axes':'normal'

'none' - do not print axes
'normal' - print axes with labels and tick
marks
'boxed' - print axes at top and bottom,
and at the left and the right side
'frame' - print axes at the bottom and at
the left side

'axes'

ExampleMeaning (value)Option (key)

904 15 Graphics

'yscale':0.5
sets the step size for the tick marks on the
vertical axis

'yscale'

'xscale':0.5
sets the step size for the tick marks on the
horizontal axis

'xscale'

'y':0:5
vertical range (lower and upper border)
over which the plot is displayed

'y'

'x':(-2):2
horizontal range (left and right border)
over which the plot is displayed

'x'

'titlesize':15
sets the font size (a positive number) of
the title (gdi.plotfn function only)

'titlesize'

'titlecolour':
 'red'

sets the colour (a string, see Chapter
15.1.3) of the title (gdi.plotfn only)

'titlecolour'

'title':
'Graph of sin(x)'

sets the title (a string) for the plot
(gdi.plotfn function only)

'title'

'thickness':2

sets the thickness (a positive number) of
the line to be plotted (gdi.plotfn,
gdi.lineplot, and gdi.pointplot functions
only)

'thickness'

ExampleMeaning (value)Option (key)

The function is written in Agena and included in the lib/gdi.agn file.

See also: gdi.setoptions.

gdi.plot (p [, options])

Plots PLOT structures stored in p. PLOT structures are points, lines, circles, triangles,
rectangles, arcs, and ellipses, along with the information given by its optional INFO
structure.

A PLOT structure is created by a call to gdi.structure, and the respective gdi.set*
functions.

The function accepts all plot options (see gdi.options).

Example:

> p := gdi.structure();

> gdi.setline(p, 0, 0, 1, 1, 'navy');

> gdi.setcircle(p, 0, 0, 1, 'red');

> gdi.plot(p);

> gdi.plot(p, axes='normal', square=true, x=-2:2, y=-2:2);

The function is written in Agena and included in the lib/gdi.agn file.

agena >> 905

gdi.plotfn (f, a, b [[c, d], options])

gdi.plotfn (ft, a, b [[c, d], options])

Plots graphs of one or more functions, with a straight line drawn between
neighbouring points, which are automatically computed.

In the first form, the graph of the function f is plotted.

In the second form, by passing a table ft of functions, the graphs of the functions
are plotted on one device - to one file or window.

If the file option is missing, the graphs are plotted in a window (UNIX/Mac and
Windows, only). If the file option is given, the file type is determined by the suffix of
the file you pass to this option.

a and b (both numbers with a < b) must be given explicitly and specify the horizontal
range. If c and d are missing, the vertical range is determined automatically.

You may specify one or more options for proper layout of the graphs. See
gdi.options for more details.

If a table of function is passed, you may specify an individual colour, line style, and
the thickness for each of their graphs. Just pass a table of settings at the right-hand
side of the respective option. See the examples below.

See gdi.autoflush if you experience performance problems while plotting.

Examples:

Plot the graph of the sine function on the horizontal range a to b. The vertical range
is computed automatically.

> import gdi;

> gdi.plotfn(<< x -> sin(x) >>, -10, 10);

Plot the graph of the sine function on the horizontal range a to b and the vertical
range c to d.

> gdi.plotfn(<< x -> sin(x) >>, -10, 10, -2, 2);

Specify a colour other than black:

> gdi.plotfn(<< x -> sin(x) >>, -10, 10, colour='red');

Give a specific thickness for the line:

> gdi.plotfn(<< x -> sin(x) >>, -10, 10, thickness=3);

Combine the options - their order does not matter:

906 15 Graphics

> gdi.plotfn(<< x -> sin(x) >>, -10, 10, thickness=3, colour='red');

Plot two and more functions:

> gdi.plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -10, 10);

Give options, too:

> gdi.plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -10, 10,
> colour='navy');

Specify individual colours. The graph of the sine function shall be red, the cosine
function shall by cyan:

>

> gdi.plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -10, 10,

> colour=['red', 'cyan']);

Choose another colour for the axes and another axes style:

> gdi.plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -10, 10,
> colour=['red', 'cyan'], axescolour='grey', axes='boxed'
> res=480:200);

Do not draw axes:

> gdi.plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -10, 10,
> colour=['red', 'cyan'], axes='none');

If you want to set default options that will always be used by plotfn and that do not
need to be specified with each call to plotfn, use gdi.setoptions:

> gdi.setoptions(colour='red', axescolour='grey');

> gdi.plotfn([<< x -> sin(x) >>, << x -> cos(x) >>], -10, 10)

The function is written in Agena and included in the lib/gdi.agn file.

See also: calc.clampedspline, calc.nakspline.

agena >> 907

gdi.point (d, x, y [, colour])

Plots a point with co-ordinates [x, y] on device d. A colour, an integer (see Chapter
15.1.3), may be given optionally.

gdi.pointplot (p [, options])

gdi.pointplot ([p1 [, p2, ···]], [, options])

Takes one or more tables or sequences consisting of points xk:yk and generates a
plot with no points connected by lines. xk and yk must be finite numbers. The
function automatically determines the common proper borders automatically.

By passing the option colour=c, where c is either a string denoting a colour, or a
table of strings denoting colours, you can set individual colours for the distributions.
The default is 'black'.

By passing the option symbol=s, where s is the name of a symbol or a table of
strings denoting symbols, each point in a distribution is plotted accordingly.
Supported symbols are: 'cross', 'circle', 'circlefilled', 'box', 'boxfilled',
'triangle', 'trianglefilled', 'crosscircle', and 'dot'. The default is 'dot'.

The size of the symbols can be controlled by the symbolsize option which denotes
a radius in pixels. Only one common size can be set for all distributions passed. The
default is 3.

Alternatively, by passing the connect=true option, you can connect all points in
each distribution with a line.

The function supports various plotting options, see gdi.options.

In the first form, only one distribution p is passed, in the second form you can pass
various distributions p1, p2, etc. by putting them into a table.

The function ignores y-values if they evaluate to infinity or undefined.
Example:

> s := seq(0.1, 0.2, 0.1, 0.3, 1, 2, 5, -1, 0);

> p := sequences.new(<< x -> x:s[x] >>, 1, size s);

> s1 := << x -> ln(x) >> @ s;

> p1 := sequences.new(<< x -> x:s1[x] >>, 1, size s1);

> gdi.pointplot([p, p1], colour=['red', 'black'],
> symbol=['circle', 'cross'], symbolsize=5, connect=true);

The function is written in Agena and included in the lib/gdi.agn file.

See also: gdi.lineplot.

908 15 Graphics

gdi.rectangle (d, x1, y1, x2, y2 [, colour])

Draws a rectangle with the lower left and upper right corners [x1, y1] and [x2, y2] on
device d. A colour (an integer, see Chapter 15.1.3), may be given optionally for the
lines.

gdi.rectanglefilled (d, x1, y1, x2, y2 [, colour])

Draws a filled rectangle with the lower left and upper right corners [x1, y1] and [x2,
y2] on device d. The rectangle is filled with either the default colour, or the one
given by colour (an integer, see Chapter 15.1.3).

gdi.reset (d)

Clears the entire window or image file contents of device d.

gdi.resetpalette (d)

Clears the colour palette by removing all inks and reallocates basic colours, on
device d.

gdi.setarc (s, x, y, r1, r2, a1, a2 [, colour [, thickness]])

Inserts an arc around the centre [x, y] with x radius r1, y radius r2, and the starting
and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s. The
optional colour argument may be either a string denoting a colour like 'black',
'red', etc., or a table with three RGB numeric values in the range 0 .. 1. thickness
is the thickness of the arc, with 1 its default.

gdi.setarcfilled (s, x, y, r1, r2, a1, a2 [, colour])

Inserts a filled arc around the centre [x, y] with x radius r1, y radius r2, and the
starting and ending angles a1, a2, given in degrees [0 .. 360], to PLOT structure s.
The optional colour argument may be either a string denoting a colour like 'black',
'red', etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.setcircle (s, x, y, r [, colour [, thickness]])

Inserts a circle around the centre [x, y] with radius r, to PLOT structure s. The optional
colour argument may be either a string denoting a colour like 'black', 'red', etc.,
or a table with three RGB numeric values in the range 0 .. 1. thickness is the
thickness of the circle, with 1 its default.

gdi.setcirclefilled (s, x, y, r [, colour])

Inserts a filled circle around the centre [x, y] with radius r, to PLOT structure s. The
optional colour argument may be either a string denoting a colour like 'black',
'red', etc., or a table with three RGB numeric values in the range 0 .. 1.

agena >> 909

gdi.setellipse (s, x, y, r1, r2 [, colour [, thickness]])

Inserts an ellipse around the centre [x, y] with x radius r1, and y radius r2, to PLOT
structure s. The optional colour argument may be either a string denoting a colour
like 'black', 'red', etc., or a table with three RGB numeric values in the range 0 ..
1. thickness is the thickness of the ellipse, with 1 its default.

gdi.setellipsefilled (s, x, y, r1, r2 [, colour])

Inserts a filled ellipse around the centre [x, y] with x radius r1, and y radius r2, to
PLOT structure s. The optional colour argument may be either a string denoting a
colour like 'black', 'red', etc., or a table with three RGB numeric values in the
range 0 .. 1.

gdi.setinfo (s, ···)

Inserts information on the minimum and maximum values (x- and y values) and their
scaling of all the geometric objects included in the PLOT data structure s into its
INFO substructure. The INFO object always is the last element in s.

The options xdim=a:b and ydim=c:d set the x-range and y-range on which objects
will be plotted, respectively, where a, b, c, d are numbers (i.e. borders). The square =
true option scales the x and y dimensions equally, the square = false does not.

The information is useful so that gdi.plot can automatically determine the proper
plotting ranges for s.

Example:

> gdi.setinfo(s, xdim = 0:10, ydim = -5:5, square = false);

gdi.setline (s, x1, y1, x2, y2 [, colour [, thickness]])

Inserts a line drawn from point (x1, y1) to point (x2, y2) with the optional colour into
the PLOT structure s. x1, y1, x2, y2 should be numbers. colour may be either a string
denoting a colour like 'black', 'red', etc., or a table with three RGB numeric
values in the range 0 .. 1. thickness is the thickness of the line, with 1 its default.

gdi.setoptions (···)

Checks the given plotting options (all key~value pairs) for correctness and sets
them as the respective defaults for subsequent calls to the gdi.plot and gdi.plotfn
functions.

For a list of valid plotting options, see gdi.options.

Internally, the function assigns the given options to the global environment variable
environ.gdidefaultoptions which is checked by gdi.plot and gdi.plotfn.

910 15 Graphics

gdi.setpoint (s, x, y [, colour])

Inserts a point with co-ordinates [x, y] to PLOT structure s. The optional colour
argument may be either a string denoting a colour like 'black', 'red', etc., or a
table with three RGB numeric values in the range 0 .. 1.

gdi.setrectangle (s, x1, y1, x2, y2 [, colour [, thickness]])

Inserts a rectangle with the lower left and upper right corners [x1, y1] and [x2, y2] to
PLOT structure s. The optional colour argument may be either a string denoting a
colour like 'black', 'red', etc., or a table with three RGB numeric values in the
range 0 .. 1. thickness is the thickness of the arc, with 1 its default.

gdi.setrectanglefilled (s, x1, y1, x2, y2 [, colour])

Inserts a filled rectangle with the lower left and upper right corners [x1, y1] and [x2,
y2] to PLOT structure s. The optional colour argument may be either a string
denoting a colour like 'black', 'red', etc., or a table with three RGB numeric
values in the range 0 .. 1.

gdi.settriangle (s, x1, y1, x2, y2, x3, y3 [, colour [, thickness]])

Inserts a triangle with the corners [x1, y1], [x2, y2], and [x3, y3] to PLOT structure s.
The optional colour argument may be either a string denoting a colour like 'black',
'red', etc., or a table with three RGB numeric values in the range 0 .. 1. thickness
is the thickness of the arc, with 1 its default.

gdi.settrianglefilled (s, x1, y1, x2, y2, x3, y3 [, colour])

Inserts a filled triangle with the corners [x1, y1], [x2, y2], and [x3, y3] to PLOT structure
s. The optional colour argument may be either a string denoting a colour like
'black', 'red', etc., or a table with three RGB numeric values in the range 0 .. 1.

gdi.structure ([n])

Creates a PLOT data structure with n pre-allocated entries. Of course, the structure
may contain less or more entries. If n is not given, no pre-allocation is done which
may slow down inserting new objects into s later in a session. The return is the PLOT
data structure (a sequence of user type ‘PLOT’).

See also: gdi.setinfo.

gdi.system (d, x, y, xs, ys)

Sets the user's co-ordinate system on device d, where x, y, xs, and ys are numbers.
The pixel [x, y] determines the origin. The horizontal unit is given in xs pixels, the
vertical unit in ys pixels. The function returns nothing.

agena >> 911

> d := open(640, 480);

> gdi.system(d, 320, 240, 320, 240);

> gdi.line(d, -1, 0, 1, 0);

> gdi.line(d, 0, -1, 0, 1);

gdi.text (d, x, y, str [, colour])

Prints the string str at [x, y] on device d. A text colour (an integer), may be given
optionally.

See also: gdi.fontsize.

gdi.thickness (d, t)

Sets the default thickness for all lines to t pixels, on device d.

gdi.triangle (d, x1, y1, x2, y2, x3, y3 [, colour [, thickness]])

Draws a triangle with the corners [x1, y1], [x2, y2], and [x3, y3] on device d. A colour
(an integer, see Chapter 15.1.3), may be given optionally for the lines. thickness is
the thickness of the triangle, with 1 its default.

gdi.trianglefilled (d, x1, y1, x2, y2, x3, y3 [, colour])

Draws a filled triangle with the corners [x1, y1], [x2, y2], and [x3, y3] on device d. The
triangle is filled with either the default colour, or the one given by colour (an integer,
see Chapter 15.1.3).

gdi.useink (d, c)

Sets the default colour c (a number) for all subsequent drawings, on device d. c
must be a number determined by gdi.ink.

912 15 Graphics

15.2 fractals - Library to Create Fractals

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the import statement, e.g.
import fractals.

Since it needs gdi graphics functions, it is of no use in DOS. The OS/2 - ArcaOS
version is still experimental. The package is not available in the 64-bit edition.

The library creates fractals and includes three types of functions:

1. escape-time iteration functions like fractals.mandel,
2. auxiliary mathematical functions lie fractals.flip,
3. fractals.draw to draw fractals using escape-time iteration functions.

See Chapter 15.2.3 for some examples.

15.2.1 Escape-time Iteration Functions

fractals.amarkmandel (x, y, iter, radius)

This function computes the escape-time fractal created by Mark Peterson of the
formula:

z := z2 * c0.1 + c

It returns the number of iterations a point [x, y] needs to escape radius. The
maximum number of iterations conducted is given by iter.

See also: fractals.markmandel.

fractals.albea (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * bea(z), where lambda
is the point 1!0.4 and z =x!y, and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius. The function
is written in Agena (see lib/fractals.agn).

See also: fractals.lbea.

fractals.alcos (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * cos(z), where lambda
is the point 1!0.4 and z =x!y, and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius. The function
is written in Agena (see lib/fractals.agn).

agena >> 913

fractals.alcosxx (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * cosxx(z), where
lambda is the point 1!0.4 and z =x!y, and iter is the maximum number of
iteration. Its return is the number of iterations the function needs to escape radius.
The function is written in Agena (see lib/fractals.agn).

The function implements FRACTINT's buggy cos function till v16, and creates
beautiful fractals.

fractals.alsin (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * sin(z), where lambda is
the point 1!0.4 and z =x!y, and iter is the maximum number of iteration. Its return
is the number of iterations the function needs to escape radius. The function is
written in Agena (see lib/fractals.agn).

fractals.anewton (x, y, iter, radius)

This function implements Newton's formula for finding the roots of z3 - 1, with z = x!y,
and returns the number of iterations it takes for an orbit to be captured by a root.
The iteration formula itself is

z := z - (z3-1)/(3*z2)

The function stops if |z3-1| < radius or the maximum number of iterations iter is
reached. The function is written in Agena (see lib/fractals.agn).

See also: fractals.newton.

fractals.esctime (f, x, y, iter [, radius])

Computes an escape-time fractal given by procedure f. x and y represent the
initial point (x, y) with x and y two numbers. iter is the number of iterations to be
done before bailing out. radius by default is 2. The return is the number of iterations
it took for the point (x, y) to move outside radius.

Example:

> fractals.esctime(<< (z, c) -> z^2 + c >>, -1, 0.5, 128, 2):
4

fractals.lbea (x, y, iter, radius)

This function calculates the Julia set of the formula lambda * bea(z), where lambda
is the point 1!0.4 and z =x!y, and iter is the maximum number of iteration. Its
return is the number of iterations the function needs to escape radius.

See also: fractals.albea.

914 15 Graphics

fractals.mandel (x, y, iter, radius)

This function computes the Mandelbrot set of the formula

z := z2 + c

using complex arithmetic. It returns the number of iterations a point [x, y] needs to
escape radius. The maximum number of iterations conducted is given by iter.

fractals.mandelbrot (x, y, iter, radius)

Like fractals.mandel, but written in Agena and using complex arithmetic.

fractals.mandelbrotfast (x, y, iter, radius)

Like fractals.mandel, but written in Agena and using real arithmetic.

fractals.mandelbrottrig (x, y, iter, radius)

Like fractals.mandel, but written in Agena and using real arithmetic and
trigonometric functions (see lib/fractals.agn).

fractals.markmandel (x, y, iter, radius)

Like fractals.amarkmandel, but implemented in C.

fractals.newton (x, y, iter, radius)

Like fractals.anewton, but implemented in C.

15.2.2 The Drawing Function fractals.draw

The function takes an escape-time iterator, various other parameters, and creates
either image files or windows of fractals. By default a window is opened (see file
option on how to create image files).

fractals.draw (iterator, x_centre, y_centre, x_width [, options])

Draws a fractal given by the escape-time iterator function iterator with image
centre [x_centre, y_centre] and of the total length on the x-axis x_width. x_centre
and y_centre are numbers whereas x_width is a positive number.

Options are:

agena >> 915

with n a non-negative number:
determines the number of rows after an
image is being flushed to a file or
window during computation

update ~ n

res ~ 1024:768resolution of the window or image, with
width and height positive numbers.
Default is 640:480

res ~ width:height

radius ~ 2iteration radius r, a positive numberradius ~ r

mouse ~ truedisplay pointer co-ordinates on console
after image has been finished, if bool
= true. Default: bool = false. Click the
right mouse button to quit printing
co-ordinates.

mouse ~ bool

map ~ 'basic.map'FRACTINT colour map to be used to
draw the fractal.

The FRACTINT maps can be
downloaded separately from:
http://agena.sourceforge.net/
downloads.html#fractintmaps

Put these files into the share folder of
your Agena distribution, preserving the
subfolder fractint. A valid path may thus
be: /usr/agena/share/fractint.

Alternatively, set the environment
variable environ.fractintcolourmaps to
the folder where your map files reside.

map ~
'filename.map'

lambda ~ 1!0.4lambda value p, a complex number,
for fractals.[a]l* functions like albea

lambda ~ p

iter ~ 512maximum number of iterations with n a
positive number; default is 128

iter ~ n

file ~ 'mandel.gif'creates a GIF, PNG, or JPEG file, if the
file suffix is .gif, .png, or .jpg

file~'filename.suf'

colour ~ << x ->
0, 0, 0.05*x >>
colour ~ blue

a colouring function f of the form f :=
<< x -> r, g, b >>. Predefined
functions are: red, blue, violet, cyan,
cyannew.

colour ~ f

ExampleMeaningOption

Notes on the update option:

On all operating systems the default is 1. This behaviour can globally be changed in
a session by assigning a non-negative integer to the environment variable
environ.fractscreenupdates.

916 15 Graphics

In Sun x86 Solaris and Linux, update ~ 0 is the fastest, but when outputting to a
window, it does not plot anything while the fractal is being computed (of course, if
computation finishes, the fractal will be displayed).

Sparcs do not show any effect when changing the update rate, at least with
XVR-1200 VGAs. The same applies to Microsoft Windows XP and 7, as well as Mac
OS X 10.5.

15.2.3 Examples

> import fractals alias

> draw(fractals.lbea, 1.75, 0.5, 0.001, map='grayish.map', radius=1024,
> iter=1024, lambda=1!0.4);

There are further examples at the bottom of the lib/fractals.agn file residing in the
main Agena library folder.

> draw(mandel, -1.0037855135, 0.2770816775, 0.086686273, iter=255);

> draw(mandel, -1.0037855135, 0.2770816775, 0.086686273, file='out.png',
> iter=255, res=1024:768); # create a PNG file of the Mandelbrot set

agena >> 917

918 15 Graphics

Chapter Sixteen

Utilities

agena >> 919

920 16 Utilities

16 Utilities

16.1 utils - Utilities

The utils package provides miscellaneous functions.

utils.calendar ([x])

Converts x seconds (an integer) elapsed since the beginning of an epoch to a
table representing the respective calendar date in your local time. The table
contains the following keys with the corresponding values:

� 'year' (integer)
� 'month' (integer)
� 'day' (integer)
� 'hour' (integer)
� 'min' (integer)
� 'sec' (integer)
� 'wday' (integer, day of the week)
� 'yday' (integer, day of the year)
� 'DST' (Boolean, is Daylight Saving Time)

If x is null or not specified, then the current system time will be returned. If x is
invalid, the function will issue fail.

See also: os.now.

utils.checkdate (obj)

utils.checkdate (year, month, day [, hour [, minute [, second]]])

In the first form, receives a date of the form year, month, date [, hour [, minute [,
second]]], with these values in table or sequence obj being integers, and checks
whether the given date and optionally time exists and returns true or false.

In the second form, receives the given integers, and conducts the same operation.

utils.decodea85 (str)

Decodes the ASCII85 encoded string str and returns the result as a string.

See also: utils.encodea85.

utils.decodeb32 (str)

(3.10.3 and later) Decodes the Base32 encoded string str and returns the result as
a string.

agena >> 921

See also: utils.encodeb32, utils.encodeb85.

utils.decodeb64 (str)

Decodes the Base64 encoded string str and returns the result as a string.

See also: utils.encodeb32, utils.encodeb64.

utils.decodeb85 (str [, option])

Decodes the Base85 Z85 encoded string str and returns the result as a string. If
option is set to true, then the function determines which characters in str might be
invalid. The default is false.

See also: utils.encodeb32, utils.encodeb85.

utils.decodexml (str [, options])

Reads a string str containing an XML stream and converts it into a dictionary.

You can pass one or two options in any order:

If the Boolean option false is given, the function does not automatically try to
convert strings representing numbers, complex numbers and the Booleans true,
false, and fail into the proper Agena representation.

If the option 'nocomment' is given, the function does not return XML comments.

The function provides some checking (basic syntax and balanced tags), and
supports namespaces, XML and DOCTYPE declarations, comments and processing
instructions. If a XML tag includes hyphens or colons, then they are converted to
underscores in the corresponding Agena dictionary key.

Since the function does not return processing instructions, you may want to have a
look at the auxiliary utils.aux.decoderawxml function included in the lib/library.agn
file which returns a user-defined table containing processing instructions in the xarg
tag.

The function is written in Agena and included in the libary.agn file.

Here is an example:

> xmlstr := '<?xml version="1.0"?>
> <Data>
> <Name1>Agena</Name1>
> <Name2>1</Name2>
> <Name3>1.1</Name3>
> <Name4>1.1+2.2*I</Name4>
> </Data>

922 16 Utilities

> <Lang:Info-All>
> <Name action="interpret">Agena</Name>
> <Version>1.6.1</Version>
> </Lang:Info-All>
> <!-- this is a comment -->
> <Motto>The Power of Procedural Programming</Motto>'

> utils.decodexml(xmlstr):
[Data ~ [Name1 ~ Agena, Name2 ~ 1, Name3 ~ 1.1, Name4 ~ 1.1+2.2*I],
Lang_Info_All ~ [Name ~ Agena, Version ~ 1.6.1], Motto ~ The Power of
Procedural Programming, header ~ <?xml version="1.0"?>]

> for i, j in ans do print(i, j) od
Lang_Info_All [Name ~ Agena, Version ~ 1.6.1]
Motto The Power of Procedural Programming
Data [Name1 ~ Agena, Name2 ~ 1, Name3 ~ 1.1, Name4 ~ 1.1+2.2*I]
header <?xml version="1.0"?>

The function is quite slow when parsing deeply nested XML structures, but it is more
exact than xml.decodexml. If you need to parse only certain portions of an XML
stream, just extract them from the string using the strings.match function before
applying utils.decodexml.

See also: utils.encodexml, utils.readxml.

utils.encodea85 (str)

Encodes a string str into ASCII85 format and returns it as a string.

See also: utils.decodea85.

utils.encodeb32 (str)

(3.10.3 and later) Encodes a string str into Base32 format and returns it as a string.

See also: utils.decodeb32.

utils.encodeb64 (str)

Encodes a string str into Base64 format and returns it as a string.

See also: utils.decodeb64.

utils.encodeb85 (str)

Encodes the string str into Base85 Z85 format and returns it as a string. The size of
str should be a multiple of four.

See also: strings.ljustify, utils.decodeb85.

agena >> 923

utils.encodexml (obj [, indent [, flag]])

Encodes a dictionary obj of the same format as created by utils.readxml into XML
format.

If indent (a non-negative number) is not given the number of white space
indentations is 3.

If any value is given for flag, the return is a flat table of substrings, else the return is
one concatenated string.

See also: utils.decodexml.

utils.findfiles (d, what [, options])

utils.findfiles (obj, what [, options])

Searches a single file - or searches a directory for all the files - that include a certain
string or which satisfy a given condition.

In the first form, the directory to be searched is denoted by the first argument d, a
string, which may include file wildcards. d may also denote a single file. In the
second form, obj is a table of a table with file names of type string, and the
absolute path to the directory containing the given files. (os.list returns such a
table.)

The second argument what can either be a string to be searched for, or a
procedure of one argument that describes a satisfying condition and which should
result in either true or false.

The returns are two lists: the first list includes all the names of the files where the
search has been successful, and the second lists includes all files that could not be
read due to errors, for example because of missing read permissions.

By default, the function searches all files line by line for a given search criterion. Pass
the option 'whole' if the search criterion should be applied to the entire file, i.e. to
search in the string concatenation of all the lines of a file, so that line breaks do not
matter.

By passing the further option 'r', the function also searches recursively in all
respective subfolders.

Options may be given in any order after the second argument what.

Examples:

> utils.findfiles('*.c', '#define'):

> utils.findfiles('*.c', << x -> '#define' in x = 1 >>, 'whole'):

924 16 Utilities

> utils.findfiles([['a.txt', 'b.txt'], 'c:/text'], 'hello'):

See also: io.infile, io.readfile.

utils.hexlify (str)

Converts a string str to its hexadecimal representation and returns a new string
where each character in str is replaced by a two-digit hexadecimal value. The
resulting string is twice as long as str.

See also: utils.unhexlify.

utils.numiters (a, b [, step])

Returns the number of iterations in the interval [a, b], with a <= b and with an
optional positive step size, which is one by default. The result is equal to:

int(|b - a|/step) + 1.

utils.posrelat (pos, len)

If pos represents a negative integer index, returns the respective positive index for
the given number len of items in a structure, otherwise returns pos. The function is
written in the Agena language and included in the lib/library.file.

utils.readcsv (filename [, options [, fn]])

Reads a comma-separated value (CSV) file and returns its contents in a sequence.
The delimiter of the fields in a line by default is a semicolon.

If a line contains more than one field, then the respective fields are returned in a
sequence29. If a line contains only one field, then it will be returned without including
it in a sequence30. If a line contains nothing, i.e. '\n', it is by default ignored31.

Strings containing numbers are automatically converted to numbers.

Options can be passed as pairs:

convert = truetrue or false: If false, do not
attempt to convert strings to
numbers. Default: true.

convert

ExampleRight pair elementLeft pair element

agena >> 925

31 See the skipemptylines option to override this behaviour.

30 See the newseq option to override this behaviour.

29 See the flat option to override this behaviour.

ignore =
 << x ->
 'text' in x
 <> null
 >>

a procedure returning either true,
false, or fail. If given, the
procedure is applied to each line
of the CSV file and if it evaluates to

ignore

header = truetrue or false: If true, ignore the very
first line. Default: false.

header

flat = truetrue or false: If true, do not return
values in each line in a new
sequence. Default: false.

flat

fields = [3, 1, 5]

fields =
 ['name', 'phone']

fields =
 ['name', 2]

A table or sequence of positive
integers. If given, only the fields
given in this table or sequence are
returned, and in the order of the
elements in this table or sequence;
if not given, all fields are returned.

If a CSV file contains a header,
then column numbers or strings
denoting the field name can be
passed, and column numbers and
field names can be mixed.

fields

field = 3a positive integer: If given, only the
given field in the CSV file is
extracted, else all fields are
returned.

field

dictionary = 1
dictionary = 'ID'

Returns a dictionary instead of a
sequence with the dictionary keys
defined by the values in the row
passed with this new option, where
the row can be depicted by a field
number or field id (a string). The
values in the `key` row should be
unique.

dictionary

delim = '|'A string. Use this string as the
delimiter instead of a semicolon
which is the default.

delim

comma = truetrue or false: If a field contains a
string recognised as a number by
strings.iscenumeric - i.e. with a
decimal comma instead of a
decimal dot - this option
automatically transforms the value
to an Agena number if the option
evaluates to true. Default is false.
This option is applied before
checking for the `convert` option.

comma

ExampleRight pair elementLeft pair element

926 16 Utilities

remove = 'quotes''quotes' or 'doublequotes', or
both.
If 'quotes' is given, enclosing
single quotes are removed from
the CSV field.
If 'doublequotes' is given,
enclosing double quotes are
removed from the CSV field (the
default, see removedoublequotes
option to prevent this). You cannot
remove both single and double
quotes. If a field in single or double
quotes includes the field delimiter,
then the quotes will not be
removed.

remove

output = 'record'A string. If the right-hand side is
'record', then a dictionary will be
returned, with its keys being defined
by the tokens in the first line of the
file (if the header=true option is
also given), otherwise a table array
will be returned.

output

newseq = truetrue or false: if only one field, i.e.
one value per line, is stored in the
CSV file, always put this single value
in each line into a new sequence
(true), resulting in a sequence of
sequences returned by readcsv;
otherwise simply add it to the flat
sequence returned by the function,
which is the default (false).

newseq

mapfields =
 [1:f, 3:g]

mapfields =
 ['name':f, 2:g]

A table or sequence of pairs of the
form posint:procedure. Applies the
given function to a specific field in
the CSV file.

If a CSV file contains a header,
then column numbers or strings
denoting the field name can be
passed along with the procedures,
and column numbers and field
names can be mixed.

mapfields

ignorespaces = truetrue or false: all spaces in a line
are deleted before returning the
fields. Default is false.

ignorespaces

true, it does not process the line
and proceeds with the next one.

ExampleRight pair elementLeft pair element

agena >> 927

subs = '':undefined
subs = ['':undefined,
 'HUGE_VAL':infinity]

a pair, or a table or sequence of
pairs x:y. For each line read from
the CSV file, replaces x with y. If you
pass a function as the last
argument, substitution is done
before finally mapping this function
on the return.

subs

skipspaces = truetrue or false: If true, do not return
lines consisting of spaces only.
Default is false.

skipspaces

skipfaulty = truetrue or false; if set to true, ignores
all lines in a CSV file that do not
have the same number of fields as
there are in the CSV header, or the
first CSV line if a header is
non-existent. Default is false. If set
to true, the function also returns all
skipped lines as a second result.

skipfaulty
skipfaultylines

skipemptylines = truetrue or false: If true, do not return
empty lines. Default is true.

skipemptylines

removedoublequotes =
false

If set to true, removes enclosing
double quotes from a field if
present (the default). If set to false,
enclosing double quotes are not
deleted. If a field in double quotes
includes the field delimiter, then
the quotes will not be removed.

remove-
doublequotes

ExampleRight pair elementLeft pair element

You may also optionally pass a function fn - at any position in the argument list - to
be mapped on each value of the input to be returned, or mix options given as
pairs and a function to be applied to each value to be returned, e.g.:

> L := utils.readcsv('data.dat', delim=' ', flat=true, << x -> x^2 >>);

The function is written in Agena and included in the libary.agn file.

See also: columns, descend, io.lines, io.readlines, utils.readxml, utils.writecsv,
skycrane.readcsv, strings.fields, strings.unwrap.

928 16 Utilities

utils.readini (filename [, options])

Reads a traditional initialisation file and returns its contents as a table. Initialisation
files supported look like the following:

#
This is an example of an ini file
#
; Pizzas

Taxi=Pizza Cab
Agena=

[Pizza] ; <- this is a section name

Ham = yes; <- and this is a key~value pair
Mushrooms = true ;
Capres = 0
Cheese = "Non" ;
Price = 3.99
Preis=3,99

A line beginning with a hash (#), followed optionally by one or more characters, is
completely ignored.

In a line, any text starting with a semicolon is also skipped. Key~value pairs may be
separated by one or more white spaces.

The result is a table.

The file is parsed from top to bottom. As long as no section name has been given
(here `[Pizza]`), any key~value pairs encountered are entered into the table as
such.

If a section name is given, then a subtable of the form section ~ [key ~ value pairs]
is stored to the resulting main table.

If a key is given, but now value, then the corresponding value will be the empty
string. Values may also be enclosed in double quotes, but double quotes will be
stripped of during import.

By default, any number values are automatically transformed to numbers, and the
strings 'true', 'false', or 'fail' are converted to Booleans, and all other values
are returned as strings. You may prevent any conversion by passing the
convert=false option.

If the option comma=true is given, then all floating point values containing a decimal
comma are converted to a representation with a decimal dot. Default is
comma=false.

agena >> 929

The option sections=true reads only the section names in the ini file and returns
them in the order of occurrence in a table array. Default is sections=false.

The results of reading the above ini file will look as follows if no option is given:

[Agena ~ , Taxi ~ 'Pizza Cab', Pizza ~ [Capres ~ 0, Cheese ~ Non, Ham ~
yes, Mushrooms ~ true, Preis ~ 3,99, Price ~ 3.99]]

See also: utils.writeini.

utils.readxml (filename [, options])

Reads an XML file and returns its data in an Agena dictionary.

You can pass one or two options in any order:

If the Boolean option false is given, the function does not automatically try to
convert strings representing numbers, complex numbers and the Booleans true,
false, and fail into the proper Agena representation.

If the option 'nocomment' is given, the function does not return XML comments.

For further information on how the function works, see utils.decodexml.

See also: utils.decodexml, utils.readcsv, xml.readxml.

utils.singlesubs (str, sp)

Substitutes individual characters in string str by corresponding replacements in
sequence sp. The return is a new string. Note that the function tries to find a
replacement for a single character in str by determining its integer ASCII value n
and then accessing index n in sp. If an entry is found for index n, then the character
is replaced, otherwise the character remains unchanged.

For an example, check the strings.diamap procedure in the lib/library.agn file.

utils.speed (n, f [, ···])

Receives a positive integer n, a function f, and any optional arguments, and
executes the function n times. The function returns the execution time in seconds.

If you want to check the speed of an operator, you have to enclose it in a function,
e.g.:

> utils.speed(1k, << x -> sin x >>, 0):

See also: time.

930 16 Utilities

utils.unhexlify (str)

Does the opposite of utils.hexlify.

utils.uuid ([x])

Creates a random version 4 universally unique identifier (UUID) by exclusively
producing random numbers, and returns a string of 32 characters. If its argument x
is null, the nil UUID will be returned (i.e. the template), otherwise, x has no effect.

See also: environ.ref, factory.count, math.random, sema.open.

utils.writecsv (obj, filename [, options])

utils.writecsv (fh, obj [, options])

In the first form, creates a comma-separated value (CSV) file. The function writes all
values or keys and value(s) of a table, set, sequence or register obj to a text file
given by filename. If obj includes a structure, then each element of the respective
structure is written on the same line. Otherwise, each value or key ~ value pair is
written on a separate line.

By default only values are written, the keys are ignored, but check the 'key' option
below.

In the second form, writes all the data in obj to the file denoted by filehandle fh, in
one line, followed by a terminating newline. Example:

> fh := io.open('uszip.csv', 'w');

> utils.writecsv(fh, ['Zip', 'City', 'State Id', 'State'], enclose='\"');

> io.close(fh);

The following options can be passed as pairs:

header = 'A;B;C'A string written to the very first line.
Default: no header is written.

header

enclose = '\"'A string. Each value to be written is
enclosed with this string.

enclose

dot = ','A single character of type string.
With numbers, a decimal dot is
replaces with the given character.
Default: no replacement.

dot

delim = '|'A string. Use this string as the
delimiter instead of a semicolon
which is the default.

delim

ExampleRight pair elementLeft pair element

agena >> 931

key = trueA Boolean. If true, writes the
respective index of the structure at
the beginning of each line. Default:
false, i.e. indices are not written.

key

ExampleRight pair elementLeft pair element

The function returns nothing, is written in Agena and included in the lib/library.agn
file.

Example:

> obj := seq(seq(1.1, 2, 3), seq(4, 5.1, 6), seq(7, 8, 9));

> utils.writecsv(obj, 'c:/out.csv', delim='|', dot=',');

creating a file with the contents:

1|1,1|2|3
2|4|5,1|6
3|7|8|9

See also: utils.readcsv, skycrane.readcsv.

utils.writeini (obj, filename [, options])

Creates a traditional initialisation file with name filename and writes a dictionary obj
of key~value pairs to it. If values are not tables, they are written at the beginning of
the file. If values are tables of key~value pairs, then they are written to the
corresponding sections.

By default, the function writes the entries and sections in ascending order. You may
change the order of the sections and the specific sections to be written by passing
a table array of section names with the sections option, e.g. sections=['Salad',
'Pizza'] first writes all entries of the Salad section, and then the Pizza section is
written.

An optional spacer in front and behind the equals signs may be given by passing
the spacer option which accepts any string, e.g. spacer='\t'. Default is the empty
string.

A floating point value may be written with a decimal comma instead of a decimal
dot by passing the comma=true option, default is comma=false.

The function returns nothing, is written in Agena and included in the lib/library.agn
file.

See also: utils.readini.

932 16 Utilities

utils.writexml (obj, filename [, indent])

Creates an XML file with name filename from the dictionary obj which should be of
the same format as the dictionary returned by utils.decodexml.

The function returns nothing, is written in Agena and included in the lib/library.agn
file.

See also: utils.decodexml, utils.encodexml, utils.readxml.

agena >> 933

16.2 skycrane - Auxiliary Functions

As a plus package, the skycrane package is not part of the standard distribution
and must be activated with the import statement, e.g. import skycrane.

The package contains functions that you might or might not find usefully.

skycrane.bagtable (o)

Creates a table of empty bags with its keys determined by the values in the
sequence o. o may include values of any type. If o is empty, an error will be issued.

The function automatically loads the bags package if it has not yet been initialised.

The function is written in Agena and included in the lib/skycrane.agn file.

See also: bags.bag.

skycrane.dice ()

Returns random integers in the range [1 .. 6].

See also: math.random, math.randomseed.

skycrane.fcopy (a, b [, verbose])

This function is an interface to os.fcopy but can also deal with directories. If a and b
are file names, then the function works like os.fcopy. If b is a directory, then a is
copied into it. If a is a directory, then all files in it are copied into b.

If verbose is true then the name of the file copied successfully is printed at stdout.

The function is written in Agena and included in the lib/skycrane.agn file.

See also: os.fcopy, skycrane.move.

skycrane.formatline (l [, ···])

Similar to io.writeline, but all the strings, numbers or Booleans to be formatted must
be passed in a table, sequence or register l. The function returns a string instead of
writing the values to a file. The function accepts the following options:

� delim = string
the delimiter, a semicolon by default, can also be the empty string;

� enclose = string
each value will be enclosed by string, double quotes by default, can also be
the empty string.

934 16 Utilities

Example:

> skycrane.formatline([1, 'agena', true], delim = '|', enclose = '\''):
'1'|'agena'|'true'

skycrane.getlocales ([lang])

When given no argument, returns all locales available on your operating system.
The return is a table with the keys being valid arguments to os.setlocale, and the
entries the result of the respective call to os.setlocale.

The function is very slow when called the first time in a session in this mode as
os.setlocale. In UNIX, it would be better to issue the command 'locale -a' in a shell
to determine the locales supported on your system.

When given a string as the single argument lang, then the function returns the full
name of the language and country for a combination of the ISO 639 language
code and the ISO 3166 region code. Examples:

> skycrane.getlocales('he'):
Hebrew

> skycrane.getlocales('he_IL'):
Hebrew (Israel)

If lang is any Boolean, then the function determines whether the locales included in
an internal mapping list (see file lib/skycrane.lib) are supported by the operating
system, and returns the supported ones in a table.

The function is written in Agena and included in the lib/skycrane.agn file.

See also: os.setlocale.

skycrane.isemail (str [, strict])

Checks whether a string str represents a valid E-mail address and returns true or
false. The algorithm used does not cover all rules defined in RFC 3696, but should
suffice with standard E-mail addresses of syntax "local-part@domain".

Note that the domain may not necessarily include a dot. You can override this rule
by passing any non-null value for strict.

skycrane.iterate (o)

Returns an iterator function traversing a table, set, sequence or register o always in
strict ascending order.

If o is a table, the function first sorts its keys and returns a function which if called,
returns the table values of o in the ascending order of these sorted keys.

agena >> 935

If o is a set, the function first sorts its entries and returns a function that if called,
returns the elements one by one in ascending sorted order.

Although unnecessary: if o is a sequence or register, the function returns a function
that if called, returns each value in o one by one in their original order.

The function is written in Agena and included in the lib/skycrane.agn file. For the
order how keys or values will be sorted, see sorted.

A note: This function is utterly slow compared to the for/in statement. But there may
be few situations demanding loops iterating in the strict ascending order of its
(numeric or string) indices, or set, register, and sequence values.

See also: ipairs, next, sorted, factory.iterate, factory.count.

skycrane.move (a, b [, verbose])

This function is an interface to os.move but can also deal with directories. If a and b
are file names, then the function works like os.move. If b is a directory, then a is
moved into it. If a is a directory, then all files in it are moved into b.

The function is written in Agena and included in the lib/skycrane.agn file.

If verbose is true then the file copied successfully moved is printed at stdout.

See also: os.move, skycrane.fcopy.

skycrane.readcsv (filename [, ···])

Like utils.readcsv, but with the following default options, which can be overridden:

convert=false, ignorespaces=false, remove='doublequotes'.

The function is written in Agena and included in the lib/skycrane.agn file.

skycrane.replaceinfile (fn, oldstring, newstring [, true])

skycrane.replaceinfile (fn, subslist [, true])

In the first form, replaces all occurrences of string oldstring in file fn (a filename)
in-place with string newstring. The function supports pattern matching.

In the second form, one or more substitutions can be given by passing a table or
sequence sublist of pairs of the form oldstring : newstring.

By default, a backup of the file to be modified is created with the additional suffix
`.bup`. You can suppress any backup by passing the Boolean value true as the
very last argument.

936 16 Utilities

The function is written in Agena and included in the lib/skycrane.agn file.

skycrane.scribe (fh, obj [, ···])

skycrane.scribe (obj [, ···])

skycrane.scribe (···)

Like io.write and io.writeline, but if a table, sequence or register obj is being
passed, it writes the values in the structure to the file denoted by its handle fh (first
form) or the console (second form) instead of throwing an exception. fh is a file
handle, not a file name.

The values in the structure obj must either be numbers or strings.

The function accepts the following options of type pair:

� If the delim option (third to last argument) has been passed, all values are
separated by the given string. Default is a semicolon. Examples: delim='|': use
a pipe instead of a semicolon, delim='' (i.e. the empty string): do not include a
delimiter.

� If the newline or nl option has been passed, and if its value is false, then no
newline is included after the elements have been written. (Include a trailing
delimiter - if needed - by calling io.write.) Default is true. Example:
newline=false.

If no structure has been passed (third form), the function just behaves like io.write or
io.writeline.

Examples:

> import skycrane;

> skycrane.scribe('men ne cunnon hwyder helrunan hwyrftum scriþað'):
men ne cunnon hwyder helrunan hwyrftum scriþað

> fd := io.open('Depeche Mode','wb');

> skycrane.scribe(fd,
> 'Enjoy the silence,
> words are very unnecessary,
> they can only do harm.');

> io.close(fd);

> fd := io.open('c:/wulfila.txt', 'w');

> paternoster32 := (/
> atta unsar þu in himinam
> weihnai namo þein
> qimai þiudinassus þeins
> wairþai wilja þeins
> swe in himina jah ana airþai

agena >> 937

32 Taken from the Gothic Language Wulfila Bible edited by Wilhelm Streitberg.

> hlaif unsarana þana sinteinan
> gif uns himma daga \);

> skycrane.scribe(fd, paternoster, delim = ' ');

> io.close(fd);

The function is written in Agena and included in the lib/skycrane.agn file.

See also: print, printf, io.write, io.writeline, skycrane.tee.

skycrane.sorted (obj [, f])

Sorts a table, sequence or register obj non-destructively but contrary to sort and
sorted can cope with structures including values of different types. First, numbers
are sorted, then strings, the others are not. The function, however, is slower than
sorted.

If f is given, then it must be a function that receives two structure elements, and
returns true when the first is less than the second (so that not f(obj[i+1], obj[i])
will be true after the sort). If f is not given, then the standard operator < (less than) is
used instead.

The function is written in Agena and included in the lib/skycrane.agn file.

See also: sort, sorted, stats.issorted, stats.sorted.

skycrane.stopwatch ()

Implements a stopwatch. Just follow the instructions when calling
skycrane.stopwatch(). The function returns nothing.

The function is written in Agena and included in the lib/skycrane.agn file.

See also: watch.

skycrane.tee (fh, x [,···] [, 'delim':str])

skycrane.tee (fh, x [,···], 'format':str)

In the first form, the function writes one or more numbers or strings x to both the
console (stdout), and a file denoted by its handle fh to the current working
directory. By default, the values are separated with a tabulator (\t). It finally puts a
line feed at the end of the output. By passing the option 'delim':str, as the last
argument, the delimiter is given by the string str.

In the second form, one or more numbers or strings x are written to both the
console (stdout), and a file denoted by its handle fh to the current working
directory. The resulting string is formatted according to the printf-like template
information in str passed with the format option. See strings.format for more
information on the template string. It does not put a line feed at the end of the

938 16 Utilities

output, but to do so, you may add a \n control character to the end of the format
string.

The function returns nothing.

The function is written in Agena and included in the lib/skycrane.agn file.

See also: print, printf, skycrane.scribe.

skycrane.timestamp (ts [, options])

Transforms the timestamp string ts of the format 'DD.MM.YYYY HH:MM:SS' or
'YYYY.MM.DD HH:MM:SS' into a numeric Lotus Serial Date (LSD, a number) and -
optionally - the time in DMS notation (a number, see math.dms for details).

ts does not need to include the number of minutes, hours and seconds. In this
case, the missing digits are replaces by zeros. In ts, year and day may be
swapped, and the month, day, hour, minute and second may be single integers,
thus not necessarily preceded by a zero. Seconds can include fractional
milliseconds.

If the option splitup=true is being passed, the function also returns the LSD as a
string with a comma as the decimal separator, plus six integers depicting year,
month, day, hour, minute and second. See third example below.

The function by default returns the time in Daylight Saving Time if active. You can
switch this off (always returning Standard Time) by passing the option
standardtime=true.

The delimiter in ts which separates year, month, day, a dot by default, can be
changed to another delimiter by passing the datedelim=<any character> option,
see example below.

The delimiter in ts which separates hour, minute and second, a colon by default,
can be changed to another delimiter by passing the timedelim=<any character>
option.

The delimiter in ts which separates date and time, a space by default, can be
changed to another delimiter by passing the datetimedelim=<any character>
option.

Optional delimiters may be preceded by a backslash so that the function can
parse ts successfully.

> skycrane.timestamp('31.12.2017 23:59:01', datedelim='\.'):
43100.99931713 23.5901

> skycrane.timestamp('01/02/2017 23:59:01', datedelim='\/'):
42767.99931713 23.5901

agena >> 939

> skycrane.timestamp('31-12-2017', datedelim='-'):
43100 0

> skycrane.timestamp('2017.2.1 23:59:01.999',
> datedelim='\.', splitup=true):
42767.99931713 23.5901 42767,99931713 2017 2 1 23 59 1.999

The function is written in Agena and included in the lib/skycrane.agn file.

See also: math.dms, os.lsd, skycrane.tocomma, skycrane.todate.

skycrane.tocomma (x)

If x is a number, the function converts x to a string. If x is a float (containing a
decimal dot), the dot is replaced by a comma. If x is a string and represents an
integer or float, an optional decimal-dot is replaced by a comma.

The return is a string.

skycrane.todate (x)

Returns the calendar date and time represented by the number x, which should
hold the number of seconds (and optionally milliseconds) elapsed since the start of
the given epoch. The return is a string of the format `YYYY/MM/DD hh:mm:ss`.

If no argument is given, the current system date and time will be returned. You may
pass an optional format string if you prefer another representation of the date and
time.

See also: strings.format, os.now, os.time, skycrane.timestamp.

skycrane.tolerance (x, a)

Returns math.branch(ceil(a * log10(x + 1) - 1)), a maximum tolerance value
especially suited for comparing similar strings where x may denote the size of a
string. A good value for a might be a number greater than 3.

See also: strings.dleven, strings.diffs, strings.dice, strings.fuzzy, strings.jaro.

skycrane.trimpath (str)

Converts backslashes in the string str to slashes and then removes, if existing, one
trailing slash, and returns the modified string. If str does not include backslashes or
trailing slashes/backslashes, str will be returned unmodified.

skycrane.xmlmatch (str, tag [, tag2, ···])

Like strings.match, but returns the contents of the string str enclosed by the given
XML search tag '<tag>(.-)</tag>'. If further tags tag2 .. tagk are given, then the
result of the previous search with tagk-1 is checked for tagk. If tag is a number, it will

940 16 Utilities

be converted to a string before matching. If any tag is not a string or number, it will
be ignored.

The function returns null if any tag could not be found.

Examples:

> data := '<data>
> <name>abc</name>
> <info>
> <name>def</name>
> </info>
> </data>'

> skycrane.xmlmatch(data, 'name'):
abc

> skycrane.xmlmatch(data, 'info', 'name'):
def

agena >> 941

16.3 factory - Iterators

The package provides functional programming-style iterators.

factory.count ([start [, step [, stop [, method]]]])

Returns an iterator function that, each time it is called, returns a new number.

If no argument is given, the first number returned by the iterator is 0, the next call
returns 1, the next one 2, and so forth. This means that the number returned with
each call is increased by 1.

If only start is given, the first number returned by the iterator is start, the next call
returns start + 1, the next one start + 2, and so forth. This means that the number
returned with each call is increased by 1.

If start and step are given, the first number returned by the iterator is start, the
next call returns start + step, the next one start + 2*step, and so forth. This means
that the number returned with each call is increased by step, which may be
negative. In the latter case the next number returned will be less than the current
returned number.

If stop is given, the iterator returns null if the counter value exceeds stop. Default is
+infinity.

If start or step are not numbers, the factory issues an error.

If start or step is a non-integer, the function by default automatically applies
Kahan-Babuška summation to avoid round-off errors. You can choose between the
following summation methods:

Kahan-Ozawa summation'ozawa'

Neumaier summation, good accuracy and performance'neumaier'

Kahan-Babuška-Neumaier compensated summation, used in the
Julia programming language

'kbn'

Kahan-Babuška summation, highest accuracy but slowest (default)'babuska'

algorithmmethod

The generator automatically adds hEps to the stop value to avoid the iterator from
leaving prematurely. If the absolute value of the step size is less than or equal to
hEps, the generator will issue an error. You can entirely switch off this feature by
setting math.Eps to zero, but only by calling environ.kernel:

> environ.kernel(hEps = 0);

The current setting of hEps can be queried by:

942 16 Utilities

> environ.kernel('hEps'):

0

Note that hEps also controls numeric for loops with fractional step sizes. You might
want to reset its value after generating the iterator to its default.

Example:

> f := factory.count(1, -0.1, -1, 'ozawa'); # count down

> while c := f() do print(c) od;

See also: factory.reset, math.accu, skycrane.iterate, utils.uuid.

factory.cycle (obj [, firstkey [, sentinel]])

Like factory.iterate, but when sentinel is encountered during traversal or the end
of the structure has been reached, it does not return null but simply restarts iteration
with the first element in obj.

See also: next, factory.reset.

factory.iterate (obj [, firstkey [, sentinel]])

Creates a function that when called, starting with index firstkey, iterates each
element in a table, sequence or register obj, or each character in a string obj one
by one, returning the respective index and value as two results.

firstkey and sentinel by default are null. With tables, firstkey may be any value
and should be null if the table is to be iterated from its beginning. With any other
data type, firstkey is a positive integer. If sentinel is encountered during traversal,
the iterator returns null.

If there is nothing left, the function returns null and if called again re-starts iteration.

With strings, sequences and registers, if firstkey is out of range, the iterator simply
returns null. With tables, if firstkey is a non-existent key, an error will be issued.

See also: next, factory.cycle, factory.reset, skycrane.iterate.

factory.reset (f, index)

Sets the current index of the iterator f created by factory.cycle, factory.iterate or
factory.count to index.

If you want to re-iterate an object from its beginning, pass null for index if you
traverse tables, and number 1 with every other object.

agena >> 943

The package also features the following more general functions:

factory.anyof (f, [, ···])

Creates a function that when called tries each function f, ··· with the arguments
passed to the generated function. factory.anyof also accepts structures that have
a '__call' metamethod (see Chapter 6.19).

The generated function quits if one of the calls does not return null, false or fail. If a
call results in no result at all, then the next function or structure with '__call'
metamethod will be run. The return is either null if none of the calls was successful,
or the full result of the successful call, that is including all returns.

The very first result of a call is taken to determine whether it was successful or not.

The functionality is more or less equal to:

> anyof := proc(?) is
> local args := ?;
> return proc(?)
> for fn in args do
> if r := fn(unpack(?)) then
> return r
> fi
> od
> end
> end;

Example:

> isalphanumeric := factory.anyof(strings.isnumber, strings.islatin);

> isalphanumeric('1'):
true

> isalphanumeric('i'):
true

> isalphanumeric('ü'):
null

factory.curry (f, [a [, ···]])

Transforms a function with multiple arguments into a sequence of single-argument
functions, i.e. f(a, b, c, ...) becomes f(a)(b)(c)... Depending on its usage, it can also
create functions with partially filled arguments, ala f(a, b)(c), see example below.

Example usage:

> import factory alias curry;

> f := << x, y, z -> x*y + z >>

> t := curry(f); # returns f

944 16 Utilities

> t(10, 20, 30):
230

> t := curry(f, 10); # returns f(10, y, z)

> t(20, 30):

230

> u := curry(t, 20); # returns t(10, 20)(z) = f(10, 20, z)

> u(30):
230

The return is a closure, a function with the argument(s) stored as so-called upvalues.
If only f is given, returns f. See also Chapter 6.22 discussing closures.

Note that the flexibility of curry comes at the price of performance: a call to the
resulting closure internally will issue one or more calls, finally to f itself, depending on
the number of arguments in f. It may sometimes be better to define a dedicated
wrapper function.

factory.pick (f, i [, ···])

The function picks only given results from a function call, by taking a function f and
the positions i, ··· of the results to be returned and producing a function that when
called delivers the results of interest. Imagine a function

> f := proc() is return 10, 11, 12, 13, end;

where we want to have only the first and third result of its call, that is numbers 10
and 12. We define

> g := factory.pick(f, 1, 3);

> g():
10 12

agena >> 945

16.4 units - Physical Unit Conversion

The package provides functions to convert between temperatures and lengths.

units.celsius (f)

Takes a number f in degrees Fahrenheit and converts it to degrees Celsius.

units.fahren (c)

Takes a number c in degrees Celsius and converts it to degrees Fahrenheit.

units.foot (x [, option])

Takes a value x in meters and converts it to International foot, the default. US, UK,
Indian and historical Rhineland feet are supported by providing the option 'US',
'UK', 'India' or 'Rhineland', respectively.

units.meter (x [, option])

units.metre (x [, option])

Takes a value x in International foot (default) and converts it to metres. US and
Indian survey feet, UK and historical Rhineland feet are supported by providing the
option 'US', 'India', 'UK' or 'Rhineland', respectively. If option is 'yard', then x is
taken to be in (Canadian, that is standard) yards and metres are returned.

units.km (x [, option])

Takes a number x in statute miles and converts it to kilometres. If any option is given
then x is in nautical miles.

units.mile (x [, option])

Takes a number x in kilometres and converts it to statute miles. If any option is given
then x is converted to nautical miles.

units.yard (x)

Takes a number x in metres and converts it to (Canadian) yards.

946 16 Utilities

Chapter Seventeen

C API Functions

agena >> 947

948 17 C API Functions

17 C API Functions

As already noted in Chapter 1, Agena features the same C API as Lua 5.1 so you
are able to easily integrate your C packages and functions written for Lua 5.1 in
Agena. Actually, Agena's C API is a superset of Lua's C API33. For a description of the
API functions taken from Lua, see its Lua 5.1 manual. C API compatibility functions
for Lua 5.2, 5.3 and 5.4 have also been added to facilitate porting C functions from
these Lua editions to Agena.

The functions listed cannot be used in your Agena procedures - they have been
created to access Agena's features from within C code. It generally supports GCC
3.4.6 and above.

If you would like to compile a Lua C package for Agena, usually only the names of
following header files have to be changed:

agnconf.hluaconf.h
agenalib.hlualib.h
agnxlib.hlauxlib.h
agena.hlua.h

Corresponding Agena Header
File

Lua Header File

The following Agena-specific header files exist:

API to exponential integral functions written by RLH.rlhmath.h
Interface to Stephen L. Moshier's mathematical functions.cephes.h

Year 2038-fix headers for 32-bit systems.
agnt64.h,
agnt64_c.h,
agnt64_l.h

Provides C helper functions and definitions, primarily for file
access, further 64-bit types, quicksort, IEEE, Endian,
mathematical operations & constants, cross-platform keyboard
access, and fast and secure string concatenation and
search-and-replace functions. Useful to compile Agena on
SPARCs, PPCs, other RISC systems, and also on Little Endian
architectures, since the binio package, read, and save work in
Big Endian mode.

agnhlps.h

Establishes cross-platform compatibility for certain
mathematical C functions, a few 64-bit C types, and functions
to work with files beyond the 2 GBytes size limit. Applicable
primarily to Solaris, but also Linux, OS/2, Windows, and GCC.

agncmpt.h

This file will be created when executing `make config`. It
determines the Endianness of your system, extends C long ints
to eight bytes, and determines the date and time for the Agena
build. It is advised to not change the contents of this header file.

agncfg.h

FunctionalityAgena Header

agena >> 949

33 Full compatibility to Lua's API has been established with Agena 1.6.0 in May 2012.

Nodir Temirkhodjaev's Lua System (LuaSys v1.8)luasys.h
Small string character buffer librarycharbuf.h
Interface to dBASE III file support of the Shapelib library.xbase.h

Miscellaneous astronomical C functions
moon.h,
sunriset.h

Interface to the IAU Standards of Fundamental Astronomy (SOFA)
Libraries.

sofa.h

Interface to Professor Brian Bradie's various interpolation and
spline functions.

interp.h

FunctionalityAgena Header

Agena features a macro agn_Complex which is a shortcut for complex double.

The following API functions have been added (see files lapi.c and agena.h):

agn_absindex

LUA_API int agn_absindex (lua_State *L, int index, int gettop)

Returns the absolute positive stack index number for a given non-zero index i and
the number of arguments gettop passed to a function.

agn_arrayborders

void agn_arraytoseq (lua_State *L, int idx, size_t a[])

Returns the lowest and highest indices in the array part of the table at idx, where
the lowest index may start at 1 (not 0 as in C). a must be an array of 2 slots. If a[0],
a[1] are 0, there is no array part in the table.

agn_arraypart

void agn_arraypart (lua_State *L, int idx)

Pushes a table with all the values in the array part of the table at index idx onto the
top of the stack.

agn_arraytoseq

void agn_arraytoseq (lua_State *L, lua_Number *a, size_t n)

Converts a numeric array a with n elements to a sequence and pushes it on the top
of the stack.

950 17 C API Functions

agn_asize

size_t agn_asize (lua_State *L, int idx);

Returns the number of items actually currently stored to the array part of the table at
stack index idx, using a linear method. See also: agn_size.

agn_borders

void agn_borders (lua_State *L, int idx, size_t a[]);

Returns the smallest and largest assigned index - in this order - in the array and hash
part of a table, in two-element array a. If zeros are returned, the array and hash
parts of the table are empty.

agn_ccall

agn_Complex agn_ccall (lua_State *L, int nargs); (Non-ANSI)

agn_Complex agn_ccall (lua_State *L, int nargs,

 lua_Number *real, lua_Number *imag); (ANSI)

There are two different versions of this API function available. The first form supports
Non-ANSI versions of Agena, e.g. Solaris, OS/2, etc. The second form can be used in
the ANSI versions of Agena (compiled with the LUA_ANSI option).

Non-ANSI version: Exactly like lua_call, but returns a complex value as its result, so a
subsequent conversion to a complex number via stack operation is avoided. If the
result of the function call is not a number or complex value, an error will be issued.
agn_ccall pops the function and its arguments from the stack.

ANSI version: Like lua_call, but returns the real and imaginary parts of the complex
result through the parameters real and imag. If the result of the function call is not a
number or complex value, an error will be issued. agn_ccall pops the function and
its arguments from the stack.

If the result of the function call is a number, it is automatically converted to a
complex value.

The function always returns the first result of the function call.

The function does not reserve its own stack space so you must call lua_checkstack
or luaL_checkstack before.

agena >> 951

agn_checkboolean

int agn_checkboolean(lua_State *L, int idx);

Checks whether the value at index idx is a Boolean and returns 1 for true, and 0 for
false or fail. An error will be raised if the value at idx is none of them.

agn_checkcomplex

LUALIB_API agn_Complex agn_checkcomplex (lua_State *L, int idx)

Checks whether the value at index idx is a complex value and returns it. An error is
raised if the value at idx is not of type complex.

agn_checkinteger

lua_Integer agn_checkinteger (lua_State *L, int idx);

Checks whether the value at index idx is a number and an integer and returns this
integer. An error is raised if the value at idx is not a number, or if it is a float.

See also: agn_checknonposint, agn_checkposint.

agn_checklstring

const char *agn_checklstring (lua_State *L, int idx, size_t *len);

Works exactly like luaL_checklstring but does not perform a conversion of numbers
to strings. See also luaL_checklstringornil.

agn_checknonnegint

lua_Integer agn_checknonnegint (lua_State *L, int idx);

Checks whether the value at index idx is a number and a non-negative integer
and returns this integer. An error is raised if the value at idx is not a number, or if it is
a float or is negative.

See also: agn_checkinteger, agn_checkposint, agn_checkuint16_t,
agn_checkuint32_t.

agn_checknonnegative

lua_Number agn_checknonnegative (lua_State *L, int idx);

Like agn_checknumber, but checks whether the number at idx is non-negative.

See also: agn_checkpositive.

952 17 C API Functions

agn_checknumber

lua_Number agn_checknumber (lua_State *L, int idx);

Checks whether the value at index idx is a number and returns this number. An error
is raised if the value at idx is not a number. This procedure is an alternative to
luaL_checknumber for it is around 14 % faster in execution while providing the
same functionality by avoiding different calls to internal Auxiliary Library functions.

See also: agn_checkpositive, agn_checknonnegative.

agn_checkposint

lua_Integer agn_checkposint (lua_State *L, int idx);

Checks whether the value at index idx is a number and a positive integer and
returns this integer. An error is raised if the value at idx is not a number, or if it is a
float or is non-positive.

See also: agn_checkinteger, agn_checknonnegint.

agn_checkpositive

lua_Number agn_checkpositive (lua_State *L, int idx);

Like agn_checknumber, but checks whether the number at idx is positive.
See also: agn_checknonnegative.

agn_checkuint16_t

uint16_t agn_checkuint16_t (lua_State *L, int idx);

Checks whether its argument at stack position idx is an unsigned integer and
whether it fits into the range 0 .. 216 - 1.

See also: agn_checknonnegint, agn_checkuint32_t, agnL_optuint32_t.

agn_checkuint32_t

uint32_t agn_checkuint32_t (lua_State *L, int idx);

Checks whether its argument at stack position idx is an unsigned integer and
whether it fits into the range 0 .. 232 - 1.

See also: agn_checknonnegint, agn_checkuint16_t.

agena >> 953

agn_checkstring

const char *agn_checkstring (lua_State *L, int idx);

Works exactly like luaL_checkstring but does not perform a conversion of numbers
to strings. An error is raised if idx is not a string.

If idx is negative: due to garbage collection, there is no guarantee that the pointer
returned will be valid after the corresponding value is removed from the stack.

agn_cleanse

LUA_API void agn_cleanse (lua_State *L, int idx, int gc)

Empties the entire contents of the table at index idx, but does not delete it. If gc is
1, then a garbage collection is performed, as well. Set it to 0 of no garbage
collection shall be triggered. The function does not change the stack.

agn_cleanseset

LUA_API void agn_cleanseset (lua_State *L, int idx, int gc)

Empties the entire contents of the set at index idx, but does not delete it. If gc is 1,
then a garbage collection is performed, as well. Set it to 0 of no garbage collection
shall be triggered. The function does not change the stack.

agn_complexgetimag

LUA_API void agn_complexgetimag (lua_State *L, int idx)

Pushes the imaginary part of the complex value at position idx onto the stack.

agn_complexgetreal

LUA_API void agn_complexgetreal (lua_State *L, int idx)

Pushes the real part of the complex value at position idx onto the stack.

agn_compleximag

lua_Number agn_compleximag (lua_State *L, int idx)

Returns the imaginary part of the complex value at stack index idx as a
lua_Number. See also: agn_complexreal.

954 17 C API Functions

agn_complexreal

lua_Number agn_complexreal (lua_State *L, int idx)

Returns the real part of the complex value at stack index idx as a lua_Number. See
also: agn_compleximag.

agn_copy

LUA_API void agn_copy (lua_State *L, int idx, int mode)

Returns a true copy of the table, set, or sequence at stack index idx. The copy is
put on top of the stack, but the original structure is not removed. mode controls what
to do with tables: mode = 1: copy array part only; mode = 2: copy hash part only;
mode = 3: copy both array and hash part. With all structures, if mode = 7 then no
metatables or user-defined types are copied. The function performs a garbage
collection.

agn_createcomplex

LUA_API void agn_createcomplex (lua_State *L, agn_Complex c)

Pushes a value of type complex onto the stack with its complex value given by c.

agn_createpair

void agn_createpair (lua_State *L, int idxleft, int idxright);

Pushes a pair onto the stack with the left operand determined by the value at index
idxleft, and the right operand by the value at index idxright. The left and right
values are not popped from the stack. The function performs a garbage collection.

agn_createpairnumbers

void agn_createpairnumbers (lua_State *L, lua_Number l, lua_Number r);

Pushes a pair onto the stack with the left operand set to number l, and the right
operand set to number r. The function performs a garbage collection.

agn_createreg

LUA_API void agn_createreg (lua_State *L, int nrec)

Pushes a register onto the top of the stack with nrec pre-allocated places (nrec may
be zero).

agena >> 955

agn_creatertable

LUA_API void agn_creatertable (lua_State *L, int idx)

Creates an empty remember table for the function at stack index idx. It does not
change the stack.

agn_createseq

void agn_createseq (lua_State *L, int nrec);

Pushes a sequence onto the top of the stack with nrec pre-allocated places (nrec
may be zero).

agn_createset

void agn_createset (lua_State *L, int nrec);

Pushes an empty set onto the top of the stack. The new set has space
pre-allocated for nrec items.

agn_createtable

LUA_API void agn_createtable (lua_State *L, int narray, int nrec)

Like lua_createtable, but marks the new table such that the size operator will
always return the correct number of elements stored in its array part. Note that size
is slower on these special tables (arrays) since it has to conduct a linear count -
instead of a binary one - on its array part.

agn_deletefield

LUA_API void agn_deletefield (lua_State *L, int idx, const char *key)

Deletes the field key from the table at index idx without invoking metamethods. The
function leaves the stack unchanged.

agn_deletertable

LUA_API void agn_deletertable (lua_State *L, int objindex)

Deletes the remember table of the procedure at stack index idx. If the procedure
has no remember table, nothing happens. The function leaves the stack
unchanged.

956 17 C API Functions

agn_equalref

int lua_equalref (lua_State *L, int idx1, int idx2);

Compares any two values at stack indices idx1 and idx2, and returns 0 if they are
different and 1 if they are equal. See environ.isequal for more information. The
function does not change the stack.

agn_entries

void agn_entries (lua_State *L, int idx, int *flag);

Returns all the values stored to the table at stack index idx in a new table and sets it
to the top of the stack. flag is set to 0 if no value are residing in the hash part, and
to 1 if there is at least one element in the hash part.

agn_fnext

int agn_fnext (lua_State *L, int indextable, indexfunction, int mode);

Pops a key from the stack, and pushes three or four values in the following order:
the key of a table given by indextable, its corresponding value (if mode = 1), the
function at stack number indexfunction, and the value from the table at the given
indextable. If there are no more elements in the table, then agn_fnext returns 0
(and pushes nothing).

The function is useful to avoid duplicating values on the stack for lua_call and the
iterator to work correctly.

A typical traversal looks like this:

 /* table is in the stack at index 't', function is at stack index 'f' */
 lua_pushnil(L); /* first key */
 while (lua_fnext(L, t, f, 0) != 0) {
 /* 'key' is at index -3, function at -2, and 'value' at -1 */
 lua_call(L, 1, 1); /* call the function with one arg & one result */
 lua_pop(L, 1); /* removes result of lua_call;
 keeps 'key' for next iteration */
 }

While traversing a table, do not call lua_tolstring directly on a key, unless you know
that the key is actually a string. Recall that lua_tolstring changes the value at the
given index; this confuses the next call to lua_next.

agn_getbitwise

int agn_getbitwise (lua_State *L)

Returns the current mode for bitwise arithmetic: 0 if the bitwise operators (&&, ||,
^^, ~~, and shift), internally calculate with unsigned integers, and 1 if signed
integers are used.

agena >> 957

See also: agn_setbitwise.

agn_getcmplxparts

void agn_getcmplxparts (lua_State *L, int idx,

 lua_Number *re, lua_Number *im)

Expects a number or complex number at stack position idx and returns its real and
imaginary part in re and im. If the value at idx is a number or complex number,
returns 1 and 0 otherwise. With numbers, im will always be 0.

agn_getconstants

int agn_getconstants (lua_State *L)

Returns a non-zero if constant declarations are active, and 0 otherwise.

See also: agn_setconstants.

agn_getdblepsilon

lua_Number agn_getdblepsilon (lua_State *L)

The macro returns the setting of the double-accuracy threshold epsilon, i.e. system
variable "DoubleEps". See also: agn_getepsilon, agn_setdblepsilon.

agn_getduplicates

int agn_getduplicates (lua_State *L)

Returns a non-zero if parser duplicate declaration warnings are turned on, and 0
otherwise.

See also: agn_setduplicates.

agn_getemptyline

int agn_getemptyline (lua_State *L)

Returns the current setting for two input prompts always being separated by an
empty line and pushes a Boolean on the stack.

See also: agn_setemptyline.

958 17 C API Functions

agn_geteps

lua_Number agn_geteps (lua_State *L, const char *varname)

Returns the value of the Agena system variable Eps (epsilon) if varname is "Eps", and
that of DoubleEps if varname is "DoubleEps", without changing the stack.

agn_getepsilon

lua_Number agn_getepsilon (lua_State *L)

The macro returns the setting of the accuracy threshold epsilon used by the ~=
operator and the approx function. See also: agn_getdblepsilon, agn_setepsilon.

agn_getfunctiontype

LUA_API int agn_getfunctiontype (lua_State *L, int idx)

Returns 1 if the function at stack index idx is a C function, 0 if the function at idx is an
Agena function, and -1 of the value at idx is no function at all.

agn_gethepsilon

lua_Number agn_gethepsilon (lua_State *L)

The macro returns the setting hEps. See also: Chapter 5.2.2 and agn_sethepsilon.

agn_getinumber

lua_Number agn_getinumber (lua_State *L, int idx, int n);

Returns the value t[n] as a lua_Number, where t is a table at the given valid index
idx. If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods. See also: agn_setinumber.

agn_getistring

const char *agn_getistring (lua_State *L, int idx, int n);

Returns the value t[n] as a const char *, where t is a table at the given valid index
idx. If t[n] is not a string, the return is NULL. The access is raw; that is, it does not
invoke metamethods.

agn_getlibnamereset

int agn_getlibnamereset (lua_State *L)

Returns the current setting for the restart statement to also reset libname and either
pushes a non-zero integer (= true) or zero (= false).

agena >> 959

See also: agn_setlibnamereset.

agn_getlongtable

int agn_getlongtable (lua_State *L)

Returns the current setting for key~value pairs in tables being output line by line
instead of just a single line and puts a Boolean on the stack. A non-zero integer
denotes the feature is switched on, and 0 it is switched off.

See also: agn_setlongtable.

agn_getround

LUA_API void agn_getround (lua_State *L)

Gets the current rounding mode. Pushes the string "downward" for FE_DOWNWARD,
"upward" for FE_UPWARD, "nearest" for FE_TONEAREST, and "towardzero" for
FE_TOWARDZERO onto the stack. If the rounding mode could not be determined,
undefined is pushed. If any other FE_* value is determined, fail will be pushed. Not
available in DOS.

See also: agn_setround.

agn_getrtable

LUA_API int agn_getrtable (lua_State *L, int idx)

Pushes the remember table of the function at stack index idx onto the stack and
returns 1. If the function does not have a remember table, it pushes nothing and
returns 0. See also: agn_getstorage.

agn_getrtablewritemode

int agn_getrtablewritemode (lua_State *L, int idx)

Returns 0 if the remember table of the function at stack index idx cannot be
updated by the return statement (i.e. if it is an rotable), 1 if it can (i.e. if it is an
rtable), 2 if the function at idx has no remember table at all, and -1 if the value at
idx is not a function.

960 17 C API Functions

agn_getseqlstring

const char *agn_getseqlstring (lua_State *L, int idx, int n, size_t *l);

Gets the string at index n in the sequence at stack index idx. The length of the string
is stored to l.

agn_getstorage

LUA_API int agn_getstorage (lua_State *L, int idx)

Pushes the internal 'store' table of the function at stack index idx onto the stack and
returns 1. If the function does not have a store, it pushes nothing and returns 0. See
also: Chapter 6.25 and agn_getrtable. See also: agn_setstorage.

agn_getutype

int agn_getutype (lua_State *L, int idx);

Returns the user-defined type of a procedure, table, sequence, set, userdata, or
pair at stack position idx as a string, pushes it onto the top of the stack and returns
1. If no user-defined type has been defined, the function returns 0 and pushes
nothing onto the stack.

See also: agn_isutype, agn_setutype.

agn_hasarraypart

int agn_hasarraypart (lua_State *L, int idx);

Checks whether the table at stack index idx has at least one element assigned in
its array part. The return is either 1 at least one element is in the array part) or 0
otherwise. The function pushes nothing and leaves the stack unchanged.

agn_hashashpart

int agn_hashashpart (lua_State *L, int idx);

Checks whether the table at stack index idx has at least one element assigned in
its hash part. The return is either 1 at least one element is in the hash part) or 0
otherwise. The function pushes nothing and leaves the stack unchanged.

agena >> 961

agn_hashpart

void agn_hashpart (lua_State *L, int idx)

Pushes a table with all the values in the hash part of the table at index idx onto the
top of the stack.

agn_in

int agn_in (lua_State *L, int idxv, int idxt, int mode)

Checks whether the value at stack index idxv is included in the structure at idxt. If
idxt does not refer to a structure, the function triggers an error. The function returns
1 if the element has been found and 0 otherwise. If mode is 1 then the function
additionally pushes true or false on the stack.

agn_intentries

void agn_intentries (lua_State *L, int idx, int *flag);

Returns all the values in the table t at stack index idx that have integral indices in a
new table and puts it onto the top of the stack. It also sets flag to 0 if there are no
integer indices in hash part of t, and flag to 1 if there is at least one integer index in
the hash part.

agn_intindices

void agn_intindices (lua_State *L, int idx, int *flag);

Returns all integer indices of the table t at stack index idx in a new table and puts it
onto the top of the stack. It also sets flag to 0 if there are no integer indices in hash
part of t, and flag to 1 if there is at least one integer index in the hash part.

agn_isfail / lua_isfail

int agn_isfail (lua_State *L, int idx);
int lua_isfail (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index results to fail, 0
otherwise (true and false). lua_fail first checks whether the value at the index is a
Boolean to avoid crashes if it is not, and then whether it represents fail. The functions
actually are C macros. See also: agn_istrue, agn_isfail, lua_istrue, lua_isfalse.

agn_isfalse / lua_isfalse

int agn_isfalse (lua_State *L, int idx);
int lua_isfalse (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index results to false, 0
otherwise (true and fail). lua_false first checks whether the value at the index is a

962 17 C API Functions

Boolean to avoid crashes if it is not, and then whether it represents false. The
function actually are C macros. See also: agn_istrue, agn_isfail, lua_istrue,
lua_isfail.

lua_isfalseorfail

int lua_isfalseorfail (lua_State *L, int idx);

Checks whether the value at the index is a Boolean to avoid crashes, and then
whether it represents false or fail. The function actually are C macros.

lua_isnilfalseorfail

int lua_isnilfalseorfail (lua_State *L, int idx);

Checks whether the value at the index is a Boolean to avoid crashes, and then
whether it represents null, false or fail. The function actually are C macros.

agn_isfloat

int agn_isfloat (lua_State *L, int idx);

Returns 1 if the value at the given acceptable index is a number but not an
integral, and 0 otherwise. See also: agn_isinteger, agn_isnumber.

agn_isinteger

int agn_isinteger (lua_State *L, int idx);

The function returns 1 if the value at the given acceptable index is a number
representing an integer, and 0 otherwise. The function makes sure that the stack
value to be checked actually is a number so there will be no segmentation faults.
See also: agn_isnumber, agn_isposint, agn_isnonnegint.

agn_islinalgvector

int agn_islinalgvector (lua_State *L, int idx, size_t *dim)

Tests if a value at the given acceptable index is a vector created with the linalg
package, and returns 1 if true and 0 otherwise. It also stores the dimension of the
vector in dim.

agena >> 963

agn_isnonnegint

int agn_isnonnegint (lua_State *L, int idx);

The function returns 1 if the value at the given acceptable index is a number
representing a non-negative integer, and 0 otherwise. The function makes sure that
the stack value to be checked actually is a number so there will be no
segmentation faults.
See also: agn_isinteger, agn_isposint.

agn_isnumber

agn_isnumber (lua_State *L, int idx);

This macro returns 1 if the value at the given acceptable index is a number, and 0
otherwise. See also: agn_isfloat, agn_isinteger.

agn_isposint

int agn_isposint (lua_State *L, int idx);

The function returns 1 if the value at the given acceptable index is a number
representing a positive integer, and 0 otherwise. The function makes sure that the
stack value to be checked actually is a number so there will be no segmentation
faults. See also: agn_isinteger, agn_isnonnegint.

agn_issequtype

int *agn_issequtype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is a sequence and whether the
sequence has the user-defined type denoted by str. It returns 1 if the above
condition is true, and 0 otherwise.

agn_issetutype

int *agn_issetutype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is a set and whether this set has the
user-defined type denoted by str. It returns 1 if the above condition is true, and 0
otherwise.

agn_isstring

agn_isstring (lua_State *L, int idx);

This macro returns 1 if the value at the given acceptable index idx is a string, and 0
otherwise.

964 17 C API Functions

agn_istableutype

int *agn_istableutype (lua_State *L, int idx, const char *str);

Checks whether the type at stack index idx is a table and whether the table has the
user-defined type denoted by str. It returns 1 if the above condition is true, and 0
otherwise.

agn_istrue / lua_istrue

int agn_istrue (lua_State *L, int idx);
int lua_istrue (lua_State *L, int idx);

Returns 1 if the Boolean value at the given acceptable index idx results to true, 0
otherwise (false and fail). lua_true first checks whether the value at the index is a
Boolean to avoid crashes if it is not, and then whether it represents true. The
functions actually are C macros. See also: agn_isfalse, agn_isfail, lua_isfalse,
lua_isfail.

agn_isutype

int *agn_isutype (lua_State *L, int idx, const char *str);

Checks whether a user-defined type str has been set for the given table, set,
sequence, pair, or procedure at stack position idx. It returns 1 if the user-defined
type has been set, and 0 otherwise.

agn_isutypeset

int *agn_isutypeset (lua_State *L, int idx, const char *str);

Checks whether a user-defined type has been set for the given object at stack
position idx. It returns 1 if a user-defined type has been set, and 0 otherwise. The
function accepts any Agena types. By default, if the object is not a table,
sequence, a pair, set, or procedure, it returns 0.

agn_malloc

void *agn_malloc (lua_State *L, size_t size, const char *procname, ...);

Allocates size bytes of memory and returns a pointer to the newly allocated block.
In case memory could not be allocated, it returns an error message including
procname that called agn_malloc. The function optionally can free one or more
objects referenced by their pointers in case memory allocation failed.

In all cases, the last argument must be NULL.

See also: agn_free.

agena >> 965

agn_ncall

lua_Number agn_ncall (lua_State *L, int nargs, *int error, int quit);

Exactly like lua_call, but returns a numeric result as an Agena number, so a
subsequent conversion to a number via stack operations is avoided. If the result of
the function call is not numeric, an error will be issued. agn_ncall pops the function,
its arguments and the result from the stack, leaving it leveled. It always returns the
first result of the function call.

If the function call does not evaluate to a number, error is set to 1 and 0 otherwise.
If quit is 1, the function will automatically issue an error if the result is not a number;
otherwise quit should be set to 0. The function does not allocate its own stack
space, so you must call lua_checkstack or luaL_checkstack before.

agn_nops

size_t agn_nops (lua_State *L, int idx);

Determines the number of actual table, set, sequence or register entries of the
structure or the size of a string at stack index idx. If the value at idx is not one of the
mentioned data types, it returns 0. With tables, this procedure is an alternative to
lua_objlen if you want to get the size of a table since lua_objlen does not return
correct results if there are holes in the table or if the table is a dictionary.

agn_numintersect

int agn_numintersect (lua_State *L, int idxa, int idxb);

Counts the number of elements in the intersection of the structure at stack index
idxa and the structure at stack index idxb. Both structures must be of the same kind.
The function does not change the stack.

agn_numminus

int agn_numminus (lua_State *L, int idxa, int idxb);

Counts the number of elements in the difference of the structure at stack index idxa
and the structure at stack index idxb. Both structures must be of the same kind. The
function does not change the stack.

agn_numunion

int agn_numunion (lua_State *L, int idxa, int idxb);

Counts the number of elements in the union of the structure at stack index idxa and
the structure at stack index idxb. Both structures must be of the same kind. The
function does not change the stack.

966 17 C API Functions

agn_onexit

LUA_API void agn_onexit (lua_State *L)

Pushes the function environ.onexit if it exists, and calls it. The function leaves the
stack unchanged.

agn_optcomplex

agn_Complex agn_optcomplex (lua_State *L, int narg, agn_Complex z);

If the value at index narg is a complex number, it returns this number. If this
argument is absent or is null, the function returns complex z. Otherwise, raises an
error.

agn_pairgeti

void agn_pairgeti (lua_State *L, int idx, int n);

Returns the left operand of a pair at stack index idx if n is 1, and the right operand if
n is 2, and puts it onto the top of the stack. You have to make sure that n is either 1
or 2.

agn_pairrawget

void agn_pairrawget (lua_State *L, int idx);

Pushes onto the stack the left or the right hand value of a pair t, where t is the value
at the given valid index idx and the number k (k=1 for the left hand side, k=2 for
the right hand side) is the value at the top of the stack. It does not invoke any
metamethods. This function pops both k from the stack.

agn_pairrawset

void agn_pairrawset (lua_State *L, int idx);

Does the equivalent to p[k] := v, where p is a pair at the given valid index idx, v is
the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods. See also: agn_pairset, agn_pairseti.

agn_pairset

LUA_API void agn_pairset (lua_State *L, int idx, int idxleft, int idxright)

Sets the two values at indices idxleft and idxright to the pair at index idx. The
function does not pop the values.

agena >> 967

See also: agn_pairrawset, agn_pairseti.

agn_pairseti

LUA_API void agn_pairseti (lua_State *L, int idx, int pos)

Sets the value at the stack top to the pair at index idx and pops the value. If pos is
1, then the value is put into the left part of the pair, if pos is 2, then the right part is
set.

See also: agn_pairrawset, agn_pairset.

agn_pairstate

LUA_API void agn_pairstate (lua_State *L, int idx, size_t a[])

Returns a flag indicating whether a metatable has been assigned to the pair at
index idx in a, with a a C array with one entry, where 1 indicates that the pair
features a metatable, and 0 means it does not.

agn_parts

void agn_parts (lua_State *L, int idx)

Pushes two tables onto the top of the stack: one with all the values in the array part
of the table at index idx, and one with the values in its hash part.

agn_poptop

void agn_poptop (lua_State *L);

Pops the top element from the stack. The function is more efficient than lua_pop(L,
1).

agn_poptoptwo

void agn_poptoptwo (lua_State *L);

Pops the top element and the value just below the top from the stack. The function
is more efficient than lua_pop(L, 2).

agn_pushboolean

void agn_pushboolean (lua_State *L, int b);

Pushes true onto the stack if b is 1 or larger, and pushes false onto the stack if b is 0.
If b is -1, it pushes fail onto the stack.

968 17 C API Functions

agn_pushcomplex

void agn_pushcomplex (lua_State *L, lua_Number re, lua_Number im);

Pushes the complex value re + I*im onto the stack. The macro can be used both
with Agena versions using standard complex.h complex functions and those using
proprietary complex arithmetic.

agn_rawgetfield

LUA_API void agn_rawgetfield (lua_State *L, int idx, const char *field)

Returns t[field], where table t resides at stack index idx.

agn_rawgetifield

LUA_API void agn_rawgetifield (lua_State *L, int idx, int kidx)

Returns t[i], where table t resides at stack index idx and the key i at stack index kidx.

agn_rawgetinumber

lua_Number agn_rawgetinumber (lua_State *L, int idx, int n, int *rc);

Returns the value t[n] as a lua_Number, where t is a table at the given valid index
idx. If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods. rc includes the result of the retrieval and is 1 on success and
0 otherwise, i.e. t[n] is not a number or a string convertible to a number.

agn_rawinsert

LUA_API void agn_rawinsert (lua_State *L, int idx)

Inserts the value at the top of the stack to the table at index idx, more precisely, it is
added to the end of the array part of the table. The value is popped from the
stack.

agn_rawinsertfrom

LUA_API void agn_rawinsertfrom (lua_State *L, int tidx, int vidx)

Inserts the value at stack index vidx to the table residing at index idx, more
precisely, it is added to the end of the array part of the table.

If vidx = -1, then the value is popped from the stack, otherwise the stack is left
untouched.

agena >> 969

agn_rawreggetinumber

lua_Number agn_rawreggetinumber (lua_State *L, int idx, int n, int *rc);

Returns the value t[n] as a lua_Number, where t is a register at the given valid index
idx. If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods. rc includes the result of the retrieval and is 1 on success and
0 otherwise, i.e. t[n] is not a number or a string convertible to a number.

agn_rawseqgetinumber

lua_Number agn_rawseqgetinumber (lua_State *L, int idx, int n, int *rc);

Returns the value t[n] as a lua_Number, where t is a sequence at the given valid
index idx. If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods. rc includes the result of the retrieval and is 1 on success and
0 otherwise, i.e. t[n] is not a number or a string convertible to a number.

agn_rawsetfield

LUA_API void agn_rawsetfield (lua_State *L, int idx, const char *field)

Does the equivalent to t[field] := v, where t is a table at the given valid index idx,
and v is the value at the top of the stack, without invoking metamethods.

This function pops the value from the stack. It does not invoke any metamethods.

See also: agn_deletefield.

agn_regextend

LUA_API int agn_regextend (lua_State *L, int idx, size_t newsize)

Extends the size of the register at stack position idx to newsize elements and fills the
newly created slots with null. If newsize is less than the current size, it simply returns 0
and does not change the size of the register, otherwise the function returns 1. If the
current top pointer already refers to the total size of the register, it is set to newsize,
otherwise it is left unchanged.

agn_reggeti
LUA_API void agn_reggeti (lua_State *L, int idx, size_t n)

Pushes the value stored at position n of the register located at stack index idx to the
top of the stack. If n is out-of-range, or larger than the position of the top pointer, it
issues an error.

970 17 C API Functions

agn_reggetinumber
LUA_API lua_Number agn_reggeti (lua_State *L, int idx, size_t n)

The function the number stored at position n of the register located at stack index
idx. If n is out-of-range, or larger than the position of the top pointer, it issues an
error. It returns infinity if the value at n is non-numeric.

agn_reggettop

LUA_API size_t agn_reggettop (lua_State *L, int idx)

Returns the position of the top pointer of a register at stack index idx. See also:
agn_regsettop.

agn_regpurge

LUA_API void agn_regpurge (lua_State *L, int idx, int n)

Removes the value at position n of the register at stack index idx and shifts down all
values beyond n if necessary. The function does not reduce the size of the register,
but decrements the top pointer by 1.

agn_regrawget

LUA_API void agn_regrawget (lua_State *L, int idx)

Pushes onto the stack the value t[k], where t is the register at the given valid index
idx and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). It
does not invoke metamethods.

agn_regreduce

LUA_API int agn_regreduce (lua_State *L, int idx, size_t newsize, int nil)

Reduces the size of the register residing at stack index idx to newsize entries. If nil is
1, then all values residing at positions larger then newindex, are null'ed, otherwise set
nil to 0. The function returns 0 if newindex is less than 0, and 1 otherwise. See also:
agn_regextend.

agena >> 971

agn_regset

LUA_API void agn_regset (lua_State *L, int idx)

Assumes that the value to be set to a register residing at stack position idx is at the
top of the stack and the numeric key just below the stack and conducts the
assignment.

agn_regseti

LUA_API void agn_regseti (lua_State *L, int idx, int n)

Sets the value residing at the top of the stack to position n of the register at index
idx and pops the inserted value from the stack.

agn_regsettop

LUA_API int agn_regsettop (lua_State *L, int idx)

Sets the current top pointer of a register residing at index idx to the number stored
at the top of the stack. The number at the top of the stack is popped therafter. See
also: agn_reggettop.

agn_regstate

LUA_API void agn_regstate (lua_State *L, int idx, size_t a[])

Returns the current top pointer, the total number of items, and a flag indicating
whether a metatable has been assigned to the register at index idx in a, a C array
with three entries. The position of the top pointer is stored to a[0], the total number of
entries to a[1]. The metatable flag is stored to a[2], where 1 indicates that the
sequence features a metatable, and 0 means it does not.

agn_seqrawgetinumber

lua_Number agn_seqrawgetinumber (lua_State *L, int idx, int n);

Returns the value t[n] as a lua_Number, where t is a sequence at the given valid
index idx. If t[n] is not a number, the return is 0. The access is raw; that is, it does not
invoke metamethods.

See also: lua_seqrawgetinumber.

972 17 C API Functions

agn_seqresize
int agn_seqresize (lua_State *L, int idx, size_t newsize);

Shrinks or expands the sequence at stack index idx, i.e. adds or deletes the
number of pre-allocated slots to exactly newsize. The function takes care to nullify
all surplus values before shrinking the sequence or adding nulls when expanding it.

agn_seqsize
size_t agn_seqsize (lua_State *L, int idx);

Returns the number of items currently stored to the sequence at stack index idx.

agn_seqstate

void agn_seqstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items, the maximum number of items assignable to,
and a flag indicating whether a metatable has been assigned to the sequence at
index idx in a, a C array with three entries. The actual number of items is stored to
a[0], the maximum number of entries to a[1]. If a[1] is 0, then the number of
possible entries is infinite. The metatable flag is stored in a[2], where 1 indicates that
the sequence features a metatable, and 0 means it does not.

agn_setbitwise
void agn_setbitwise (lua_State *L, int value)

Sets the mode for bitwise arithmetic. If value is greater than 0, the bitwise functions
(&&, ||, ^^, ~~, and shift) internally calculate with signed integers, otherwise
Agena calculates with unsigned integers.

See also: agn_getbitwise.

agn_setconstants
void agn_setconstants (lua_State *L, int value)

Switches on constants mode if value is non-zero, and switches it off if 0.

See also agn_getconstants.

agena >> 973

agn_setdblepsilon

lua_Number agn_setdblepsilon (lua_State *L, lua_Number x)

Sets the double-accuracy threshold epsilon to system variable "DoubleEps". See
also: agn_setepsilon.

agn_setduplicates
void agn_setduplicates (lua_State *L, int value)

Switches on duplicate declaration warnings (shadowing) if value is non-zero, and
switches it off if 0.

See also agn_getduplicates.

agn_setemptyline

void agn_setemptyline (lua_State *L, int value)

If value is greater than 0, then two input prompts are always separated by an
empty line. If set false, no empty line is inserted.

See also: agn_getemptyline.

agn_setepsilon

lua_Number agn_setepsilon (lua_State *L, lua_Number x)

Sets the accuracy threshold epsilon used by the ~= operator and the approx
function to the number x. See also: agn_getepsilon.

agn_sethepsilon

lua_Number agn_sethepsilon (lua_State *L, lua_Number x)

Sets the hEps constant. See also: Chapter 5.2.2 and agn_gethepsilon.

agn_setinumber

void agn_setinumber (lua_State *L, int idx, int i, lua_Number x)

Sets number x to key i of the table at positive or negative stack position idx. See
also: agn_getinumber.

974 17 C API Functions

agn_setlibnamereset

void agn_setlibnamereset (lua_State *L, int value)

If value is greater than 0, then the restart statement resets libname to its default. If
value is non-positive, then libname is not changed with a restart.

See also: agn_getlibnamereset.

agn_setlongtable

void agn_setlongtable (lua_State *L, int value)

If value is greater than 0, then the print function outputs key~value pairs in tables
line-by-line. If value is non-positive, then the print function prints all pairs in a single
consecutive line.

See also: agn_getlongtable.

agn_setreadlibbed

int agn_setreadlibbed (lua_State *L, const char *name)

Inserts name into the global set package.readlibbed.

agn_setresize

void agn_setresize (lua_State *L, int idx, size_t newsize, int protect)

Resizes the set at stack index idx to newsize pre-allocated slots. protect controls
whether to allow only a set to be shrunk without dropping any elements (protect
== 1), shrunk or enlarged without dropping any elements (protect == 2), or
whether to have full control what may happen: shrinking or expanding, dropping or
not dropping any elements (protect == 0). With protect == 0, it is advised that
the set is empty.

agn_setround

int agn_setreadlibbed (lua_State *L, const char *name)

Sets the rounding mode. what may be "downward" for FE_DOWNWARD, "upward" for
FE_UPWARD, "nearest" for FE_TONEAREST, and "towardzero" for FE_TOWARDZERO.
Returns 1 on success, and 0 otherwise. In case of failure, the former rounding mode
is re-established. Not available in DOS.

agena >> 975

See also: agn_getround.

agn_setrtable

LUA_API void agn_setrtable (lua_State *L, int find, int kind, int vind)

Sets argument~return values to the function at stack index find. The argument list
reside at a table array at stack index kind, the return list are in another table at stack
index vind. See the description for the rset function for more information.

agn_setstorage

LUA_API int agn_setstorage (lua_State *L, int idx)

If a store has not been established for a function at stack index idx - which may
either be implemented in C or Agena -, sets up the store for with the table at the
top of the stack and pops this table thereafter.

If the store already exists, then the function adds all the entries in the table at the
stack top to the store and then pops the table. If the value at the stack top is null,
then the store is entirely deleted (not just emptied). The function always returns 1.

See also: Chapter 6.25 and agn_getrtable. See also: agn_setstorage.

agn_setudmetatable

LUA_API void agn_setudmetatable (lua_State *L, int idx)

Expects a valid userdata metatable at the top of the stack, assigns it to the
userdata residing at stack index idx, and pops the value at the top of the stack
thereafter. If the value at the top of the stack is null, then a metatable assigned to a
userdatum is deleted, and null is popped from the stack.

agn_setutype

void agn_setutype (lua_State *L, int idxobj, int idxtype);

Sets a user-defined type of a procedure, table, sequence, set, userdata, or pair.
The object is at stack index idxobj, the type (a string) is at position idxtype. The
function leaves the stack unchanged.

If null is at idxtype, the function deletes the user-defined type.

976 17 C API Functions

Setting the type of a sequence, set, table, procedure, or pair also causes the pretty
printer to display the string passed to the function instead of the usual output at the
console. See also: agn_getutype.

agn_size

int agn_size (lua_State *L, int idx);

Returns the number of items currently stored to the array and the hash part of the
table at stack index idx. See also: agn_asize.

agn_ssize

int agn_ssize (lua_State *L, int idx);

Returns the number of items currently stored to the set at stack index idx.

agn_sstate

void agn_sstate (lua_State *L, int idx, size_t a[])

Returns the actual number of items and the current maximum number of items
allocable to the set at index idx in a, a C array with three entries. The actual
number of items is stored to a[0], the current allocable size to a[1]. a[2] indicates
whether a metatable has been assigned to the set, where 0 means it does not,
and 1 that it does.

agn_stralloc

char *agn_stralloc (lua_State *L, size_t l, const char *procname, ...);

Allocates a string buffer by internally determining its most efficient size, aligned
along the "long" boundary. The return is a char* pointer to the beginning of the
string. The function zeros only the last few bytes and assumes that the `trailing` rest
will be filled by real characters later on. Just pass l as the number of characters,
excluding the terminating \0, and do not multiply it by sizeof(char). The function
automatically adds a terminating \0.

The function can optionally free variables passed after procname in case memory
allocation fails internally. In case of an error, the function issues the name of the
procedure procname from which it was called.

In any case, the last argument must always be NULL.

agena >> 977

agn_strmatch

const char *agn_strmatch (lua_State *L, const char *s, size_t s_len,
 const char *p, ptrdiff_t init, ptrdiff_t *start, ptrdiff_t *end)

Searches string s of size s_len for pattern p. init is the position from where to start
the search and by default is 1, the first character in s. start and end will include the
start and end position in case of a match, always counting from 1. The return is the
string starting at position start in case of a match, or NULL if there was no hit.

agn_structinsert

void agn_structinsert (lua_State *L, int idxs,int idxv)

Inserts the object at stack index idxv into the table, set, sequence or register at
stack index idxs. The function does not change the stack.

agn_tablesize

void agn_tablesize (lua_State *L, int idx, size_t a[])

Returns a guess on the number of elements in a table at stack index idx in a[0], an
indicator on whether a table contains an allocated hash part a[1], and an
indicator on whether null has been assigned to a table (a[2]).

The function is useful to determine the size of a table much more quickly than the
size operator does, using a logarithmic instead of linear method, but may return
incorrect results if the array part of a table has holes, so the programmer should
make sure that the array part of a table has no holes. It also does not count the
number of elements in the hash part of a table. See also: agn_tablestate.

agn_tablestate

void agn_tablestate (lua_State *L, int idx, size_t a[], int mode)

Returns the number of key~value pairs allocable and actually assigned to the
respective array and hash sections of the table at index idx by storing the result in a,
a C array with nine entries.

The number of key~value pairs currently stored in the array part is stored to a[0], the
number of pairs currently stored in the hash part to a[1]. a[2] contains the
information whether the array part has holes (1) or not (0). The number of allocable
key~value pairs to the array part is stored to a[3], and the number of allocable
key~value pairs to the hash part is stored to a[4]. a[5] indicates whether null has
been set to the table, where 0 = false, and 1 = true. If a[6] is 0, then the table does
not feature a metatable, if it is 1 then a metatable has been assigned. a[7]
contains information on whether the hash part of a table does not have an
allocated node (no dummynode), a[8] contains a guess on the number of

978 17 C API Functions

elements in the array part of a table (see agn_tablesize for further information). a[9]
contains the smallest integral index, and a[10] the largest integral index of the table.

If mode is not 1, then the number of pairs actually assigned is not determined,
which may save time. In this case a[0] = a[1] = a[2] = 0.

agn_tabpurge

LUA_API int agn_tabpurge (lua_State *L, int idx, int len, int pos)

Removes a value at position pos from the array part of a table at stack index idx
and closes the space by shifting down other elements, if necessary. pos must be
positive. len is the length of the array part; if len is -1, then the function
automatically determines it. The function returns 1 on success and 0 otherwise.

agn_tabresize

LUA_API void agn_tabresize (lua_State *L, int idx, size_t newsize,
 int checkholes)

Resizes the array part of a table at stack index idx to the given number newsize of
pre-allocated slots.

If you do not know whether there are still non-null values beyond the new size in the
array part, then set checkholes to 1 instead of 0 as otherwise Agena will crash in
such situations. If set to 1, the function will not resize the table if there are any excess
non-null values.

agn_tocomplex (non-ANSI versions only)

agn_Complex agn_tocomplex (lua_State *L, int idx)

Assumes that the value at stack index idx is a complex value and returns it as a
lua_Number. It does not check whether the value is a complex number.

agn_tointeger

lua_Integer agn_tointeger (lua_State *L, int idx)

Assumes that the value at stack index idx is a number and returns it as an integer,
not a float. It does not check whether the value is a number.

The function does not change the stack.

agena >> 979

agn_tonumber

lua_Number agn_tonumber (lua_State *L, int idx)

Assumes that the value at stack index idx is a number and returns it as a
lua_Number. It does not check whether the value is a number. The values
undefined and infinity are recognised properly.

The function does not change the stack.

agn_tonumberx

lua_Number agn_tonumberx (lua_State *L, int idx, int *exception)

If the value at stack index idx is a number or a string containing a number, it returns
it as a lua_Number. The strings or names 'undefined' and 'infinity' are
recognised properly. If successful, exception is assigned to 0.

If the value could not be converted to a number, 0 will be returned, and exception
is assigned to 1. See also: agnL_strtonumber.

agn_tostring

const char *agn_tostring (lua_State *L, int idx)

Assumes that the value at stack index idx is an Agena string and returns it as a C
string of type const char *. It does not check whether the value is a string.

If idx is negative: due to garbage collection, there is no guarantee that the pointer
returned will be valid after the corresponding value is removed from the stack.

agn_usedbytes

LUAI_UMEM agn_usedbytes (lua_State *L)

Returns the number of bytes used by the interpreter.

agnL_checkoption

LUALIB_API int agnL_checkoption (lua_State *L, int idx, const char *def,

 const char *const lst[], int ignorecase)

Like luaL_checkoption, but returns an error if a given option at index idx is not a
string. Returns the index of the option found in lst, which may be the position of the
default def if there is no value at idx. Otherwise issues an error if the option at idx is

980 17 C API Functions

not part of lst[], or if def is not in lst[]. def must not be NULL. If ignorecase is 1, the
function compares option names case-insensitively, and case-sensitively if it is 0.
Example:

static const char *const datatypes[] = {"uchar", "double", "int32", NULL};

position = agnL_checkoption(L, 2, "double", datatypes, 0);

agnL_createpairofnumbers

void agnL_createpairofnumber (lua_State *L, lua_Number l, lua_Number r);

Deprecated, see agn_createpairnumbers.

agnL_datetosecs

LUA_API Time64_T agnL_datetosecs (lua_State *L, int idx,

 const char *procname)

Takes either

� a table, register, or a sequence of date time values of the form [yy, mm, dd, hh,
mm, seconds], or

� six numbers yy, mm, dd, hh, mm, seconds,

and returns the number of seconds elapsed since the begin of the epoch (usually
January 01, 1970) as a Time64_t value; idx must be a _positive_ index number.

agnL_fncall

lua_Number agnL_fncall (lua_State *L, int idx, lua_Number x,
 int optstart, int optstop);

Pushes the mathematical function at index idx and number x onto the stack,
optionally pushes the numbers at stack positions optstart through optstop

(including) and then calls the function with the values pushed. It always returns the
first result of the function call.

The function does not change the stack and reserves its own stack space, so you
do not have to call lua_checkstack or luaL_checkstack.

The function at idx should return one number, otherwise an error will be issued. If the
function at idx is not multivariate, then pass values for optstart and optstop such
that optstart > optstop. See also: agnL_fnunicall.

agena >> 981

agnL_fneps

lua_Number agnL_fneps (lua_State *L, int fidx, lua_Number x, int n, int p,
int q, lua_Number *origh, lua_Number *abserr);

Determines an epsilon value by taking the function value f(x) into account, using a
divided difference table. Also returns original epsilon estimate before correction in
parameter origh, and the absolute error in parameter abserr.

The function must be at index position idx. n is the number of iterations and must
be positive. p is the first index of further arguments to f, q the last index of further
arguments to f. if p > q, no further arguments are evaluated.

agnL_fnunicall

lua_Number agnL_fnunicall (lua_State *L, int idx, lua_Number x);

Pushes the mathematical function at index idx and number x onto the stack, and
then calls the function. It returns one result and leaves the stack unchanged.

The function reserves its own stack space, so you do not have to call
lua_checkstack or luaL_checkstack.

See also: agnL_fncall.

agnL_geti

int agnL_geti (lua_State *L, int idx, int i);

Returns the i'th entry in the string, table array, pair, register, sequence or numarray
at index idx and pushes it onto the top of the stack. The index i counts from 1.

agnL_getmetafield

int agnL_getmetafield (lua_State *L, int idx, const char *event);

Pushes onto the stack the metamethod event from the metatable of the object at
index idx. If the object does not have a metatable, or if the metatable does not
have this field, or - unlike luaL_getmetafield - if the field does not refer to a
procedure, returns 0 and pushes nothing. Examples for event are the metamethods
'__index', '__tostring', etc.

982 17 C API Functions

agnL_getsetting
int agnL_getsetting (lua_State *L, int idx,
 const char *const *modenames, const int *mode, const char *procname);

For a given string in modenames at stack index idx, returns the respective integral
representation in mode. If the string passed cannot be found in modenames, issues an
error.

Example:

static const int mode[] =
 {OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_INTDIV, OP_MOD, OP_POW, OP_IPOW};

static const char *const modenames[] =
 {"+", "-", "*", "/", "\\", "%", "^", "**", NULL};

int op = agnL_getsetting(L, 1, modenames, mode, "zip");

agnL_gettablefield

int agnL_gettablefield (lua_State *L, const char *table, const char *field,
 const char *procname, int issueerror);

Determines the entry from the table field <table>.<field> and puts it on top of
the stack. procname is the name of the function that calls agnL_gettablefield.

If issueerror is set to 1, then an error will be issued if table is not a table. If
issueerror is set to 0 and table is not a table, then no such error will be issued and
the global value found is pushed on the stack. In the latter case, the function
returns LUA_TNONE-1.

The function returns the Lua/Agena type, an integer (e.g. LUA_TBOOLEAN), in case of
success. If the field does not exist, LUA_TNIL will be returned and the function
instead pushes null on top of the stack. See the agena.h source file for the proper
type mapping (grep "basic types").

A typical call might look like this:

type = agnL_gettablefield(L, "environ", "infolevel",
 "environ.userinfo", 1);

if (type != LUA_TTABLE) {
 /* do something */
}

agena >> 983

agnL_gettop

int agnL_gettop (lua_State *L, const char *message, const char *procname);

Returns the number of arguments passed to a function, or issues an error with the
given message if no argument has been passed.

agnL_iscallable

int agnL_iscallable (lua_State *L, int idx)

Checks whether the object at stack index idx is either a function or a structure with
a '__call' metamethod. It returns 1 if it is and 0 otherwise. The function never
changes the stack.

agnL_isdlong

int agnL_isdlong (lua_State *L, int idx)

Checks whether the value at stack index idx is a longdouble (see the long
package) and returns 1 if it is and 0 otherwise.

agnL_optboolean

int agnL_optboolean (lua_State *L, int narg, int def)

If the value at stack index narg is a Boolean, returns this Boolean as an integer: -1 for
fail, 0 for false, and 1 for true. If there is no value at index narg or if it is null, returns
def. Otherwise, raises an error.

agnL_optinteger

lua_Integer agnL_optinteger (lua_State *L, int narg, lua_Integer def)

If the function argument narg is a number, returns this number cast to a lua_Integer.
If this argument is absent or is NULL, returns def. Otherwise, raises an error.

The function internally uses agn_checknumber which avoids internal calls to other
C API auxiliary library functions and thus is somewhat faster than luaL_optinteger.

See also: agnL_optposint, agnL_optnonnegint, agnL_optuint32_t.

984 17 C API Functions

agnL_optnonnegative

lua_Number agnL_optnonnegative (lua_State *L, int narg, lua_Integer def)

If the function argument narg is a non-negative number (integer or float), returns this
number cast to a lua_Number. If this argument is absent or is NULL, returns def.
Otherwise, raises an error.

See also: agnL_optpositive.

agnL_optnonnegint

lua_Integer agnL_optnonnegint (lua_State *L, int narg, lua_Integer def)

If the function argument narg is a positive integer or zero, returns this number cast to
a lua_Integer. If this argument is absent or is NULL, returns def. Otherwise, raises an
error.

See also: agnL_optinteger, agnL_optposint.

agnL_optnumber

lua_Number agnL_optnumber(lua_State *L, int narg, lua_Number d)

If the value at stack index narg is a number, returns this number. If this stack value is
absent or is NULL, returns d. Otherwise, raises an error. Contrary to luaL_optnumber,
agnL_optnumber does not try to convert a string to a number.

agnL_optposint

lua_Integer agnL_optposint (lua_State *L, int narg, lua_Integer def)

If the function argument narg is a positive integer, returns this number cast to a
lua_Integer. If this argument is absent or is NULL, returns def. Otherwise, raises an
error.

See also: agnL_optinteger, agnL_optnonnegint, agnL_optuint32_t.

agnL_optpositive

lua_Number agnL_optpositive (lua_State *L, int narg, lua_Integer def)

If the function argument narg is a positive number (integer or float), returns this
number cast to a lua_Number. If this argument is absent or is NULL, returns def.
Otherwise, raises an error.

agena >> 985

See also: agnL_optnonnegative, agnL_optuint32_t.

agnL_optstring

const char *agnL_optstring (lua_State *L, int narg,
 const char *def)

Similar to luaL_optstring, but returns an error if a given option is not a string. The
length of the optional string is not determined.

agnL_optuint32_t

lua_Integer agnL_optuint32_t (lua_State *L, int narg, uint32_t def)

Checks for an optional argument at stack position narg and returns it if it is a
non-negative number; if the given argument is not a non-positive number, issues an
error. If narg is null, returns def.
See also: agn_checkuint32_t, agnL_optinteger, agnL_optnonnegint,
agnL_optposint.

agnL_paircheckbooloption

int agnL_paircheckbooloption (lua_State *L, const char *procname, int idx,
 const char *option)

For the given Agena procedure procname, checks whether the value at index idx is a
pair, and whether its left operand is equals to option (of type string), and whether
the right operand is a Boolean.

Returns -2 if the value at idx is not a pair, or the result of the call to the
lua_toboolean C API function.

The function issues an error if the left operand of the pair is not equals to option, or if
the right operand is not a Boolean.

The function does not pop the pair at idx.

986 17 C API Functions

agnL_pairgetinumber

lua_Number agnL_pairgetinumber (lua_State *L, const char *procname,
int idx, int place)

For the given Agena procedure procname, checks whether the value at stack index
idx is a pair. It then checks whether the left-hand (pos=1) or right-hand side (pos=2)
is a number and returns these numbers in x and y. The function leaves the stack
unchanged otherwise.

If the value at idx is not a pair, or if at least one of its operands is not a number, it
issues an error.

agnL_pairgetinumbers

void agnL_pairgetinumbers (lua_State *L, const char *procname, int idx,
 lua_Number *x, lua_Number *y)

For the given Agena procedure procname, checks whether the value at stack index
idx is a pair. It then checks whether the left-hand and right-hand side are numbers
and returns these numbers in x and y. Finally, if idx is negative, the function pops
the pair from the stack, and leaves the stack unchanged otherwise.

If the value at idx is not a pair, or if at least one of its operands is not a number, it
issues an error.

agnL_pexecute

int agnL_pexecute (lua_State *L, const char *str, const char *procname)

Executes the operating system command represented by string str and puts the
output - a string - onto the top of the stack.

The string procname indicates the name of the function from which it is called. The
function also removes any carriage returns('\r') from the output.

agnL_pushvstring

int agnL_pushvstring (lua_State *L, const char *str, ...)

Takes one or more strings and pushes their concatenation onto the top of the stack
The resulting string does not automatically have a newline at its end, so you may
have to explicitly add it if you need it. The last argument must always be NULL !

agena >> 987

agnL_readlines

void agnL_readlines (lua_State *L, FILE *f,
 const char *procname, int ispipe)

Reads in the file or pipe depicted by its handle f and pushes its entire contents or
output as a string onto the top of the stack. The string procname indicates the name
of the function from which it is called. The function also removes any carriage
returns ('\r') from the output.

If you read from a pipe, pass 1 for ispipe, and 0 otherwise.

Note that you have to open the file or pipe before, and that the function does not
close the file or pipe automatically.

agnL_strtocomplex

int agnL_strtocomplex(lua_State *L, int idx)

Tries to convert the string at stack position idx, with idx always negative, to a
number and if successful replaces the string with that number, otherwise leaves the
stack unchanged. Returns 1 if it could convert the string, and 0 otherwise.

See also: agn_tonumberx, agnL_strtonumber.

agnL_strtonumber

int agnL_strtonumber (lua_State *L, int idx)

Tries to convert the string at stack position idx, with idx always negative, to a
number and if successful replaces the string with that number, otherwise leaves the
stack unchanged. Returns 1 if it could convert the string, and 0 otherwise.

See also: agn_tonumberx, agnL_strtocomplex.

agnL_strunwrap

int agnL_strunwrap(lua_State *L, int idx,
 const char *delim, size_t delimlen)

Removes the wrapping substring delim of length delimlen from the string at stack
position idx and replaces it with the resulting string. idx must be negative. If the
string could be unwrapped, returns 1 and 0 otherwise, where 0 means there was no
string at idx with the enclosing substring delim.

988 17 C API Functions

agnL_tonumarray

lua_Number *agnL_tonumarray (lua_State *L, int idx, size_t *size,
 const char *procname)

Creates a C double array and puts all numbers in the table, sequence or register at
index idx into it. If a non-number is part of the structure, an error will be issued for
function procname. size will contain the number of elements in the C array after
returning. Free the array after usage. See also agnL_fillarray.

agnL_tostringx

const char *(agnL_tostringx) (lua_State *L, int idx, const char *procname);

Converts the number, Boolean, null or string at index idx to a string. If a wrong
argument has been passed, the function issues an error with the name of the
procedure causing the exception given by procname.

lua_absindex

int lua_absindex (lua_State *L, int idx);

Converts the acceptable index idx into an equivalent absolute index (that is, one
that does not depend on the stack top).

lua_arith

void lua_arith (lua_State *L, int op);

Performs an arithmetic operation op over the two values (or one, in the case of
negations) at the top of the stack, with the value at the top being the second
operand, pops these values, and pushes the result of the operation. The function
follows the semantics of the corresponding Agena operator (that is, it may call
metamethods).

The value of op must be one of the following constants:

� OP_ADD: performs addition (+)
� OP_SUB: performs subtraction (-)
� OP_MUL: performs multiplication (*)
� OP_DIV: performs float division (/)
� OP_INTDIV: performs integer division (\)
� OP_MOD: performs modulo (%)
� OP_POW: performs exponentiation (^)
� OP_IPOW: performs integer exponentiation (**)
� OP_UNM: performs mathematical negation (unary -)

agena >> 989

See also: lua_compare.

lua_compare

void lua_compare (lua_State *L, int idx1, int idx2, int op);

Compares two Agena values. Returns 1 if the value at index idx1 satisfies op when
compared with the value at index idx2, following the semantics of the
corresponding Agena operator (that is, it may call metamethods). Otherwise returns
0. Also returns 0 if any of the indices is not valid.
The value of op must be one of the following constants:

� OP_EQ: compares for equality (==),
� OP_LT: compares for less than (<),
� OP_LE: compares for less or equal (<=).

See also: lua_arith.

lua_copy

void lua_copy (lua_State *L, int fromidx, int toidx);

Copies the element at index fromidx into the valid index toidx, replacing the value
at that position. Values at other positions are not affected.

lua_geti

int lua_geti (lua_State *L, int idx, lua_Integer i);

Pushes onto the stack the value t[i], where t is the value at the given index. This
function may trigger a metamethod for the '__index' event. Returns the type of the
pushed value. See also: lua_seti.

lua_getiuservalue

void lua_getiuservalue (lua_State *L, int idx, int n);

Pushes onto the stack the n-th user value associated with the full userdata at the
given index and returns the type of the pushed value.

If the userdata does not have that value or the value at idx is not a userdata,
pushes null and returns LUA_TNONE.

990 17 C API Functions

n should always be 1 as the function would always return LUA_TNONE otherwise.

lua_getwarnf

int lua_setwarnf (lua_State *L);

Returns the current warning state:

� 0 - warning system is off;
� 1 - ready to start a new message;
� 2 - previous message is to be continued.

See also: lua_setwarnf.

lua_hasfield

void lua_hasfield (lua_State *L, int idx, const char *k);

Checks whether a table at index idx includes a given field, a string key, and returns
0 (false) or 1 (true). Metamethods are ignored. The stack is left unchanged.

See also: lua_getfield, lua_shas.

lua_iscomplex

void lua_iscomplex (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a complex number. It
returns 1 if the value is a complex number, and 0 otherwise. It does not pop
anything.

lua_newuserdatuv

void *lua_newuserdatauv (lua_State *L, size_t size, int nuvalue);

This function creates and pushes on the stack a new full userdata, with nuvalue
associated Agena values, called user values, plus an associated block of raw
memory with size bytes. (The user values can be set and read with the functions
lua_setiuservalue and lua_getiuservalue.) In Agena, nuvalue should always be 1,
otherwise the function will issue an error to avoid segmentation faults.

The function returns the address of the block of memory.

agena >> 991

lua_isnone

void lua_isnone (lua_State *L, int idx);

This macro returns 1 if the given index is acceptable, but not valid, and 0 otherwise.

lua_isreg

void lua_isreg (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a register. It returns 1 if the
value is a pair, and 0 otherwise. It does not pop anything.

lua_ispair

void lua_ispair (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a pair. It returns 1 if the
value is a pair, and 0 otherwise. It does not pop anything.

lua_isseq

void lua_isseq (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a sequence. It returns 1 if
the value is a sequence, and 0 otherwise. It does not pop anything.

lua_isset

void lua_isset (lua_State *L, int idx);

This macro checks whether the value at stack index idx is a set. It returns 1 if the
value is a set, and 0 otherwise. It does not pop anything.

lua_isyieldable

void lua_isyieldable (lua_State *L);

This macro returns 1 if the given coroutine can yield, and 0 otherwise.

992 17 C API Functions

lua_numbertointeger

int lua_numbertointeger (lua_Number n, lua_Integer *p);

Tries to convert a float to an integer; the floating-point value n must have an integral
value. If that value is within the range of integers, it is converted to an integer and
assigned to *p. The macro results in a boolean indicating whether the conversion
was successful. (Note that this range test can be tricky to do correctly without this
macro, due to rounding.)

This macro may evaluate its arguments more than once.

lua_pushchar

void lua_pushchar (lua_State *L, char c);

Pushes character c as a string of length 1 onto the stack.

lua_pushfail

void lua_pushfail (lua_State *L);

This macro pushes the Boolean value fail onto the stack.

lua_pushfalse

void lua_pushfalse (lua_State *L);

This macro pushes the Boolean value false onto the stack.

lua_pushglobaltable

void lua_pushglobaltable (lua_State *L);

Pushes the global environment onto the stack.

lua_pushundefined

void lua_pushundefined (lua_State *L);

Pushes the value undefined onto the stack.

agena >> 993

lua_pushunsigned

LUA_API void lua_pushunsigned (lua_State *L, lua_Unsigned u);

Pushes an unsigned int (if you do not change the defaults) onto the stack.

lua_pushtrue

void lua_pushtrue (lua_State *L);

This macro pushes the Boolean value true onto the stack.

lua_rawaequal
int lua_rawaequal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are primitively
approximately equal (that is, without calling metamethods, see also approx, ~=).
Otherwise returns 0. Also returns 0 if any of the indices are non valid.

lua_rawgetp
int lua_rawgetp (lua_State *L, int index, const void *p);

Pushes onto the stack the value t[k], where t is the table at the given index and k is
the pointer p represented as a light userdata. The access is raw; that is, it does not
use the __index metavalue.

Returns the type of the pushed value.

lua_rawset2

void lua_rawset2 (lua_State *L, int idx);

Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

Contrary to lua_rawset, only the value is deleted from the stack, the key is kept, thus
you save one call to lua_pop. This makes it useful with lua_next which needs a key
in order to iterate successfully.

994 17 C API Functions

lua_rawsetiboolean

void lua_rawsetiboolean (lua_State *L, int idx, int n, int num);

This macro does the equivalent of t[n] := fail, if num is -1, t[n] := false, if num is 0,
and t[n] := true, if num is 1. t is the table at the given valid index idx, n is an
integer, and num an integer.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetilstring

void lua_rawsetilstring (lua_State *L, int idx, int n, const char *str,
 int len);

This macro does the equivalent of t[n] := string, where t is the table at the given
valid index idx, n is an integer, str the string to be inserted and len the length of
then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetikey

void lua_rawsetikey (lua_State *L, int idx, int n);

Does the equivalent of t[n] := k, where t is the table at the given valid index idx and
k is the value just below the top of the stack.

This function pops the topmost value from the stack and leaves everything else
untouched. The assignment is raw; that is, it does not invoke metamethods.

lua_rawsetinumber

void lua_rawsetinumber (lua_State *L, int idx, int n, lua_Number num);

This macro does the equivalent of t[n] := num, where t is the table at the given valid
and negative index idx, n is an integer, and num an Agena number (a C double).

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

See also: agn_setinumber.

agena >> 995

lua_rawsetistring

void lua_rawsetistring (lua_State *L, int idx, int n, const char *str);

This macro does the equivalent of t[n] = str, where t is the table at the given valid
index idx, n is an integer, and str a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetp

void lua_rawsetp (lua_State *L, int index, const void *p);

Does the equivalent of t[p] = v, where t is the table at the given index, p is encoded
as a light userdata, and v is the value on the top of the stack.

This function pops the value from the stack. The assignment is raw, that is, it does
not use the __newindex metamethod.

lua_rawsetstringboolean

void lua_rawsetstringboolean
 (lua_State *L, int idx, const char *str, int n);

This macro does the equivalent of t[str] := (n == 1), where t is the value at the
given valid index idx, str a string, and n an integer.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringchar

void lua_rawsetstringchar
 (lua_State *L, int idx, const char *str, int v);

This macro does the equivalent of t[str] := v, where t is the value at the given valid
index idx, str a string, and v is an integer.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods. See also lua_rawsetstringstring.

996 17 C API Functions

lua_rawsetstringnumber

void lua_rawsetstringnumber
 (lua_State *L, int idx, const char *str, lua_Number n);

This macro does the equivalent of t[str] := n, where t is the value at the given valid
index idx, str a string, and n a number.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringpairnumbers

void lua_rawsetstringpairnumbers
 (lua_State *L, int idx, const char *str, lua_Number x, lua_Number y);

This macro does the equivalent of t[str] := x:y, where t is the value at the given
valid index idx, str a string, and x:y is a pair of the numbers x and y.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_rawsetstringstring

void lua_rawsetstringstring
 (lua_State *L, int idx, const char *str, const char *text);

This macro does the equivalent of t[str] := text, where t is the value at the given
valid index idx, str a string, and text is a string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods. See also lua_rawsetstringchar.

lua_reginsert

void lua_reginsert (lua_State *L, int idx);

Puts the element on top of the Lua stack into the register at stack index idx. on the
first slot that is currently set to null. If there is no free slot, an error will be issued. The
value added to the register is popped from the stack thereafter.

agena >> 997

lua_regnext

int lua_regnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next key~value pair from the register at
the given index idx. If there are no more elements in the register or the position of
the top pointer has been exceeded, then lua_regnext returns 0 (and pushes
nothing). To access the very first item in a register, put null on the stack before (with
lua_pushnil).

While traversing a register, do not call lua_tolstring directly on the key. Recall that
lua_tolstring changes the value at the given index; this confuses the next call to
lua_regnext.

agn_regsetinumber

void agn_regsetinumber (lua_State *L, int idx, int n, lua_Number num);

This macro sets the given Agena number num to the non-zero and positive index n of
the register at positive or negative stack index idx.

lua_rotate

void lua_rotate (lua_State *L, int idx, int n);

Rotates the stack elements between the valid index idx and the top of the stack.
The elements are rotated n positions in the direction of the top, for a positive n, or -n
positions in the direction of the bottom, for a negative n.

The absolute value of n must not be greater than the size of the slice being rotated.

This function cannot be called with a pseudo-index, because a pseudo-index is not
an actual stack position.

lua_sdelete

void lua_sdelete (lua_State *L, int idx);

Deletes the element residing at the top of the stack from the set at stack position
idx. The element at the stack top is popped thereafter.

Note that you should not delete a value while traversing a set with lua_usnext. This
code, however, works:

998 17 C API Functions

lua_pushvalue(L, idx);

if (lua_isset(L, -1)) {
 lua_pushnil(L);
 while (lua_usnext(L, -2) != 0) {
 lua_sdelete(L, -3); /* delete value in the set and pop it */
 agn_poptop(L); /* pop the key from stack, too, since it cannot
 be used for next iteration as it has been
 purged from the set */
 lua_pushnil(L); /* restart iteration */
 }
}

agn_poptop(L);

See also: lua_sinsert.

lua_seqgeti

void lua_seqgeti (lua_State *L, int idx, int n);

Gets the n-th item from the sequence at stack index idx and pushes it onto the
stack. You have to make sure that the index is valid, otherwise there may be
segmentation faults.

See also: lua_seqseti.

lua_seqrawgetinumber

lua_Number lua_seqrawgetinumber (lua_State *L, int idx, int n);

Returns the value t[n] as a lua_Number, where t is a sequence at the given valid
index idx. If t[n] is not a number, the return is HUGE_VAL. The access is raw; that is, it
does not invoke metamethods.

See also: agn_seqgetinumber.

lua_seqinsert

void lua_seqinsert (lua_State *L, int idx);

Inserts the element on top of the Lua stack into the sequence at stack index idx.
The element is inserted at the end of the sequence. The value added to the
sequence is popped from the stack thereafter.

agena >> 999

lua_seqnext

int lua_seqnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next key~value pair from the sequence
at the given index idx. If there are no more elements in the sequence, then
lua_seqnext returns 0 (and pushes nothing). To access the very first item in a
sequence, put null on the stack before (with lua_pushnil).

While traversing a sequence, do not call lua_tolstring directly on the key. Recall
that lua_tolstring changes the value at the given index; this confuses the next call
to lua_seqnext.

lua_seqrawget

void lua_seqrawget (lua_State *L, int idx, int pushnil);

Pushes onto the stack the sequence value t[k], where t is the sequence at the given
valid index idx and k is the value at the top of the stack. If t[k] does not exist, an
error will be issued if pushnil = 0, and null will be pushed if pushnil is non-zero.

This function pops the key from the stack (putting the resulting value in its place). The
function does not invoke any metamethods.

lua_seqrawgeti

void lua_seqrawgeti (lua_State *L, int idx, size_t n);

Pushes onto the stack the sequence value t[n], where t is the sequence at the given
valid index idx.

The function does not invoke any metamethods. Contrary to lua_rawgeti, it issues
an error if n is out of range.

lua_seqrawset

void lua_seqrawset (lua_State *L, int idx);

Does the equivalent to s[k] := v, where s is a sequence at the given valid index idx,
v is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. It does not invoke any
metamethods.

1000 17 C API Functions

lua_seqrawsetilstring

void lua_seqrawsetilstring (lua_State *L, int idx, int n, const char *str,
 int len);

This macro does the equivalent of s[n] = string, where s is the sequence at the
given valid index idx, n is an integer, str the string to be inserted and len the length
of then string.

This function leaves the stack unchanged. The assignment is raw; that is, it does not
invoke metamethods.

lua_seqseti
void lua_seqseti (lua_State *L, int idx, int n);

Sets the value at the top of the stack to the non-zero and positive index n of the
sequence at stack index idx.

If the value added is null, the entry at sequence index n is deleted and all elements
to the right of the value deleted are shifted to the left, so that their index positions
get changed, as well.

The function pops the value from the top of the stack.

If there is already an item at position n in the sequence, it is overwritten.

If you want to extend a current sequence, the function allows to add a new item
only at the next free index position. Larger index positions are ignored, but the value
to be added is popped from the stack, as well.

See also: lua_seqgeti.

agn_seqsetinumber

void agn_seqsetinumber (lua_State *L, int idx, int n, lua_Number num);

The function sets the given Agena number num to the non-zero and positive index n
of the sequence at positive or negative stack index idx.

lua_seqsetistring

void lua_seqsetistring (lua_State *L, int idx, int n, const char *str);

This macro sets the given string str to the non-zero and positive index index n of the
sequence at stack index idx.

agena >> 1001

lua_seti

void lua_seti (lua_State *L, int idx, lua_Integer n);

Does the equivalent to t[n] = v, where t is the value at the given index idx and v is
the value at the top of the stack.

This function pops the value from the stack. This function may trigger a
metamethod for the '__writeindex' event.

See also: lua_geti.

lua_setmetatabletoobject

void lua_setmetatabletoobject (lua_State *L, int idx, const char *k,
 int settype);

Sets metatable k to the structure at index position idx. The function does not
change the stack. If settype is 1 the user-defined type k will also be set, if settype is
0 no user-defined type will be set. If k is NULL, the metatable will be deleted and if
settype is 1, the user-defined type will also be removed.

lua_setwarnf

void lua_setwarnf (lua_State *L, lua_WarnFunction f, void *ud);

Sets the warning function to be used by Lua to emit warnings (see
lua_WarnFunction). The ud parameter sets the value ud passed to the warning
function. See also: lua_getwarnf.

lua_sinsert

void lua_sinsert (lua_State *L, int idx);

This macro to lua_srawset inserts an item into a set. The set is at the given index idx,
and the item is at the top of the stack.

This function pops the item from the stack. See also: lua_sdelete.

1002 17 C API Functions

lua_sinsertlstring

void lua_sinsertlstring (lua_State *L, int idx, const char *str, size_t l);

This macro sets the first l characters of the string denoted by str into the set at the
given index idx.

lua_sinsertnumber

void lua_sinsertnumber (lua_State *L, int idx, lua_Number n);

This macro sets the number denoted by n into the set at the given index idx.

lua_shas

void lua_shas (lua_State *L, int idx, int pop);

Checks whether the value at the stack top exists in the set at stack index idx.
Returns 0 or 1. If pop is 1, pops the value, otherwise leaves the stack unchanged.

See also lua_hasfield.

lua_sinsertstring

void lua_sinsertstring (lua_State *L, int idx, const char *str);

This macro sets the string denoted by str into the set at the given index idx.

lua_srawget

int lua_srawget (lua_State *L, int idx);

Checks whether the set at index idx contains the value at the top of the stack. The
function pops the value from the stack putting the Boolean value true or false in its
place. It returns 1 if the element has been found, and 0 otherwise.
It does not invoke any metamethods.

agena >> 1003

lua_srawset

void lua_srawset (lua_State *L, int idx);

Does the equivalent to insert v into s, where s is the set at the given valid index
idx, v is the value at the top of the stack.

This function pops the value from the stack. It does not invoke any metamethods.
To delete entries, see lua_sdelete.

lua_stringtonumber

void lua_stringtonumber (lua_State *L, const char *s);

Converts the zero-terminated string s to a number, pushes that number into the
stack, and returns the total size of the string, that is, its length plus one. The
conversion can result in an integer or a float, according to the lexical conventions
of Agena. The string may have leading and trailing whitespaces and a sign.

If the string is not a valid numeral, returns 0 and pushes nothing. (Note that the result
can be used as a Boolean, true if the conversion succeeds.)

lua_toboolean

int lua_toboolean (lua_State *L, int idx)

Converts the value at the given acceptable index to an integer value (-1, 0 or 1).

If the value at idx is null or false, the functions returns 0.
If the value at idx is fail, the function returns -1.
If the value at idx is different from false, fail, and null, the function returns 1.

The function also returns 0 when called with a non-valid index. (If you want to
accept only actual Boolean values, use lua_isboolean to test the value's type.)

lua_toint32_t

int32_t lua_toint32_t (lua_State *L, int idx)

Converts the value at the given acceptable index to the signed integral type
int32_t. The value must be a number or a string convertible to a number; otherwise,
lua_toint32_t returns 0.

If the number is not an integer, it is truncated in some non-specified way.

1004 17 C API Functions

See also: agnL_optuint32_t.

lua_usnext

int lua_usnext (lua_State *L, int idx);

Pops a key from the stack, and pushes the next item twice (!) from the set at the
given idx. If there are no more elements in the set, then lua_usnext returns 0 (and
pushes nothing). To access the very first item in a set, put null on the stack before
(with lua_pushnil).

While traversing a set, do not call lua_tolstring directly on an item, unless you know
that the item is actually a string. Recall that lua_tolstring changes the value at the
given index; this confuses the next call to lua_usnext.

lua_warning

int lua_warning (lua_State *L, const char *msg, int tocont);

Emits a warning with the given message. A message in a call with tocont true
should be continued in another call to this function.

luaL_addgsub

const void luaL_addgsub (luaL_Buffer *B, const char *s,
 const char *p, const char *r);

In string s, replaces any occurrence of the string p with the string r and adds the
resulting string to buffer B. Search patterns are ignored.

luaL_argexpected

void luaL_argexpected (lua_State *L, int cond, int arg, const char *tname);

Checks whether cond is true. If it is not, raises an error about the type of the
argument arg received and the type expected (tname) with a standard message
(see luaL_typeerror).

agena >> 1005

luaL_checkcache

void luaL_checkcache (lua_State *L, int n, const char *procname);

Checks whether the cache stack has enough space for further n values and
extends it if necessary. It issues an error if the stack would exceed LUAI_MAXCSTACK
slots or memory allocation failed. Pass L as first argument, not L->C.

luaL_checkint32_t

int32_t luaL_checkint32_t (lua_state *L, int narg)

Checks whether the function argument narg is a number and returns this number
cast to an int32_t.

luaL_checklstringornil

const char *luaL_checklstringornil (lua_State *L, int idx, size_t *len);

Works exactly like luaL_checklstring but also accepts null at stack index narg. In this
case, the function returns the empty string and len is set to zero.

luaL_checksetting

int luaL_checksetting (lua_State *L, int idx,

 const char *const lst[], const char *errmsg);

Checks whether the string at stack index idx is included in the list lst, and returns its
position in lst, counting from 0. If it does not find the string in the list, issues the error
errmsg.

luaL_clearbuffer

void luaL_clearbuffer (luaL_Buffer *B)

Clears a luaL_Buffer and resets it, does not leave anything on the stack

1006 17 C API Functions

luaL_isudata

int luaL_isudata (lua_State *L, int ud, const char *tname);

Checks whether the object at stack position ud is a userdata object. If ud depicts
the position of a userdata, the function also checks whether the metatable - if
available - attached to it complies with metatable tname which the programmer
originally intended to be used by the specific userdata.

The function returns 1 if all checks have been successful, and 0 otherwise.

See also: luaL_getudata.

luaL_getsubtable

int luaL_getsubtable (lua_State *L, int idx, const char *fname);

Ensures that the value t[fname], where t is the value at index idx, is a table, and
pushes that table onto the stack. Otherwise creates a new table, assigned to
t[fname], and pushes it onto the top of the stack. Returns true (1) if it finds a previous
table and false (0) if it creates a new table.

luaL_getudata

void *luaL_getudata (lua_State *L, int narg, const char *tname,

 int *result);

Checks whether the function argument narg is a userdata of the type tname.
Contrary to luaL_checkudata, it does not issue an error if the argument is not a
userdata, and also stores 1 to result if the check was successful, and 0 otherwise.

luaL_setfuncs

void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);

Registers all functions in the array l (see luaL_Reg) into the table on the top of the
stack (below optional upvalues, see next).

When nup is not zero, all functions are created with nup upvalues, initialized with
copies of the nup values previously pushed on the stack on top of the library table.
These values are popped from the stack after the registration.

agena >> 1007

The following functions have originally been written by Rici Lake for Lua 5.x:

luaL_newref

luaRef *luaL_newref (lua_State *L, int idx);

Creates a new C reference to the object at stack index idx.

luaL_pushref

void luaL_pushref (lua_State *L, luaRef *r)

Pushes a referenced object onto the stack.

luaL_freeref

void luaL_freeref (lua_State *L, luaRef *r)

Frees a reference.

luaL_str2d

lua_Number luaL_str2d (const char *s, int *overflow)

Converts a string s to a Agena number.

1008 17 C API Functions

Appendices

agena >> 1009

1010 Appendices

Appendix A

A1 Operators

Unary operators are:

&&, ~~, ||, ^^, abs, antilog2, antilog10, arccos, arcsec, arcsin, arctan, assigned,
atendof, bea, char, cis, conjugate, copy, cos, cosh, cosxx, cube, empty, entier, even,
exp, filled, finite, first, flip, float, lngamma, gethigh, getlow, imag, infinite,
inrange, instr, int, integral, join, last, left, ln, lower, mulup, nan, nargs,
nonzero, not, odd, qmdev, qsumup, real, recip, reg, replace, right, sumup, seq, sign,
signum, sin, sinc, sinh, size, square, sqrt, tan, tanh, trim, type, unassigned,
unique, upper, times, typeof, values, zero, - (unary minus), ~~ (bitwise
complement).

Binary operators are:

and, in, intersect, minus, nand, nor, or, roll, split, squareadd, subset, symmod,
union, xor, xnor, xsubset, + (addition), - (subtraction), * (multiplication), / (division),
*% (percentage) /% (ratio), +% (add percentage), -% (subtract percentage), %%
(percentage change), \ (integer division), % (modulus), ^ (exponentiation), **
(integer exponentiation), & (concatenation), = (equality), ~= (approximate equality),
~<> (approximate inequality), < (less than), <= (less or equal), > (greater than), >=
(greater or equal), @ (mapping), $ (selection), $$ (fulfillment), : (pair constructor), !
(complex constructor), && (bitwise and), || (bitwise or), ^^ (bitwise xor), <<< (bitwise
left-shift), >>> (right-shift), <<<< (bitwise left-rotation), >>>> (right-rotation), &+ (add
4-byte integer), &- (subtract 4-byte integer), &* (multiply 4-byte integer), and &/
(devide 4-byte integer), | (comparison), ~| (approximate comparison), |- (absolute
difference).

agena >> 1011

A2 Metamethods

The following metamethods were inherited from Lua 5.1:

Declaration of weak tables, sets, and sequences'__weak'

Protection for metatables'__metatable'

Method for pretty printing values at stdout'__tostring'

See Lua 5.1 manual'__call'

Concatenation'__concat'

Less-than or equals operation'__le'

Less-than operation'__lt'

Equality operation'__eq'

Unary minus'__unm'

Exponentiation'__pow'

Modulus'__mod'

Division of two values'__div'

Multiplication of two values'__mul'

Subtraction of two values'__sub'

Addition of two values'__add'

Sets weakness of a table'__mode'

Garbage collection, for userdata only'__gc'

read operation using indices, e.g. if n[1] = 0 then ... or
if n[2 to 3] = 'JP' then ...

'__index'

MeaningIndex to metatable

Table 20: Metamethods taken from Lua

The __len metamethod in Lua 5.1 to determine the size of an object was replaced
with the __size metamethod. Lua's __mode metamethod has been renamed
__weak.

The following methods are new in Agena:

exp operator'__exp'

even operator'__even'

empty operator'__empty'

strict equality operator (==)'__eeq'

cube operator'__cube'

cosh operator'__cosh'

cos operator'__cos'

cis operator'__cis'

arctan operator'__arctan'

arcsin operator'__arcsin'

arccos operator'__arccos'

approximate equality operator (~=)'__aeq'

addup operator for table, register or sequence-based
user-defined types or userdata

'__addup'

abs operator'__abs'

MeaningIndex to metatable

1012 Appendices

zero operator'__zero'

write operation using indices, e.g. n[1] := 0'__writeindex'

union operator'__union'

tanh operator'__tanh'

tan operator'__tan'

squareadd operator'__squareadd'

square operator'__square'

sqrt operator'__sqrt'

size operator'__size'

sinh operator'__sinh'

sinc operator'__sinc'

sin operator'__sin'

sign operator'__sign'

sumup operator for table, register or sequence-based
user-defined types or userdata

'__sumup'

recip operator'__recip'

real operator'__real'

qsumup operator for table, resgister or
sequence-based user-defined types or userdata

'__qsumup'

qmdev operator for table, register or sequence-based
user-defined types or userdata

'__qmdev'

self-defined type check for ::, :-, and parameter lists
of procedures

'__oftype'

notin operator'__notin'

nonzero operator'__nonzero'

qsumup operator for table, register or
sequence-based user-defined types or userdata

'__mulup'

minus operator'__minus'

log operator'__log'

ln operator'__ln'

exponentiation with an integer power'__ipow'

integral operator'__integral'

intersect operator'__intersect'

integer division'__intdiv'

in binary operator'__in'

imag operator'__imag'

float operator'__float'

filled operator'__filled'

MeaningIndex to metatable

Table 21: Metamethods introduced with Agena

Procedures support the '__index', '__writeindex', '__tostring', '__in',
'__notin', '__filled', '__empty', '__union', '__minus', '__intersect', '__eq',
'__aeq', '__eeq' and '__size' metamethods only.

agena >> 1013

A3 Mathematical Constants

10-18math.atto
10-15math.femto
10-12math.pico
10-9math.nano
10-6math.micro
10-3math.milli
10-2math.centi
10-1math.deci
101math.deka
103math.kilo
106math.mega
109math.giga
1012math.tera
1015math.peta
1018math.exa

Largest integer i representable on the floating-point system with
enough precision, such that i - 1 <> i

math.
lastcontint

Smallest positive normal number
math.smallest-
normal

Smallest positive representable numbermath.smallest

Largest representable number; the smallest negative one
nearest to is the negative of this constant−∞

math.largest

Golden ratio (1+)/25Phi
An expression stating that it is undefined, e.g. a singularityundefined
Factor /180 to convert degrees to radians✜radians
Constant = 0.785398163397448309616✜/4PiO4
Constant = 1.570796326794896619232✜/2PiO2
Constant 2 = 6.283185307179586476926✜Pi2
Constant = 3.14159265358979323846✜Pi
Infinity ∞infinity
Imaginary unit −1I
Constant e = exp(1) = 2.71828182845904523536E, Exp
Euler-Mascheroni constant, equals 0.57721566490153286061EulerGamma
Equals 1.4901161193847656e-12hEps
Equals 1.4901161193847656e-08Eps
Equals 2.2204460492503131E-16DoubleEps
Factor 1/ *180 to convert radians to degrees✜degrees
MeaningConstant

Table 27: Constants

1014 Appendices

A4 System Variables

Agena lets you configure the following settings, where `n/e` means `no effect`.

yes

A set of names (passed as strings) that
cannot by overwritten by the with function.
Currently the names `next`, `print`, `with`,
`write`, `read`, `writeline` have been
assigned.

environ.withprotected

no
Similar to environ.release, but contains
version information represented by a float,
not including the lib/library.agn patch level.

environ.version

no

A sequence containing the string `AGENA`,
the main interpreter version as a number,
the subversion as a number, and the C
patch number as a number, as well. The
lib/library.agn patch level is denoted by the
fourth entry, or 0 if non-existent. Do not
change environ.release. See also system
variables _RELEASE and environ.version.

environ.release

no

Contains the name of the operating system
in use as a lower-case string, e.g. 'windows',
'macosx', 'solaris', 'os/2', 'haiku', 'dos',
or 'linux'. Do not change this value. See
also system variable environ.cpu.

environ.os

yes

The number of entries in tables and sets
printed by print and the end-colon
functionality before issuing the `press any
key` prompt. Default is 40.

environ.more

no
The maximum number of characters for a
file path (excluding C's \0 character).

environ.maxpathlength

no
The update version of the main Agena
library (in lib/library.agn). Mostly defaults to
null.

environ.libpatchlevel

no
A table with all default plotting options for
some functions in the gdi package. This
table is set by gdi.setoptions.

environ.gdidefaultoptions

yesThe path to the user's home directory.environ.homedir

no

Contains the name of the CPU in use as a
lower-case string, e.g. 'sparc', 'ppc' for
PowerPC, or 'x86' for Intel 386-compatible
processors. See also system variable
environ.os.

environ.cpu

yesThe path to the main Agena directory.mainlibname
yesThe paths to Agena libraries.libname

WriteMeaningSystem variable

agena >> 1015

no
Refers to the function currently invoked, can
be used in recursive calls

procname

no
Number of arguments actually passed in a
function call, including varargs

nargs

no

Release information on the installed Agena
release, returned as a string, e.g. 'AGENA
>> 2.2.0'. See also system variables
environ.release and environ.version.

_RELEASE

yes
Defines the prompt Agena displays at the
console. If unassigned, by default the
prompt is '> '.

_PROMPT

yes

A table holding all currently assigned global
names and their values, and itself. You can
add or delete entries by simple table
assignment or unassignment, e.g. to delete
the print function in the current session, just
enter:

> delete print from _G

> print('Klöße !')
Error in stdin, at line 1:
attempt to call global `print` (a null
value)

_G

yes
If set to false, the with function will not
display warnings, the initialisation string, and
the short names assigned. Default is true.

environ.withverbose

WriteMeaningSystem variable

Table 22: System variables

All environ.* settings are reset by the restart statement to their original defaults,
whereas those settings the user defines with the environ.kernel function will never be
modified or deleted by a restart.

Some of the default settings can be found at the bottom of the lib/library.agn file.

See also:

� Chapter 14.2 for a description of the kernel functions for other settings.
� Appendix A5 for settings that control how Agena outputs data at the console.

1016 Appendices

A5 Command-Line Usage & Scripting

Agena can be used in the command line as follows:

agena [options] [script [arguments]]

This means that any option, a script name, and the arguments are all optional. If
you just enter

shell> agena

Agena is started in interactive mode immediately.

There are two ways to run an Agena script with some arguments and then return to
the command line immediately without entering interactive mode:

A5.1 Using the -e Option

We may write a script with a text editor, e.g. one to print the sine of a number, for
example the following two lines:

n := n or Pi; # if n is not set from the shell, just assign Pi to n
writeline(sin(n));

When using the -e option, we first assign the desired number to a variable and then
call the script by its name:

shell> agena -e "n := Pi/2" sin.agn
1

Note that you first have to enter the -e option along with the assignment statement,
and then the name of the script.

A much better alternative is this:

A5.2 Using the Internal args Table and Exit Status

Everything you pass to the interpreter from the command line is stored in the args
table.

The name of the script is always stored at index 0, the arguments are stored at the
positive indices 1, 2, etc., in the order given by the user. The name of the Agena
binary and any options are accessible via negative keys. The name of the
interpreter binary is always at the smallest index.

Consider the following script called 'args.agn':

for i, j in args do
 writeline(i, j, delim='\t')
od;

agena >> 1017

If you run it, the output will be:

shell> agena -m args.agn 1.1 2.2 3.3
4'194'303 KBytes of physical RAM free.

1 1.1
2 2.2
3 3.3
-2 agena
-1 -m
0 args.agn

Just play around with this a little bit.

Let us use our new knowledge: The script 'ln.agn' requires at least one number and
calculates the corresponding natural logarithm. The numbers entered at the
command line are put into the args table as strings, so you should convert them
back into numbers first. The number of actual arguments - without script name,
options and Agena binary file name - are stored in nargs. os.exit passes an exit
code to the shell, if needed.

Evaluate the natural logarithm of given numbers

if nargs < 1 then
 print('Error, need at least one number');
 os.exit(-1) # just return error exit code
fi

rc := 0; # exit/return code of the script

for i to nargs do # iterate each argument at the command line
 x := tonumber(args[i]);
 if x :- number then x := 0 fi; # if conversion failed, set x to 0
 r := ln(x);
 if r = undefined then rc := 1 fi; # there was an arithmetic error
 writeline('ln(', x, ') = ', r)
od;

/* clear interpreter state, perform garbage collection & return exit code:
 -1 = no arguments given
 0 = okay
 1 = domain error or wrong type of argument */

os.exit(rc, true);

Use it:

shell> agena ln.agn 0 1 2
ln(0) = undefined
ln(1) = 0
ln(2) = 0.69314718055995

You will find sample scripts in the 'share/scripting' directory of your Agena distribution.
The folder also includes batch files to start the scripts from a shell in OS/2 Warp 4.5
(e.g. 'whereis.cmd'), DOS and Windows (e.g. 'whereis.bat').

1018 Appendices

A5.3 Running a Script and then Entering Interactive Mode

The -i option allows you to enter the interactive level after running a script or
passing other options to Agena. The position of the -i option is free. The following
shell statement resets the Agena prompt and starts the interpreter:

shell> agena -i -e "_PROMPT := 'AGENA> '"
AGENA>

A5.4 Running Scripts in UNIX and Mac OS X

If you use Agena in UNIX and Mac OS X, then you can execute Agena scripts
directly by just entering the name of the script followed by any arguments (if
needed).

Just insert the following line at the head, i.e. the very first line, of each script:

#!/usr/local/bin/agena

and set the appropriate rights for the script file (e.g. chmod a+x scriptname).
An example:

bash> ./sin.agn 1

0.8414709848079

In all other operating systems, the first line is ignored by the interpreter, so you do not
have to delete the first line of the script in order to use scripts you have originally
written under UNIX or Mac.

Please make sure that the file is stored in UNIX line break format - and not Windows
line breaks.

agena >> 1019

A5.5 Command Line Switches

The available switches are:

execute stdin and stop handling options-
stop handling options--
does not read the main library file lib/library.agn art start-up or restart-x
show version information and compilation time-v
print strings in double quotes-Q
print strings in single quotes-q
print strings in backquotes-b

sets the number of digits used in the output of numbers. Note that this
setting does not affect the precision of arithmetic operations. The
default is 14.

-D integer

allow constants to be overwritten-C
throw a syntax error when a numeric constant is too big-B
do not display copyright notice at start-up-S
issue the slogan "text" at start-up-s "text"

ignore AGENAPATH environment variable, setting libname by
searching the file system.

-a

readlib library <name>. The name of the library does not need to be
put in quotes.

-r name

sets <path> to libname, overriding the standard initialisation
procedure for this environment variable. The path does not need to
be put in quotes if it does not contain spaces.

-p path

do not run initialisation file(s) agena.ini / .agenainit at start-up or
restart

-n

print the amount of free RAM at start-up-m
print licence information-l
enter interactive mode after executing `script` or other options-i
help information-h
execute string "stat" (double quotes needed)-e "stat"
FunctionOption

Table 23: Command line options

Instead of a preceding hyphen you can also use a slash, e.g. `agena /d` and
`agena -d` for debugging mode are accepted.

A6 Define Your Own Printing Rules for Types

You can tell Agena how to output strings, tables, sets, sequences, pairs, and
complex values at the console.

With each call to the internal printing routine, the interpreter uses the respective
environ.aux.print* function or settings defined in the lib/library.agn file. You may
change these functions or settings according to your needs.

1020 Appendices

defines how to print a procedure,
overriding the built-in default

functionenviron.aux.printprocedure

if set, Agena outputs strings with the
prepending and appending string that is
assigned to
environ.aux.printenclosestrings

string
environ.aux.
printenclosestrings

defines how to print a complex value,
overriding the built-in default

functionenviron.aux.printcomplex

defines how to print a pair, overriding the
built-in default

functionenviron.aux.printpair

defines how to print a sequence,
overriding the built-in default

functionenviron.aux.printsequence

defines how to print a set, overriding the
built-in default

functionenviron.aux.printset

defines how to print a table if
kernel/longtable has been set true

functionenviron.aux.printlongtable

defines how to print a table, overriding
the built-in default

functionenviron.aux.printtable

FunctionalityTypeTable index

Table 24: Printing functions

Alternative environ.aux.print* functions might look like the following one:

> environ.aux.printset := proc(s) is
> write('set(');
> if size s > 0 then
> for i in s do
> write(i, ', ');
> od;
> write('\b\b');
> fi;
> write(')');
> end;

> environ.aux.printcomplex := proc(s) is
> write('cmplx(', real(s), ', ', imag(s), ')');
> end;

> {1, 2}:
set(1, 2)

> 1*2*I:
cmplx(1, 2)

A7 The Agena Initialisation File

You can customise your personal Agena environment via special initialisation files.

The initialisation files may include code written agena and will always be executed
when Agena is started or restarted. They can include definitions or redefinitions of
predefined (environment) variables, and feature self-written procedures or
statements to be executed at start-up.

agena >> 1021

Two kinds of initialisation files are supported:

1. a global initialisation file, and
2. a personal initialisation file for the current user.

Agena first tries to read the global initialisation file, and then the user's initialisation
file. If the initialisation files do not exist, nothing happens and Agena starts without
errors.

The global initialisation file should reside in the lib folder of your Agena installation
and is always named agena.ini for all operating systems. You may find your Agena
installation in /usr/agena on UNIX platforms, and usually in <drive:>/Program
Files/Agena or <drive:>/Program Files(x86)/Agena on Windows systems.

In Solaris, Linux, Mac OS X, the personal initialisation file resides in the folder pointed
to be the HOME environment variable. The personal Agena initialisation file on UNIX
machines is called .agenainit (not agena.ini). Thus the path is $HOME/.agenainit.

In Windows, the system environment variable UserProfile points to the user's home
folder, and the personal initialisation file is called agena.ini, (not .agenainit), thus
the file path is %UserProfile%/agena.ini.

On Windows platforms, the user's initialisation file should be put into the user's
respective home folder:

<drive:>\Users\<username>Vista and later
<drive:>\Documents and Settings\<username>2000, XP, 2003
<drive:>\WINNT\Profiles\<username>NT 4.0
Path to user's home directoryWindows version

Table 25: Windows' `home` paths

In OS/2 and DOS, Agena tries to find the user's personal agena.ini file in the
directory pointed to by the environment variable HOME, if it has been defined. If
HOME has not been defined, it searches in the folder pointed to by the environment
variable USER, if the latter has been defined. Otherwise, the personal file is not read.

Agena is shipped with a file called agena.ini.sample that resides in the lib folder of
your installation. You can rename it to agena.ini or .agenainit and play with it - but
beware not to overwrite the initialisation which you may already have created.

Here is a sample file:

1022 Appendices

###
#
Agena initialisation file
#
###

assign short names for the following library functions:
execute := os.execute;

###
Extend libname to include paths to additional libraries (but only
if directories exist)
###

if os.isWin() or os.isOS2() or os.isDOS() then
 addpaths := seq(
 'd:/agena/phq',
 'd:/agena/pcomp'
)
elif os.isSolaris() then
 addpaths := seq(
 '/export/home/proglang/agena/phq',
 '/export/home/proglang/agena/pcomp'
)
elif os.isLinux() then
 addpaths := seq(
 '~/agena/phq',
 '~/agena/pcomp'
)
fi;

for i in addpaths do
 if os.exists(i) and i in libname = null then
 libname := libname & ';' & i
 fi
od;

clear addpaths;

writeline('Have fun with Agena !\n');

###
Set default plotting options for gdi.plotfn
###

import gdi;
gdi.setoptions(colour~'red', axescolour~'grey');

agena >> 1023

A8 Escape Sequences

Agena supports the following escape sequences known from ANSI C:

backquote (in backquoted strings only)\q

skips subsequent white-space characters, including line breaks; it is
particularly useful to break and indent a long literal string into
multiple lines without adding the newlines and spaces into the string
contents

\z

hex escape\xAB
vertical tabulator\v
horizontal tabulator\t
carriage return\r
new line\n
formfeed\f
backspace\b
alert\a
MeaningSequence

Table 26: Escape sequences

> print('\z
> 1234\z
> 5678')
12345678

> print('{\n\z
> \x20 \"\104ello\": \"world\"\n\z
> }')
{
 "hello": "world"
}

A9 Backward Compatibility

Aliases for deprecated functions in Agena versions prior to 1.0 are no longer
automatically initialised at start-up. However, by entering

> import compat;

you can activate them in your current session if you prefer compatibility to Agena
1.0. For all other cases, please consult the change.log file distributed with the source
and binary editions.

This concerns all deprecated function names in the base library, in the math,
package, strings, tables, utils packages, as well as the former _Env* environment
control variables.

Deprecated names of functions in the linalg package can only be used by
uncommenting the alias assignments at the bottom of the lib/linalg.agn file.

1024 Appendices

Users of the mapm package should first import the mapm package and then load
the compat.agn file.

A10 Some Few Technical Notes

All Solaris binaries of Agena have been created with GCC 6.3.0, the RedHat
binaries with GCC 4.9.4, the Debian x86 binaries with GCC 6.3.0 and the AMD64
binaries with GCC 11.2.

All OS/2 binaries have been created with Paul Smith's GCC 4.4.6.

The Windows binaries of Agena have been created with MinGW/GCC 9.2.0 and are
included in the ordinary installer. To ensure full backward compatibility and stability
down to Windows 2000, any recent GCC compiler, such as 10.2, is not being used.
Especially, the mpf MPFR binding is prone to crashes in Windows Vista and earlier
when compiled with GCC 10.x or later.

All Mac OS X binaries of Agena have been created with Apple's GCC 4.2.1.

The DOS version is being compiled with DJGPP/GCC 12.2.0.

The C Sources should be ANSI C99 compatible, mostly due to Agena's support of
complex arithmetic.

agena >> 1025

Appendix B

B1 Agena Licence

The Agena source code is licenced under the terms of the following licence:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicence, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notices and this permission notice shall be included in all
copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS' WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

B2 GNU GPL v2 Licence

The Solaris, Linux, Windows, OS/2, Mac OS X, and DOS binaries are distributed under
the GNU GPL v2 licence reproduced below:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this licence
document, but changing it is not allowed.

Preamble

 The licences for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licence is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public Licence applies to most of the
Free Software Foundation's software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by

1026 Appendices

the GNU Lesser General Public Licence instead.) You can apply it to your programs,
too.

 When we speak of free software, we are referring to freedom, not price. Our
General Public Licences are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these
things.

 To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

 We protect your rights with two steps: (1) copyright the software, and (2) offer you
this licence which gives you legal permission to copy, distribute and/or modify the
software.

 Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

 Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licences, in effect making the program proprietary. To prevent this, we have made
it clear that any patent must be licenced for everyone's free use or not licenced at
all.

 The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

agena >> 1027

 0. This Licence applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public Licence. The "Program", below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification".)
Each licencee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this
Licence; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this Licence and to the absence of any
warranty; and give any other recipients of the Program a copy of this Licence along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licenced as a
whole at no charge to all third parties under the terms of this Licence.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this Licence. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this Licence, and its terms, do
not apply to those sections when you distribute them as separate works. But when

1028 Appendices

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this Licence, whose
permissions for other licencees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this Licence.

 3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for
non-commercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicence, or distribute the Program except as
expressly provided under this Licence. Any attempt otherwise to copy, modify,
sublicence or distribute the Program is void, and will automatically terminate your

agena >> 1029

rights under this Licence. However, parties who have received copies, or rights, from
you under this Licence will not have their licences terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this Licence, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
Licence. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this Licence to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.

 6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a licence from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
Licence.

 7. If, as a consequence of a court judgement or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this Licence, they do not excuse you from the conditions of this Licence. If you
cannot distribute so as to satisfy simultaneously your obligations under this Licence
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent licence would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this Licence would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public licence practices. Many people have made generous
contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licencee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this Licence.

 8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places

1030 Appendices

the Program under this Licence may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this Licence incorporates the
limitation as if written in the body of this Licence.

 9. The Free Software Foundation may publish revised and/or new versions of the
General Public Licence from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this Licence which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this Licence, you may choose any version ever published by
the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

agena >> 1031

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public Licence as published by
 the Free Software Foundation; either version 2 of the Licence, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public Licence for more details.

 You should have received a copy of the GNU General Public Licence along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public Licence. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the program, if necessary. Here is a
sample; alter the names:

1032 Appendices

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public Licence does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public Licence instead of this Licence.

B3 Sun Microsystems Licence for the fdlibm IEEE 754 Style Arithmetic Library

 * ==
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ==

B4 GNU Lesser General Public Licence

Agena uses the g2 graphic library which is distributed under the GNU LGPL v2.1
licence reproduced below:

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this licence document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of
the GNU Library Public Licence, version 2, hence the version number 2.1.]

Preamble

 The licences for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licences are intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users.
 This licence, the Lesser General Public Licence, applies to some specially
designated software packages--typically libraries--of the Free Software Foundation
and other authors who decide to use it. You can use it too, but we suggest you first
think carefully about whether this licence or the ordinary General Public Licence is
the better strategy to use in any particular case, based on the explanations below.

agena >> 1033

 When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licences are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish); that you
receive source code or can get it if you want it; that you can change the software
and use pieces of it in new free programs; and that you are informed that you can
do these things.

 To protect your rights, we need to make restrictions that forbid distributors to deny
you these rights or to ask you to surrender these rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you. You must make sure that
they, too, receive or can get the source code. If you link other code with the
library, you must provide complete object files to the recipients, so that they can
relink them with the library after making changes to the library and recompiling it.
And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the library, and (2)
we offer you this licence, which gives you legal permission to copy, distribute and/or
modify the library.

 To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed on,
the recipients should know that what they have is not the original version, so that the
original author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restrictive licence from a patent holder.
Therefore, we insist that any patent licence obtained for a version of the library must
be consistent with the full freedom of use specified in this licence.

 Most GNU software, including some libraries, is covered by the ordinary GNU
General Public Licence. This licence, the GNU Lesser General Public Licence,
applies to certain designated libraries, and is quite different from the ordinary
General Public Licence. We use this licence for certain libraries in order to permit
linking those libraries into non-free programs.

 When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the
original library. The ordinary General Public Licence therefore permits such linking
only if the entire combination fits its criteria of freedom. The Lesser General Public
Licence permits more lax criteria for linking other code with the library.

 We call this licence the "Lesser" General Public Licence because it does Less to
protect the user's freedom than the ordinary General Public Licence. It also

1034 Appendices

provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary
General Public Licence for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

 For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to free software
only, so we use the Lesser General Public Licence.

 In other cases, permission to use a particular library in non-free programs enables
a greater number of people to use a large body of free software. For example,
permission to use the GNU C Library in non-free programs enables many more
people to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

 Although the Lesser General Public Licence is Less protective of the users'
freedom, it does ensure that the user of a program that is linked with the Library has
the freedom and the wherewithal to run that program using a modified version of
the Library.

 The precise terms and conditions for copying, distribution and modification follow.
Pay close attention to the difference between a "work based on the library" and a
"work that uses the library". The former contains code derived from the library,
whereas the latter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This Licence Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying it
may be distributed under the terms of this Lesser General Public Licence (also
called "this Licence"). Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those
functions and data) to form executables.

 The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term "modification".)
 "Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code

agena >> 1035

for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the library.

 Activities other than copying, distribution and modification are not covered by this
Licence; they are outside its scope. The act of running a program using the Library
is not restricted, and output from such a program is covered only if its contents
constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and what
the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this Licence and to
the absence of any warranty; and distribute a copy of this Licence along with the
Library.

 You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.
c. You must cause the whole of the work to be licensed at no charge to all third

parties under the terms of this Licence.
d. If a facility in the modified Library refers to a function or a table of data to be

supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.
 (For example, a function in a library to compute square roots has a purpose
that is entirely well-defined independent of the application. Therefore,
Subsection 2d requires that any application-supplied function or table used by
this function must be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in themselves, then this Licence, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms of this Licence, whose

1036 Appendices

permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this Licence.

 3. You may opt to apply the terms of the ordinary GNU General Public Licence
instead of this Licence to a given copy of the Library. To do this, you must alter all
the notices that refer to this Licence, so that they refer to the ordinary GNU General
Public Licence, version 2, instead of to this Licence. (If a newer version than version
2 of the ordinary GNU General Public Licence has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.
 Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public Licence applies to all subsequent copies and
derivative works made from that copy.

 This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

 4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from
the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object
code.

 5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a
"work that uses the Library". Such a work, in isolation, is not a derivative work of the
Library, and therefore falls outside the scope of this Licence.

 However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the
Library), rather than a "work that uses the library". The executable is therefore
covered by this Licence. Section 6 states terms for distribution of such executables.
 When a "work that uses the Library" uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library
even though the source code is not. Whether this is true is especially significant if the

agena >> 1037

work can be linked without the Library, or if the work is itself a library. The threshold
for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length),
then the use of the object file is unrestricted, regardless of whether it is legally a
derivative work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6, whether or not they are linked directly with the Library
itself.

 6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library to produce a work containing portions of the
Library, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this Licence. You must supply a
copy of this Licence. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a
reference directing the user to the copy of this Licence. Also, you must do one
of these things:

a. Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the work
(which must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work
that uses the Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user's computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the
same place.

1038 Appendices

e. Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

 For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the materials to be distributed need not
include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

 It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an
executable that you distribute.

 7. You may place library facilities that are a work based on the Library side-by-side
in a single library together with other library facilities not covered by this Licence,
and distribute such a combined library, provided that the separate distribution of
the work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this Licence. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this Licence. However, parties who have received copies, or
rights, from you under this Licence will not have their licenses terminated so long as
such parties remain in full compliance.

 9. You are not required to accept this Licence, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or its
derivative works. These actions are prohibited by law if you do not accept this
Licence. Therefore, by modifying or distributing the Library (or any work based on
the
Library), you indicate your acceptance of this Licence to do so, and all its terms
and conditions for copying, distributing or modifying the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights

agena >> 1039

granted herein. You are not responsible for enforcing compliance by third parties
with this Licence.

 11. If, as a consequence of a court judgement or allegation of patent
infringement or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this Licence, they do not excuse you from the conditions of this
Licence. If you cannot distribute so as to satisfy simultaneously your obligations
under this Licence and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
Licence would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as
a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this Licence.

 12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Library under this Licence may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this Licence incorporates the
limitation as if written in the body of this Licence.

 13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public Licence from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this Licence which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by the Free
Software Foundation.

1040 Appendices

 14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public Licence).

 To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the "copyright" line and a pointer to
where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or

agena >> 1041

 modify it under the terms of the GNU Lesser General Public
 Licence as published by the Free Software Foundation; either
 version 2.1 of the Licence, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public Licence for more details.
 You should have received a copy of the GNU Lesser General Public
 Licence along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample;
alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

That's all there is to it!

B5 SOFA Software Licence

Copyright (C) 2012
Standards Of Fundamental Astronomy Board
of the International Astronomical Union.

=====================
SOFA Software Licence
=====================

NOTICE TO USER:

BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND CONDITIONS
WHICH APPLY TO ITS USE.

1. The Software is owned by the IAU SOFA Board ("SOFA").

2. Permission is granted to anyone to use the SOFA software for any purpose,
including commercial applications, free of charge and without payment of
royalties, subject to the conditions and restrictions listed below.

1042 Appendices

3. You (the user) may copy and distribute SOFA source code to others, and use and
adapt its code and algorithms in your own software, on a world-wide, royalty-free
basis. That portion of your distribution that does not consist of intact and
unchanged copies of SOFA source code files is a "derived work" that must comply
with the following requirements:

a) Your work shall be marked or carry a statement that it (i) uses routines and
computations derived by you from software provided by SOFA under license to you;
and (ii) does not itself constitute software provided by and/or endorsed by SOFA.

b) The source code of your derived work must contain descriptions of how the
derived work is based upon, contains and/or differs from the original SOFA software.

c) The names of all routines in your derived work shall not include the prefix "iau" or
"sofa" or trivial modifications thereof such as changes of case.

d) The origin of the SOFA components of your derived work must not be
misrepresented; you must not claim that you wrote the original software, nor file a
patent application for SOFA software or algorithms embedded in the SOFA
software.

e) These requirements must be reproduced intact in any source distribution and
shall apply to anyone to whom you have granted a further right to modify the
source code of your derived work.

Note that, as originally distributed, the SOFA software is intended to be a definitive
implementation of the IAU standards, and consequently third-party modifications
are discouraged. All variations, no matter how minor, must be explicitly marked as
such, as explained above.

4. You shall not cause the SOFA software to be brought into disrepute, either by
misuse, or use for inappropriate tasks, or by inappropriate modification.

5. The SOFA software is provided "as is" and SOFA makes no warranty as to its use or
performance. SOFA does not and cannot warrant the performance or results which
the user may obtain by using the SOFA software. SOFA makes no warranties,
express or implied, as to non-infringement of third party rights, merchantability, or
fitness for any particular purpose. In no event will SOFA be liable to the user for any
consequential, incidental, or special damages, including any lost profits or lost
savings, even if a SOFA representative has been advised of such damages, or for
any claim by any third party.

6. The provision of any version of the SOFA software under the terms and conditions
specified herein does not imply that future versions will also be made available
under the same terms and conditions.

agena >> 1043

In any published work or commercial product which uses the SOFA software directly,
acknowledgement (see www.iausofa.org) is appreciated.

Correspondence concerning SOFA software should be addressed as follows:

 By email: sofa@ukho.gov.uk
 By post: IAU SOFA Center
 HM Nautical Almanac Office
 UK Hydrographic Office
 Admiralty Way, Taunton
 Somerset, TA1 2DN
 United Kingdom

B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library)

Copyright (C) 1999 - 2007 Michael C. Ring

This software is Freeware.

Permission to use, copy, and distribute this software and its documentation for any
purpose with or without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation.

Permission to modify the software is granted. Permission to distribute the modified
code is granted. Modifications are to be distributed by using the file 'license.txt' as a
template to modify the file header. 'license.txt' is available in the official MAPM
distribution.

To distribute modified source code, insert the file 'license.txt' at the top of all
modified source code files and edit accordingly.

This software is provided "as is" without express or implied warranty.

B7 RSA Security/MD5 Licence

Copyright (C) 1990, RSA Data Security, Inc. All rights reserved.

License to copy and use this software is granted provided that it is identified as the
"RSA Data Security, Inc. MD5 Message Digest Algorithm" in all material mentioning or
referencing this software or this function.

License is also granted to make and use derivative works provided that such works
are identified as "derived from the RSA Data Security, Inc. MD5 Message Digest
Algorithm" in all material mentioning or referencing the derived work.

1044 Appendices

RSA Data Security, Inc. makes no representations concerning either the
merchantability of this software or the suitability of this software for any particular
purpose. It is provided "as is" without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this documentation
and/or software.

B8 David Schultz's Openlibm Licence

Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

B9 ISC Licence

Copyright (c) 2005-2008, Simon Howard

Permission to use, copy, modify, and/or distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

agena >> 1045

B10 Other Copyright Remarks

The Solaris, Linux, Mac OS X, and Windows binaries include code from the gd
package which has been published with the following copyright notices:

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold
Spring Harbor Laboratory. Funded under Grant P41-RR02188 by the National
Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by
Boutell.Com, Inc.

Portions relating to GD2 format copyright 1999, 2000, 2001, 2002
Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002 Greg
Roelofs.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John
Ellson (ellson@lucent.com).

Portions relating to gdft.c copyright 2001, 2002 John Ellson
(ellson@lucent.com).

Portions copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Pierre-Alain Joye (pierre@libgd.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002,
Doug Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, Thomas G. Lane. This software is based in part on the work of the
Independent JPEG Group. See the file README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002 Maurice Szmurlo and Johan
Van den Brande.

Permission has been granted to copy, distribute and modify gd in any context
without fee, including a commercial application, provided that this notice is present
in user-accessible supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to
assure proper credit for the authors of gd, not to interfere with your productive use of
gd. If you have questions, ask. "Derived works" includes all programs that utilise the
library. Credit must be given in user-accessible documentation.

This software is provided "AS IS." The copyright holders disclaim all warranties, either
express or implied, including but not limited to implied warranties of merchantability
and fitness for a particular purpose, with respect to this code and accompanying
documentation.

1046 Appendices

Although their code does not appear in gd, the authors wish to thank David Koblas,
David Rowley, and Hutchison Avenue Software Corporation for their prior
contributions.

Appendix C

C1: Further Reading

A selection of books that helped a lot in recent years when developing Agena:

� Niklaus Wirth: Algorithmen und Datenstrukturen mit Modula-2
� Roberto Ierusalimschy: Programming in Lua
� Roberto Ierusalimschy, Luiz Henrique de Figueirido, Waldemar Celes:

Lua 5.1 Reference Manual
� Kurt Jung & Aaron Brown: Beginning Lua Programming
� Jürgen Wolf: C von A bis Z
� Brian W. Kernighan & Dennis M. Ritchie: The C Programming Language
� Federico Biancuzzi & Shane Warden (Ed.): Masterminds of Programming
� Michael. B. Monagan, Keith O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,

J. McCarron, P. DeMarco: Maple 7 Programming Guide
� Brian “Beej Jorgensen” Hall, Beej's Guide to Network Programming, Using Internet

Sockets
� Jan Jones: QL SuperBASIC - The Definitive Handbook
� Frank G. Pagan: A Practical Guide to Algol68

agena >> 1047

1048 Appendices

Index

agena >> 1049

1050 Index

A

AgenaEdit, 51, 854
Algol 68, 35
ArcaOS, 46, 258, 292, 564, 719, 720,
721, 769, 778, 806, 807, 808, 810, 813,
817, 818, 820, 821, 826, 827, 829, 831,
832, 833, 834, 836, 838, 839, 840, 841,
843, 845, 854, 949, 951, 1022, 1025,
1026

Process Id, 837
Arithmetic, 54, 73, 75, 485

80-bit floating-point, 692
Absolute Difference, 491
Absolute Value, 491, 494, 497, 565, 566,

570, 590, 602, 695, 874
Addition, 75, 488, 558, 565, 566, 570,

573, 579, 590, 603, 694, 874, 882
Add-on, 489
Airy Function, 580
Approximations, 544
Arbitrary Precision, 75, 564, 572, 579
Arithmetic-Geometric Mean, 516, 580
Auxiliary Cosine Integral, 612
Auxiliary Sine Integral, 612
Bessel Functions, 496, 497, 581
Beta Function, 496, 580
Binary Coded Decimal (BCD), 546
Binomial, 496, 576
Bitwise Operators, 76, 77, 238, 239, 265,

266, 434, 441, 491, 492, 493, 504,
510, 515, 547, 548, 549, 551, 561,
856

Box Distribution, 536
bytes Library, 546
Cardinal Cosine, 498, 565, 571
Cardinal Sine, 513, 565, 567, 570, 571,

702
Cardinal Tangent, 514, 565, 571
Checking Integers and Floats, 244, 245,

506, 507, 508, 526
Classic Kahan Summation, 516
Combinatorics, 711
Complemented Incomplete Gamma

Integral, 623
Complex Exponential Function, 498
Complex Math, 79, 80, 82, 84, 85, 87,

490, 497, 512
Complex Number Functions, 496, 498,

510
Complex Values, 539

Conditional Multiplication, 75, 78
Confluent Hypergeometric Function,

622
Conjugate, 498
Constants, 529, 538, 539, 541, 853,

854, 1014
Conversion Functions, 316, 508, 517,

519, 521, 524, 525, 533, 537, 539,
540, 542, 547, 705, 707

cordic Library, 600
Cosecant, 499, 520, 565, 571, 580,

604, 701
Cosine, 498, 520, 538, 545, 566, 570,

579, 590, 604, 701
Cosine Integral, 613
Cotangent, 498, 520, 565, 571, 580,

604, 701
Cube, 499, 566, 570, 590, 699
Cubic Root, 497, 580, 699
Dawson's Integral, 616, 634
dec Statement, 77
Degrees & Radians, 1014
Digamma Function, 580, 632
Dilogarithm, 581, 617
Dirac Delta Function, 521
Dirichlet Eta Function, 619
Discount, 489
div Statement, 78
Division, 75, 488, 489, 511, 559, 565,

566, 567, 570, 573, 579, 587, 590,
605, 694, 695, 882

divs Library, 585
Dual Numbers, 589
Entire Cosine Integral, 613
Entire Exponential Integral, 618
Epsilon, 521, 705, 1014
Error Functions, 500, 505, 566, 580, 591,

605, 637, 703
Even Number, 567, 578
Exponent, 502, 522, 541, 695, 707
Exponential Function, 566
Exponential Functions, 494, 500, 501,

502, 504, 508, 522, 524, 570, 590,
605, 699, 707

Exponential Integral, 580, 618, 619
Exponentiation, 73, 75, 490, 499, 502,

514, 522, 565, 579, 590, 605, 606,
694, 695, 699, 700, 876, 879, 882

Factorial, 501, 520, 523, 530, 534, 541,
565, 575, 700

Falling Factorial, 523
fastmath Library, 544

agena >> 1051

Fibonacci Numbers, 523, 576
Float Truncation, 567
Floating Point Functions, 502, 520, 521,

522, 528, 532, 537, 695, 696, 703,
704, 705, 706, 707

Floating-Point Classification, 524, 708
Fraction, 502, 585, 703
Fresnel Integral, 621
Fused Multiply-Add, 491, 502, 566, 571,

581, 695, 877
Gamma Function, 503, 508, 581, 605,

606, 700
Gaussian Function, 622, 623
Greatest Common Divisor, 525, 575
Hamming Distance, 525
Heaviside Function, 503
Higher & Lower Bits, 77, 512, 549
Higher & Lower Bytes, 546, 547, 550
Hyperbolic Cosecant, 499, 565, 571,

580, 605
Hyperbolic Cosine, 498, 538, 566, 567,

570, 579, 590, 604, 702
Hyperbolic Cosine Integral, 615
Hyperbolic Cotangent, 499, 565, 571,

580, 604
Hyperbolic Secant, 512, 565, 571, 581,

607
Hyperbolic Sine, 513, 538, 566, 567,

570, 579, 590, 607, 702
Hyperbolic Tangent, 514, 566, 567, 570,

579, 590, 608, 702
Hypotenuse, 503, 504, 544, 566, 581,

590, 695, 696, 878
inc Statement, 77
Incomplete Beta integral, 623
Incomplete Gamma integral, 623
Increment and Decrement, 77, 78
Integer Division, 75, 488, 499, 505, 506,

565, 703, 875, 882
Integer Functions, 509, 524, 529, 544,

545, 696
Inverse, 511, 545, 695
Inverse Cosecant, 495, 565, 702
Inverse Cosine, 494, 565, 567, 570, 580,

590, 603, 702
Inverse Cotangent, 495, 703
Inverse Gamma Function, 505
Inverse Hyperbolic Cosecant, 495, 580
Inverse Hyperbolic Cosine, 494, 580,

590, 603, 702
Inverse Hyperbolic Cotangent, 495, 580
Inverse Hyperbolic Secant, 495, 580

Inverse Hyperbolic Sine, 495, 580, 590,
603, 702

Inverse Hyperbolic Tangent, 496, 580,
590, 604

Inverse incomplete Beta integral, 626
Inverse Root, 544
Inverse Secant, 495, 565, 567, 570
Inverse Sine, 495, 567, 570, 580, 590,

603, 702
Inverse Tangent, 495, 496, 567, 570,

580, 590, 603, 702
Iterated Logarithm, 530
Jacobi Symbol, 575
Kahan Compensated Summation, 516
Kahan-Babuška Summation, 144, 228,

256, 271, 516, 528, 657, 662, 665,
670, 671, 686, 688, 690, 691

Kahan-Ozawa summation, 144, 389,
411, 427, 516, 528, 621, 656, 696,
855

Kronecker Symbol, 575
Kummer's Function, 622
Lambda Function, 627
LCM, 529
Least Common Multiple, 529, 575
Least Significant Bit, 547, 577
Legendre Symbol, 575
Logarithmic Binomial Coefficient, 529,

700
Logarithmic Factorial, 530, 700
Logarithmic Functions, 504, 508, 529,

530, 542, 545, 565, 574, 581, 590,
606, 700, 701, 878

Lucas Number, 576
Machine Epsilon, 521, 705
Mantissa, 502, 530, 537, 707
mapm Library, 564
math Library, 516
Mathematical Epsilon, 521, 522, 705
MiniMax Functions, 248, 530, 531, 663
Modular Exponentiation, 534
Modular Multiplication, 531
Modular Multiplicative Inverse, 525
Modulus, 75, 76, 490, 525, 531, 532,

559, 566, 573, 581, 694, 695, 876,
882

Most Significant Bit, 547, 577
mp Library, 572
mul Statement, 78
Multiple, 509, 532, 707

1052 Index

Multiplication, 75, 250, 404, 419, 488,
489, 558, 565, 566, 570, 573, 579,
590, 606, 621, 664, 694, 874, 882

Natural Logarithm, 508, 566, 570, 590
Neumaier Summation, 144, 516
Non-principle Root, 511, 699
Normal Numbers, 527
Normalisation, 609
Number Evaluation Functions, 500, 501,

509, 510, 515, 531, 533, 704, 705
Odd Number, 567, 578
Operators, 75, 488
Operators & Functions, Overview, 76
Ordinary Hypergeometric Function, 623
Parity, 356, 500, 510, 562, 704
Percentage, 73, 74, 75, 489
Percentage Change, 489
Perfect Square, 527
Piecewise-Continuous Function, 533
Pochhammer Function, 523, 534
Polygamma Functions, 632
Polylogarithm, 632
Polynomial, 624, 625, 631
Power, 75, 490, 527, 532, 565, 566, 570
Premium, 489
Primes, 527, 532, 534, 574, 575
Primorial, 576
Principle Root, 510
Product function, 621
Psi Function, 632
Pythagorean Equation, 511, 697, 876
Quake III Method, 544
Quotient, 518, 523
Random Number Generator, 534, 535,

536, 566
Ranges, 493, 505, 517, 519, 532, 536,

537, 542, 609, 651, 684, 707
Ratio, 489
Reciprocal, 511, 545, 566, 570, 574,

580, 590, 695, 875
Rectangular Pulse Function, 536
Remainder Function, 499
Riemann Zeta Function, 581, 638, 639
Rising Factorial, 523
Root Functions, 510, 511, 513, 565, 574,

699, 877
Rotation, 490
Rounding Functions, 244, 497, 498, 499,

501, 505, 509, 512, 514, 517, 518,
532, 537, 541, 580, 581, 605, 696,
703, 856

Round-Off Errors, 516, 528, 696

Secant, 512, 537, 565, 571, 581, 607,
701

Sexagesimal Values, 520, 521, 539, 540,
592

Shrinking to Zero, 518, 704
Sign, 493, 512, 513, 520, 523, 525, 531,

537, 565, 566, 570, 580, 581, 590,
607, 695, 707

Sine, 513, 538, 545, 566, 570, 579, 590,
607, 701

Sine Integral, 634, 635, 636, 637
Spence's Function, 617
Square, 502, 514, 527, 566, 570, 580,

590, 695, 699
Square Root, 506, 513, 527, 545, 565,

566, 570, 590, 607, 699
Subnormal Numbers, 527, 533, 543,

705, 708
Subtraction, 75, 488, 489, 491, 523,

558, 565, 566, 570, 573, 579, 590,
607, 694, 882

Summation, 228, 250, 256, 270, 377,
379, 404, 405, 407, 419, 422, 488,
642, 665, 688, 689

surd, 511
Symmetric Modulus, 490
Tangent, 514, 539, 566, 570, 579, 590,

608, 701
Tetragamma Function, 632
Triangular Function, 540
Trigamma Function, 632
Trigonometric & Related Functions, 494,

495, 496, 497, 498, 499, 512, 513,
514, 534, 538, 544, 545, 565, 566,
571, 701, 702, 703, 880, 881

Truncation, 243, 244, 499, 501, 505,
509, 512, 514, 532, 537, 541, 703

ULP, 541
Unit of Least Precision, 541
Zeroing, 518, 704

ARM, 825
Arrays, 99
ASCII85

Decoding, 921
Encoding, 923

Assignment, 54, 57, 69, 104, 113, 117
Checking for Assigned Names, 229, 274
Compound Assignment, 78
Constants, 70, 79, 162
Defining new Variables, 183
Enumeration, 71
Multiple Assignment, 69, 71

agena >> 1053

Mutate Operators, 78
Short-Cut Multiple Assignment, 70
Unassignment, 71

Assumptions, 171, 229

B

Base32
Decoding, 921
Encoding, 923

Base64, 288
Decoding, 922
Encoding, 923

Base85
Decoding, 922
Encoding, 923

Bit Fields, 326, 329, 331, 332, 336, 471,
474
Block, 178
Booleans, 55, 67, 97, 167, 243

Bitwise Complement and, 510
Bitwise Complement or, 510
Bitwise Complement xor, 515
Expressions, 96
fail, 96, 97
Logical Operators, 96
Relational Operators, 96, 527
Short-Circuit Evaluation, 97

C

C API Functions, 949
agn_absindex, 950
agn_arrayborders, 950
agn_arraypart, 950
agn_arraytoseq, 950
agn_asize, 951
agn_borders, 951
agn_ccall, 951
agn_checkboolean, 952
agn_checkcomplex, 952
agn_checkinteger, 952
agn_checklstring, 952
agn_checknonnegative, 952
agn_checknonnegint, 952
agn_checknumber, 953
agn_checkposint, 953
agn_checkpositive, 953
agn_checkstring, 953, 954
agn_checkuint16_t, 953

agn_checkuint32_t, 953
agn_cleanse, 954
agn_cleanseset, 954
agn_complexgetimag, 954
agn_complexgetreal, 954
agn_compleximag, 954
agn_complexreal, 955
agn_copy, 955
agn_createcomplex, 955
agn_createpair, 955
agn_createpairnumbers, 955
agn_createreg, 955
agn_creatertable, 956
agn_createseq, 956
agn_createset, 956
agn_createtable, 956
agn_deletefield, 956
agn_deletertable, 956
agn_entries, 957
agn_equalref, 957
agn_fnext, 957
agn_getbitwise, 957
agn_getcmplxparts, 958
agn_getconstants, 958
agn_getdblepsilon, 958
agn_getduplicates, 958
agn_getempytline, 958
agn_geteps, 959
agn_getepsilon, 959
agn_getfunctiontype, 959
agn_gethepsilon, 959
agn_getinumber, 959
agn_getistring, 959
agn_getlibnamereset, 959
agn_getlongtable, 960
agn_getround, 960
agn_getrtable, 960
agn_getrtablewritemode, 960
agn_getseqlstring, 961
agn_getstorage, 961
agn_getutype, 961
agn_hasarraypart, 961
agn_hashashpart, 961
agn_hashpart, 962
agn_in, 962
agn_intindices, 962
agn_isfail, 962
agn_isfalse, 962
agn_isfloat, 963
agn_isinteger, 963
agn_islinalgvector, 963
agn_isnonnegint, 964

1054 Index

agn_isnumber, 964
agn_isposint, 964
agn_issequtype, 964
agn_issetutype, 964
agn_isstring, 964
agn_istableutype, 965
agn_istrue, 965
agn_isutype, 965
agn_isutypeset, 965
agn_malloc, 965
agn_ncall, 966
agn_nops, 966
agn_numintersect, 966
agn_numminus, 966
agn_numunion, 966
agn_onexit, 967
agn_optcomplex, 967
agn_pairgeti, 967
agn_pairrawget, 967
agn_pairrawset, 967
agn_pairset, 967
agn_pairseti, 968
agn_pairstate, 968
agn_parts, 968
agn_poptop, 968
agn_poptoptwo, 968
agn_pushboolean, 968
agn_pushcomplex, 969
agn_rawgetfield, 969
agn_rawgetifield, 969
agn_rawgetinumber, 969
agn_rawinsert, 969
agn_rawinsertfrom, 969
agn_rawreggetinumber, 970
agn_rawseqgetinumber, 970
agn_rawsetfield, 970
agn_regextend, 970
agn_reggeti, 970
agn_reggetinumber, 971
agn_reggettop, 971
agn_regpurge, 971
agn_regrawget, 971
agn_regreduce, 971
agn_regset, 972
agn_regseti, 972
agn_regsettop, 972
agn_regstate, 972
agn_seqrawgetinumber, 972
agn_seqresize, 973
agn_seqsize, 973
agn_seqstate, 973
agn_setbitwise, 973

agn_setconstants, 973
agn_setdblepsilon, 974
agn_setduplicates, 974
agn_setemptyline, 974
agn_setepsilon, 974
agn_sethepsilon, 974
agn_setinumber, 974
agn_setlibnamereset, 975
agn_setlongtable, 975
agn_setreadlibbed, 975
agn_setresize, 975
agn_setround, 975
agn_setrtable, 976
agn_setstorage, 976
agn_setudmetatable, 976
agn_setutype, 976
agn_size, 977
agn_ssize, 951, 977
agn_sstate, 977
agn_stralloc, 977
agn_strmatch, 978
agn_structinsert, 978
agn_tablesize, 978
agn_tablestate, 978
agn_tabpurge, 979
agn_tabresize, 979
agn_tocomplex, 979
agn_tointeger, 979
agn_tonumber, 980
agn_tonumberx, 980
agn_tostring, 980
agn_usedbytes, 980
agnL_checkoption, 980
agnL_createpairofnumbers, 981
agnl_datetosecs, 981
agnL_fncall, 981
agnL_fneps, 982
agnL_fnunicall, 982
agnL_geti, 982
agnL_getmetafield, 982
agnL_getsetting, 983
agnL_gettablefield, 983
agnL_gettop, 984
agnL_iscallable, 984
agnL_isdlong, 984
agnL_optboolean, 984
agnL_optinteger, 984
agnL_optnonnegative, 985
agnL_optnonnegint, 985
agnL_optnumber, 985
agnL_optposint, 985
agnL_optpositive, 985

agena >> 1055

agnL_optstring, 986
agnL_optuint32_t, 986
agnL_paircheckbooloption, 986
agnL_pairgetinumber, 987
agnL_pairgetinumbers, 987
agnL_pexecute, 987
agnL_pushvstring, 987
agnL_readlines, 988
agnL_strtocomplex, 988
agnL_strtonumber, 988
agnL_strunwrap, 988
agnL_tonumarray, 989
agnL_tostringx, 989
lua_absindex, 989
lua_arith, 989
lua_compare, 990
lua_copy, 990
lua_geti, 990
lua_getiuservalue, 990
lua_getwarnf, 991
lua_hasfield, 991
lua_iscomplex, 991
lua_isfail, 962
lua_isfalse, 962
lua_isfalseorfail, 963
lua_isnilfalseorfail, 963
lua_isnone, 992
lua_ispair, 992
lua_isreg, 992
lua_isseq, 992
lua_isset, 992
lua_istrue, 965
lua_isyieldable, 992
lua_newuserdatauv, 991
lua_numbertointeger, 993
lua_pushchar, 993
lua_pushfail, 993
lua_pushfalse, 993
lua_pushglobaltable, 993
lua_pushtrue, 994
lua_pushundefined, 993
lua_pushunsigned, 994
lua_rawaequal, 994
lua_rawgetp, 994
lua_rawset2, 994
lua_rawsetiboolean, 995
lua_rawsetikey, 995
lua_rawsetilstring, 995
lua_rawsetinumber, 995
lua_rawsetistring, 996
lua_rawsetp, 996
lua_rawsetstringboolean, 996

lua_rawsetstringchar, 996
lua_rawsetstringnumber, 997
lua_rawsetstringpairnumbers, 997
lua_rawsetstringstring, 997
lua_reginsert, 997
lua_regnext, 998
lua_regsetinumber, 998
lua_rotate, 998
lua_sdelete, 998
lua_seqgeti, 999
lua_seqinsert, 972, 999
lua_seqnext, 1000
lua_seqrawgeti, 1000
lua_seqrawgetinumber, 999
lua_seqrawset, 1000
lua_seqrawsetilstring, 1001
lua_seqseti, 1001
lua_seqsetinumber, 1001
lua_seqsetistring, 1001
lua_seti, 1002
lua_setmetatabletoobject, 1002
lua_setwarnf, 1002
lua_shas, 1003
lua_sinsert, 1002
lua_sinsertlstring, 1003
lua_sinsertnumber, 1003
lua_sinsertstring, 1003
lua_srawget, 1003
lua_srawset, 1004
lua_stringtonumber, 1004
lua_toboolean, 1004
lua_toint32_t, 1004
lua_usnext, 1005
lua_warning, 1005
luaL_addgsub, 1005
luaL_argexpected, 1005
luaL_checkcache, 1006
luaL_checkint32_t, 1006
luaL_checklstringornil, 1006
luaL_checksetting, 1006
luaL_clearbuffer, 1006
luaL_freeref, 1008
luaL_getsubtable, 1007
luaL_getudata, 1007
luaL_isudata, 1007
luaL_newref, 1008
luaL_pushref, 1008
luaL_setfuncs, 1007
luaL_str2d, 1008

Calculus, 610
Airy Wave Functions, 611, 613
Arc Length, 612

1056 Index

Chebyshev Coefficients, 614
Chebyshev Interpolant, 613, 614
Chebyshev Polynomial, 615
Clenshaw-Curtis-Quadrature, 623
Complete Elliptic Integral 1st Kind, 618
Complete Elliptic Integral 2nd Kind, 619
Continuity, 626
Curvature, 616, 635
Differentiability, 626
Differentiation, 613, 614, 616, 617, 620,

632, 633, 637, 638
Double Exponential Transformation, 624
Euclidian Distance, 619
Exponential Sum Function, 620
Extrema, 620, 628, 629
Fresnel Integral, 621
Gauss-Legendre Integration, 622
Golden Section Search, 620
Gudermannian Function, 622
Incomplete Elliptic Integral 1st Kind, 618
Incomplete Elliptic Integral 2nd Kind,

619
Incomplete Gamma Function, 621
Integration, 622, 623, 624, 625, 635
Interpolation, 615, 616, 625, 628, 629,

630, 631
Inverse Logistic Function, 628
Inverse Sigmoid Function, 628
Jacobian Elliptic Functions, 627
Limit, 612, 627
Logistic Function, 628, 635
Lower Incomplete Gamma Function,

621
Minimum, 621
Modified Bessel Function of Order One,

612
Modified Bessel Function of Order Zero,

612
Polynomial Coefficients, 630, 631
Savitzky-Golay Filter, 633, 634
Sigmoid Function, 495, 500, 622, 628,

635, 636, 703
Smoothstep Function, 636
Softsign Function, 636
Spline, 615, 629
Standard Logistic Function, 635
Summation, 621
Upper Incomplete Gamma Function,

621
Weierstraß Function, 637
Weight Function, 504
Zeros, 634, 638

Cantor Sets
(please see Sets), 112

Captures, 90
case Statement, 57, 137, 138, 139

Fall Through, 138
of Clause, 138
onsuccess Clause, 138
then Clause, 138

Checksum
BSD Checksum, 347
Damm Algorithm, 348
Luhn Algorithm, 353
UNIX cksum, 347
Verhoeff Algorithm, 361

clear Statement, 54, 71, 199, 233
cls Statement, 53
Codepages, 319, 342, 808

1252, 292
850, 292

Combinatorics
Bell Number, 711
Bernoulli Number, 711
Cartesian Product, 711
Catalan Number, 711
Combinations, 712
Euler Number, 712
Number of Combinations, 712
Number of Partitions, 712
Number of Permutations, 712
Permutations, 713
Stirling Number of 1st Kind, 713
Stirling Number of 2nd Kind, 713

Command Line Switches, 1020
Command Line Usage, 1017
Comments, 61
Complex Numbers, 54, 67, 80, 243, 501,
951

Argument, 496, 571
Cartesian Notation, 491, 497
Conjugate, 498
Creation, 490
Escape-time Fractals, 914
Imaginary Error Function, 500
Imaginary Unit, 1014
Magnitude, 228, 491, 497, 510
Operators, 80
Phase Angle, 491, 496, 571
Polar Form, 510
Printing Values Close to Zero, 856
Rotation, 490

agena >> 1057

Scaled Complementary Error Function,
500

Conditions, 57, 133
case Statement, 137, 138, 139
Evaluation Rules, 133, 136, 140
if Operator, 136, 137
if Statement, 133

Configuration, 852, 1015, 1020, 1021
Complex Number Output, 1021
Debugging Information, 853
Number of Digits on Output, 853
Pair Output, 1021
Procedure Output, 1021
Prompt, 53, 853, 854, 855, 856
Sequence Output, 1021
Set Output, 1021
Table Output, 855, 1015, 1021

Console, 45, 98, 190, 254, 258, 276,
277, 291, 731, 815, 832, 904, 916, 977,
1016, 1019, 1020

cls Statement, 53
Command Line Switches, 1020
Command Line Usage, 62, 1017
Configuring the Output, 1020
restart Statement, 53
Running a Script, 1019

Constants
DoubleEps, 1014
Eps, 1014
EulerGamma, 1014
Euler-Mascheroni, 1014
Euler's, 605
Exp (e), 1014
fail, 97
false, 96
Golden Ratio, 173, 271, 568, 709
hEps, 1014
I, 1014
infinity, 1014
null, 97
Pi, 606, 1014
Pi2, 1014
PiO2, 1014
PiO4, 1014
radians, 1014
true, 96
undefined, 1014

CORDIC, 600
Coroutines, 887
create Statement, 101, 103, 104, 105,
117, 122

CSV Files, 211
skycrane.readcsv, 936
utils.readcsv, 925
utils.writecsv, 931

D

Data Types
AVL Trees, 461
Bags/Multisets, 456
Bi-directional Maps, 459
Boolean, 96
C, 857
Complex Numbers, 79
Heaps, 461
Lightuserdata, 129, 215
Linked Lists, 344
Lookup Tables, 477
Number, 73
Pair, 122
Priority Queues, 461
Red-Black Trees, 467
Register, 129
Sequence, 115
Set, 112
Skew Heaps, 461, 467
String, 84
Table, 98, 103
Thread, 129
Userdata, 129, 215
User-defined, 116, 123, 177, 191

Database, 743, 758
dBASE III-Compatibility, 743

Date & Time, 378, 520, 521, 539, 540,
592, 595, 596, 810, 812, 813, 835, 841,
843, 921, 940

Calendar week, 595, 596
CPU Time, 808
Daylight Saving Time, 826
Excel Serial Date, 811, 814, 830, 836
Gregorian Date, 596
Hebrew Calendar, 596
Jewish Calendar, 596
Julian Date, 595, 596, 811, 836
Leap Seconds, 599
Leap Year, 596
Lotus Serial Date, 811, 814, 830, 836
Moon Phase, 597
Moonrise & Moonset, 596, 597
Setting System Clock, 839
Sunrise & Sunset, 597, 598

1058 Index

UTC, 810, 844
dBASE Files, 211

xbase.readdbf, 751
Debugging, 888
dec Statement, 77
Default Input File

Files, 721
delete Statement, 102, 118, 127
Dictionaries, 103
do/as Loops, 59, 141
do/od Loops, 142
DOS, 46, 51, 258, 291, 564, 808, 813,
825, 826, 830, 832, 833, 834, 840, 845,
854, 1022, 1026

E

Endianness, 550, 551, 741, 814, 858,
892
enum Statement, 71
Environment

Exit Handler, 231
Quitting the Interpreter, 231
Reading the Environment of a

Procedure, 181
Restart Handler, 262
Restarting the Interpreter, 262
See also `System Variables/_G`, 180
Setting an Environment for a Procedure,

180
Errors

Catching Errors, 171, 172, 173, 255, 277
Issuing Errors, 168, 236
try/catch Statement, 172, 173

Escape Sequences, 86, 1024

F

File System Access
Attributes, 819
Changing Directories, 807
Changing Mode, 807
Changing Owner, 807
Creating Directories, 832
Creating Symbolic or Hard Links, 832
Current Working Directory, 807
Directories, 810, 813, 819, 825, 828,

832, 838
Drives, 813

Files, 815, 816, 817, 818, 826, 834, 837,
838, 840

Inode, 824
IPC ID, 820
Link, 826
Windows System Directories, 828

Files
Attributes, 817, 819
Binary Files, 733
Changing Time Stamp, 817
Closing Files, 719, 734
Compressed Files, 778
Copying Files, 818, 934
CSV Files, 211, 931, 936
DBF Files, 743
Default Input File, 721
Directory Listing, 829, 830
End Of File, 719, 734
Existence, 815, 816
File Descriptor, 719
File Handles, 718, 721, 734
Flushing Files, 739
Getting and Setting File Positions, 720,

724, 728, 730, 734, 739
INI Files, 929, 932
Locking Files, 723, 730, 735, 740
Maxmimum Path Length, 855
Moving Files, 834, 936
Opening Files, 721, 725, 734, 736
Path Separator, 855
Reading Files, 722, 726, 727, 736, 737,

738, 739
Removing Files, 838
Rewinding Files, 728
Searching in Files, 720
Size, 720, 724
Streams, 718
Symbolic Links, 837, 840
Temporary Filename, 842
UNIX Text Files, 209
utils.readcsv, 925
utils.readxml, 930
utils.writecsv, 931
utils.writexml, 933
Writing Files, 730, 740, 741, 742
xml.readxml, 770

for/as Loops, 151
for/downto Loops, 145
for/in Loops, 145
for/to Loops, 58, 143
for/until Loops, 151

agena >> 1059

for/while Loops, 59, 150
Functional Programming, 237, 259, 284,
285, 944

$, 114, 383, 396, 397, 410, 425
$ Operator, 109, 227
$$, 114, 227
@, 109, 114, 425
@ Operator, 109, 226
calc.fprod, 621
calc.fsum, 621
descend, 235, 374, 392, 401, 416
factory.anyof, 944
factory.count, 942
factory.curry, 944
factory.cycle, 943
factory.iterate, 943
factory.pick, 945
factory.reset, 943
fold, 237
foreach, 237
has, 240, 375, 393, 403, 418, 429
long.count, 693
map, 108, 246
numarray.remove, 440
numarray.select, 441
pipeline, 253
recurse, 259, 377, 394, 405, 420
reduce, 259
remove, 109, 261
satisfy, 263
select, 109, 264
selectremove, 265
stats.fprod, 664
stats.fsum, 665
times, 271
zip, 110, 277

Functions & Operators
-, 73, 80, 488, 642
---, 491
!, 73, 80
$, 73, 107, 109, 227, 383, 396, 410, 425
$$, 73, 107, 383, 397, 410, 425
$$ Operator, 227
%, 73, 76, 490
-%, 489
%%, 489
&, 73, 282, 283
&-, 489
&&, 73, 77, 491
&*, 489
&/, 489
&+, 488

*, 73, 80, 488, 642
*%, 489
**, 73, 75, 80, 490
/, 80, 488
/%, 489
:, 122
:-, 73, 116, 166, 167
::, 73, 116, 166, 167
@, 107, 109, 226, 246, 382, 396, 409,

425
\, 73, 488, 490
^, 73, 80, 490
^^, 73, 77, 492
|, 73, 493
|-, 73, 491
||, 77, 492
~~, 73, 77, 492
~<>, 73, 381
~=, 73, 381, 395, 408, 423, 430
+, 73, 80, 488, 490, 642
+%, 489
+++, 491
<, 73, 80, 96
<<<, 492
<<<<, 493
<=, 73, 80, 96
<>, 73, 80, 96, 105, 114, 118, 124,

127, 381, 395, 408, 424, 430
=, 73, 80, 96, 105, 114, 118, 124, 127,

380, 395, 408, 423, 430
==, 73, 96, 105, 114, 118, 124, 127,

381, 395, 408, 423, 430
>, 73, 80, 96
>=, 73, 80, 96
>>>, 493
>>>>, 492
abs, 80, 87, 228, 283, 494, 579, 642,

695
aconv.close, 343
aconv.convert, 343
aconv.list, 343
aconv.open, 342
ads.attrib, 759
ads.clean, 760
ads.close, 760
ads.comment, 761
ads.createbase, 761
ads.createseq, 762
ads.desc, 762
ads.expand, 763
ads.filepos, 763
ads.find, 763

1060 Index

ads.free, 763
ads.getall, 763
ads.getkeys, 764
ads.getvalues, 764
ads.index, 764
ads.indices, 764
ads.invalids, 764
ads.iterate, 765
ads.lock, 765
ads.open, 766
ads.openfiles, 766
ads.peekin, 766
ads.read, 766
ads.remove, 767
ads.retrieve, 767
ads.sizeof, 767
ads.sync, 767
ads.unlock, 767
ads.write, 768
allotted, 866
alternate, 229
and, 73, 96
antilog10, 494, 699
antilog2, 494, 699
append, 229
approx, 494
arccos, 80, 494, 580, 702
arccosh, 494
arccot, 495, 703
arccoth, 495
arccsc, 495
arccsch, 495
arcsec, 495, 703
arcsech, 495
arcsin, 80, 495, 580, 702
arcsinh, 495
arctan, 80, 495, 580, 702
arctan2, 496
arctanh, 496
argument, 496
assigned, 229
assume, 171, 229
astro.cdate, 595
astro.cweek, 595
astro.cweekmonsun, 595
astro.dectodms, 595
astro.dmstodec, 596
astro.hdate, 596
astro.isleapyear, 596
astro.jdate, 596
astro.lastcweek, 596
astro.moon, 596

astro.moonphase, 597
astro.moonriseset, 597
astro.sun, 597
astro.sunriseset, 598
astro.taiutc, 599
atendof, 73, 87, 89, 283
augment, 230, 372, 399, 414
avl.attrib, 463
avl.entries, 463
avl.getmax, 464
avl.getmin, 464
avl.getminmax, 464
avl.getroot, 464
avl.include, 464
avl.new, 464
avl.remove, 465
bags.attrib, 457
bags.bag, 457
bags.bagtoset, 457
bags.getsize, 457
bags.include, 458
bags.minclude, 458
bags.remove, 458
bea, 496
besselj, 496
bessely, 497
beta, 230, 496
bfield.clearbit, 472
bfield.flipbit, 472
bfield.getbit, 472
bfield.getbyte, 472
bfield.new, 472
bfield.resize, 473
bfield.setbit, 473
bfield.setbitto, 473
bfield.setbyte, 473
bimaps.attrib, 459
bimaps.bimap, 459
bimaps.entries, 459
bimaps.indices, 460
bimaps.rawget, 460
binary.entries, 462
binary.include, 462
binary.indices, 462, 464
binary.iterate, 463, 464
binary.new, 463
binary.remove, 463
binary.reorder, 463
binio.close, 734
binio.eof, 734
binio.filepos, 734
binio.isfdesc, 734

agena >> 1061

binio.length, 734
binio.lines, 734
binio.lock, 735
binio.open, 736
binio.readbytes, 736
binio.readchar, 737
binio.readindex, 737
binio.readlong, 737
binio.readlongdouble, 738
binio.readshortstring, 738
binio.readstring, 739
binio.rewind, 739
binio.seek, 739
binio.sync, 739
binio.toend, 739
binio.unlock, 740
binio.writebytes, 740
binio.writechar, 740
binio.writeindex, 740
binio.writeline, 741
binio.writelong, 741
binio.writelongdouble, 741
binio.writenumber, 741
binio.writeshortstring, 742
binio.writestring, 742
binomial, 496
binsearch, 230
bintersect, 230, 372, 400, 415
bisequal, 231, 372, 400, 415
bloom.attrib, 363
bloom.find, 364
bloom.get, 363
bloom.include, 364
bloom.new, 364
bloom.toseq, 364
bminus, 231, 372, 400, 415
bnor, 510
bottom, 119, 127, 231, 373
bye, 231
bytes.add32, 558
bytes.and32, 559
bytes.arshift32, 559
bytes.bcd, 546
bytes.cast, 552
bytes.castint, 546
bytes.div32, 559
bytes.divmod32, 559
bytes.extract32, 560
bytes.fpbtoint, 546
bytes.getdouble, 553
bytes.gethigh, 553
bytes.getieee, 556

bytes.getieeedouble, 557
bytes.getlow, 553
bytes.getunbiased, 553
bytes.getwords, 553
bytes.ieee, 555
bytes.interweave, 560
bytes.inttofpb, 547
bytes.isint32, 561
bytes.leastsigbit, 547
bytes.mask32, 561
bytes.mod32, 559
bytes.mostsigbit, 547
bytes.mul32, 558
bytes.muladd32, 558
bytes.nand32, 561
bytes.nextbit, 561
bytes.nor32, 562
bytes.not32, 562
bytes.numhigh, 546
bytes.numlow, 547
bytes.numto32, 562
bytes.numwords, 547
bytes.onebits, 548
bytes.optsize, 548
bytes.or32, 562
bytes.pack, 548
bytes.packsize, 549
bytes.parity32, 562
bytes.replace32, 563
bytes.reverse, 549
bytes.rotate32, 563
bytes.setdouble, 553
bytes.sethigh, 553
bytes.setieee, 556
bytes.setieeedouble, 557
bytes.setieeeexpo, 556
bytes.setieeehigh, 557
bytes.setieeelow, 557
bytes.setieeesignbit, 556
bytes.setlow, 554
bytes.setnumhigh, 549
bytes.setnumlow, 549
bytes.setnumwords, 550
bytes.setwords, 554
bytes.shift32, 563
bytes.sub32, 558
bytes.swap, 550
bytes.swaplower, 550
bytes.swapupper, 550
bytes.tobig, 550
bytes.tobinary, 550
bytes.tobytes, 551

1062 Index

bytes.tolittle, 551
bytes.tonumber, 551
bytes.unpack, 552
bytes.xnor32, 563
bytes.xor32, 563
cabs, 497
calc.Ai, 611
calc.aitken, 612
calc.arclen, 612
calc.ausSiCi, 612
calc.bessel0, 612
calc.bessel1, 612
calc.Bi, 613
calc.cheby, 613
calc.chebycoeffs, 614
calc.chebygen, 614
calc.chebyt, 615
calc.Chi, 615
calc.Ci, 613
calc.Cin, 613
calc.clampedspline, 615
calc.clampedsplinecoeffs, 616
calc.curvature, 616
calc.dawson, 616
calc.diff, 616
calc.differ, 617
calc.dilog, 617
calc.Ei, 618
calc.Ein, 618
calc.elliptic1, 618
calc.elliptic2, 619
calc.En, 619
calc.eta, 619
calc.eucliddist, 619
calc.eulerdiff, 620
calc.expn, 620
calc.fminbr, 620
calc.fmings, 621
calc.fprod, 621
calc.fresnelc, 621
calc.fresnels, 621
calc.fsum, 621
calc.gammainc, 621
calc.gauleg, 622
calc.gaussian, 622
calc.gtrap, 622
calc.hyp1f1, 622
calc.hyp2f1, 623
calc.ibeta, 623
calc.igamma, 623
calc.igammac, 623
calc.intcc, 623

calc.intde, 624
calc.intdei, 624
calc.intdeo, 624
calc.integ, 625
calc.interp, 625
calc.invibeta, 626
calc.iscont, 626
calc.isdiff, 626
calc.jacobian, 627
calc.lambda, 627
calc.limit, 627
calc.linterp, 628
calc.logistic, 628
calc.logit, 628
calc.maximum, 628
calc.minimum, 629
calc.nakspline, 629
calc.naksplinecoeffs, 630
calc.neville, 630
calc.newtoncoeffs, 630
calc.polyfit, 631
calc.polygen, 631
calc.polylog, 632
calc.probit, 632
calc.Psi, 632
calc.regulafalsi, 632
calc.savgol, 633
calc.savgolcoeffs, 634
calc.scaleddawson, 634
calc.sections, 634
calc.Shi, 634
calc.Si, 635
calc.sigmoid, 635
calc.simaptive, 635
calc.sinuosity, 635
calc.smoothstep, 636
calc.softsign, 636
calc.Ssi, 636
calc.variance, 636
calc.w, 637
calc.weier, 637
calc.xpdiff, 637
calc.zeroin, 638
calc.zeros, 638
calc.zeta, 638
calc.zeta2, 639
cartesian, 497
cas, 497
cbrt, 497
ceil, 497
cell, 866
char, 87

agena >> 1063

checkoptions, 232
checktype, 233
cis, 498
cleanse, 233, 373, 392, 401, 416
clear, 233
clock.add, 593
clock.adjust, 593
clock.sgstr, 594
clock.sub, 593
clock.tm, 594
clock.todec, 594
clock.totm, 594
columns, 233, 373, 401, 416
com.attrib, 800
com.close, 799
com.control, 801
com.init, 800
com.open, 799
com.purge, 801
com.queues, 801
com.read, 800
com.timeout, 801
com.wait, 801
com.write, 800
combinat.bell, 711
combinat.bernoulli, 711
combinat.cartprod, 711
combinat.catalan, 711
combinat.choose, 712
combinat.euler, 712
combinat.numbcomb, 712
combinat.numbpart, 712
combinat.numbperm, 712
combinat.permute, 713
combinat.stirling1, 713
combinat.stirling2, 713
conjugate, 498
copy, 106, 114, 119, 127, 233, 373,

392, 401, 416, 429
copyadd, 234, 373, 393, 401, 416
cordic.carccos, 600
cordic.carcsin, 600
cordic.carctan2, 600
cordic.carctanh, 600
cordic.ccbrt, 600
cordic.ccos, 600
cordic.ccosh, 601
cordic.cexp, 601
cordic.chypot, 601
cordic.cln, 601
cordic.cmul, 601
cordic.csin, 601

cordic.csinh, 601
cordic.csqrt, 601
cordic.ctan, 601
cordic.ctanh, 601
coroutine.resume, 887
coroutine.running, 887
coroutine.setup, 887
coroutine.status, 887
coroutine.wrap, 887
coroutine.yield, 887
cos, 80, 498, 579, 701
cosc, 498
cosh, 80, 498, 579, 702
cosxx, 498
cot, 498
coth, 499
countitems, 234, 374, 401, 416
csc, 499
csch, 499
cube, 499, 580, 699
debug.debug, 888
debug.funcname, 888
debug.getconstants, 888
debug.getfenv, 888
debug.gethook, 889
debug.getinfo, 889
debug.getlocal, 889
debug.getlocals, 890
debug.getmetatable, 890
debug.getregistry, 197, 215, 890
debug.getrtable, 890
debug.getstore, 890
debug.getupvalue, 890
debug.getupvalues, 891
debug.nupvalues, 891
debug.setfenv, 891
debug.sethook, 891
debug.setlocal, 892
debug.setmetatable, 892
debug.setstore, 892
debug.setupvalue, 892
debug.system, 892
debug.traceback, 893
dec, 73, 82
descend, 235, 374, 392, 401, 416
div, 73, 82
divs.denom, 587
divs.divs, 587
divs.equals, 587
divs.numer, 587
divs.todec, 588
divs.todiv, 588

1064 Index

dlist.append, 453
dlist.checkdlist, 453
dlist.dump, 453
dlist.getitem, 453
dlist.iterate, 454
dlist.list, 454
dlist.purge, 454
dlist.put, 455
dlist.replicate, 455
dlist.setitem, 455
dlist.toseq, 455
dlist.totable, 455
drem, 499
duplicates, 236, 374, 401, 416
empty, 236, 284, 374, 393, 417
entier, 80, 499, 703
environ.anames, 847
environ.arithstate, 847
environ.arity, 847
environ.attrib, 848
environ.callable, 850
environ.decpoint, 850
environ.gc, 850
environ.getfenv, 181, 850
environ.getopt, 851
environ.globals, 162, 852
environ.isequal, 852
environ.isselfref, 852
environ.kernel, 77, 98, 852
environ.onexit, 231, 857
environ.pointer, 857
environ.ref, 857
environ.setfenv, 180, 857
environ.system, 857
environ.unref, 858
environ.used, 858
environ.userinfo, 858
environ.warn, 859
erf, 500
erfc, 500
erfcx, 500
erfi, 500
error, 236
eval, 236
even, 500, 704
everyth, 236
exp, 80, 500, 579, 699
exp10, 501
exp2, 501
expx2, 501, 522
fact, 501
factory.anyof, 944

factory.count, 942
factory.curry, 944
factory.cycle, 943
factory.iterate, 943
factory.pick, 945
factory.reset, 943
fastmath.cosfast, 544
fastmath.floor, 544
fastmath.hypotfast, 544
fastmath.invroot, 544
fastmath.invsqrt, 544
fastmath.lbfast, 545
fastmath.reciprocal, 545
fastmath.sincosfast, 545
fastmath.sinfast, 545
fastmath.sqroot, 545
fastmath.sqrtfast, 545
fastmath.tanfast, 545
filled, 105, 114, 119, 127, 237, 284, 375,

393, 402, 417
finite, 162, 501, 705
flip, 501
float, 502, 704
floor, 501
fma, 502, 509
fold, 237, 284
foreach, 237, 503
frac, 502, 703
fractals.albea, 913
fractals.alcos, 913
fractals.alcosxx, 914
fractals.alsin, 914
fractals.amarkmandel, 913
fractals.anewton, 914
fractals.draw, 915
fractals.esctime, 914
fractals.lbea, 914
fractals.mandel, 915
fractals.mandelbrot, 915
fractals.mandelbrotfast, 915
fractals.mandelbrottrig, 915
fractals.markmandel, 915
fractals.newton, 915
frexp, 502
frexp10, 502
gamma, 503
gdi.arc, 900
gdi.arcfilled, 901
gdi.autoflush, 901
gdi.background, 901
gdi.circle, 901
gdi.circlefilled, 901

agena >> 1065

gdi.clearpalette, 901
gdi.close, 901
gdi.dash, 902
gdi.ellipse, 902
gdi.ellipsefilled, 902
gdi.flush, 902
gdi.fontsize, 902
gdi.hasoption, 902
gdi.initpalette, 902
gdi.ink, 902
gdi.lastaccessed, 903
gdi.line, 903
gdi.lineplot, 903
gdi.mouse, 903
gdi.open, 903
gdi.options, 904
gdi.plot, 905
gdi.plotfn, 906
gdi.point, 908
gdi.pointplot, 908
gdi.rectangle, 909
gdi.rectanglefilled, 909
gdi.reset, 909
gdi.resetpalette, 909
gdi.setarc, 909
gdi.setarcfilled, 909
gdi.setcircle, 909
gdi.setcirclefilled, 909
gdi.setellipse, 910
gdi.setellipsefilled, 910
gdi.setinfo, 910
gdi.setline, 910
gdi.setoptions, 910
gdi.setpoint, 911
gdi.setrectangle, 911
gdi.setrectanglefilled, 911
gdi.settriangle, 911
gdi.settrianglefilled, 911
gdi.structure, 911
gdi.system, 911
gdi.text, 912
gdi.thickness, 912
gdi.triangle, 912
gdi.trianglefilled, 912
gdi.useink, 912
getbit, 236, 238
getbits, 239
getentry, 100, 119, 127, 239, 375, 402,

417
getmetatable, 120, 124, 128, 239, 375,

393, 402, 417
getnbits, 239

getorset, 239, 375, 393, 402, 417
gettype, 116, 120, 123, 124, 240
gzip.close, 778
gzip.deflate, 778
gzip.flush, 778
gzip.inflate, 778
gzip.lines, 779
gzip.open, 779
gzip.read, 779
gzip.seek, 779
gzip.write, 780
has, 284
hashes.adler32, 346
hashes.asu, 346
hashes.bkdr, 346
hashes.bp, 347
hashes.bsd, 347
hashes.cksum, 347
hashes.collisions, 347
hashes.crc16, 348
hashes.crc32, 348
hashes.crc8, 348
hashes.damm, 348
hashes.dek, 348
hashes.derpy, 349
hashes.digitsum, 349
hashes.djb, 349
hashes.djb2, 349
hashes.djb2rot, 349
hashes.droot, 350
hashes.elf, 350
hashes.fibmod, 350
hashes.fibmod2, 351
hashes.fletcher, 351
hashes.fnv, 351
hashes.ftok, 352
hashes.interweave, 352
hashes.ispell, 352
hashes.j32to32, 353
hashes.jen, 353
hashes.jinteger, 353
hashes.jnumber, 353
hashes.lua, 353
hashes.luhn, 353
hashes.md5, 354
hashes.mix, 354
hashes.mix64, 354
hashes.mix64to32, 354
hashes.murmur2, 355
hashes.murmur3, 355
hashes.murmur3128, 355
hashes.numlua, 355

1066 Index

hashes.oaat, 355
hashes.parity, 356
hashes.pjw, 356
hashes.pl, 356
hashes.raw, 356
hashes.reflect, 357
hashes.roaat, 357
hashes.rs, 357
hashes.sax, 357
hashes.sdbm, 358
hashes.sha256, 358
hashes.sha512, 358
hashes.squirrel32, 359
hashes.squirrel64, 359
hashes.sth, 359
hashes.strval, 359
hashes.sumupchars, 360
hashes.superfast, 360
hashes.sysv, 360
hashes.varlen, 361
hashes.verhoeff, 361
heaviside, 503
hypot, 503
hypot2, 503
hypot3, 504
hypot4, 504
identity, 240, 375, 403, 418
ilog10, 504
ilog2, 504
implies, 504
in, 73, 87, 89, 96, 105, 114, 119, 124,

127, 283, 381, 395, 409, 424, 430,
493

inc, 73, 82
infinite, 504
initialise, 241
inrange, 505
instr, 89, 91, 284
int, 505, 541, 703
intdiv, 73, 82
integral, 505, 705
intersect, 73, 106, 114, 120, 128, 382,

395, 409, 424
inverf, 505
inverfc, 505
invgamma, 505
invhypot, 506
invsqrt, 506, 699
io.anykey, 210, 718
io.clearerror, 719
io.close, 208, 211, 718, 719, 726
io.eof, 719

io.ferror, 719
io.fileno, 719
io.filepos, 720
io.filesize, 720
io.getclip, 720
io.getkey, 210, 720
io.infile, 720
io.input, 721
io.isfdesc, 721
io.isopen, 721
io.kbdgetstatus, 721
io.keystroke, 721
io.lines, 208, 722, 726
io.lock, 723
io.maxopenfiles, 724
io.mkstemp, 724
io.move, 724
io.nlines, 724
io.open, 207, 718, 725
io.output, 725
io.pcall, 725
io.popen, 210, 726
io.putclip, 726
io.read, 208, 209, 210, 718, 726
io.readfile, 727
io.readlines, 727
io.rewind, 728
io.seek, 728
io.setvbuf, 729
io.skiplines, 729
io.sync, 729
io.tmpfile, 729
io.toend, 730
io.unlock, 730
io.write, 208, 730
io.writefile, 732
io.writeline, 208, 730
ipairs, 149, 243
iqr, 506
isboolean, 243
iscomplex, 243, 506
isequal, 243
isint, 244, 506
isnegative, 244, 506
isnegint, 244, 507
isnonneg, 244, 507
isnonnegint, 244, 507
isnonposint, 244, 507
isnumber, 244, 507
isnumeric, 244, 507
ispair, 245
isposint, 245, 507

agena >> 1067

ispositive, 245, 508
isreg, 245
isseq, 245
isstring, 245
isstructure, 245
istable, 245
join, 106, 119, 285, 376, 418
json.decode, 775
json.encode, 775
ldexp, 508
left, 123, 124, 245
linalg.add, 642
linalg.augment, 642
linalg.backsub, 643
linalg.backsubs, 643
linalg.checkmatrix, 643
linalg.checksquare, 643
linalg.checkvector, 643
linalg.coldim, 643
linalg.column, 644
linalg.crossprod, 644
linalg.det, 644
linalg.diagonal, 644
linalg.dim, 644
linalg.dotprod, 644
linalg.eigen, 644
linalg.eigenval, 645
linalg.forsub, 645
linalg.getdiagonal, 645
linalg.gsolve, 645
linalg.hilbert, 646
linalg.identity, 646
linalg.inverse, 646
linalg.isallones, 646
linalg.isantisymmetric, 646
linalg.isdiagonal, 646
linalg.isidentity, 646
linalg.islower, 646
linalg.ismatrix, 647
linalg.issquare, 647
linalg.issymmetric, 647
linalg.isupper, 647
linalg.isvector, 647
linalg.iszero, 647
linalg.ludecomp, 647
linalg.maeq, 648
linalg.matrix, 648
linalg.meeq, 648
linalg.mmap, 649, 653
linalg.mmul, 649
linalg.mulrow, 649
linalg.mulrowadd, 649

linalg.mzip, 648, 649
linalg.norm, 649
linalg.reshape, 650
linalg.rowdim, 650
linalg.rref, 650
linalg.scalarmul, 650
linalg.scale, 651
linalg.stack, 651
linalg.sub, 652
linalg.submatrix, 651
linalg.swapcol, 651
linalg.swaprow, 651
linalg.trace, 652
linalg.transpose, 652
linalg.vaeq, 652
linalg.vector, 652
linalg.veeq, 653
linalg.vmap, 653
linalg.vzip, 653
linalg.zerovector, 653
liong.gsolve, 706
llist.append, 447
llist.checkllist, 447
llist.dump, 447
llist.getitem, 447
llist.iterate, 447
llist.list, 448
llist.prepend, 448, 454
llist.purge, 448
llist.put, 449
llist.replicate, 449
llist.setitem, 449
llist.toseq, 449
llist.totable, 449
ln, 80, 508, 580, 700
lngamma, 80, 508
load, 246
loadfile, 246
loadstring, 246
log, 508, 701
log10, 508
log2, 508
long.approx, 698
long.arccosh, 702
long.arccot, 703
long.arccsc, 702
long.arcsinh, 702
long.arctanh, 702
long.cbrt, 699
long.ceil, 703
long.chop, 704
long.copysign, 695

1068 Index

long.cot, 701
long.count, 693
long.csc, 701
long.double, 692
long.eps, 705
long.erf, 703
long.erfc, 703
long.expminusone, 700
long.exponent, 695
long.fdim, 696
long.floor, 703
long.fma, 695
long.fmax, 698
long.fmin, 698
long.fmod, 695
long.fpclassify, 708
long.frexp, 707
long.gamma, 700
long.hypot, 695
long.hypot2, 696
long.hypot3, 696
long.hypot4, 696
long.ilog2, 701
long.inverf, 703
long.isequal, 698
long.isfinite, 708
long.isinfinite, 708
long.isless, 698
long.islessequal, 698
long.isnormal, 708
long.issubnormal, 708
long.isundefined, 708
long.isunequal, 698
long.iszero, 708
long.koadd, 696
long.ldexp, 707
long.lnabs, 700
long.lnbinomial, 700
long.lnfact, 700
long.lnplusone, 700, 701
long.log10, 701
long.log2, 701
long.mantissa, 696
long.modf, 696
long.multiple, 707
long.nextafter, 706
long.norm, 706
long.normalise, 708
long.overflow, 694
long.pytha, 697
long.pytha4, 697
long.redupi, 706

long.rempio2, 707
long.root, 699
long.round, 703
long.sec, 701
long.signbit, 707
long.significand, 697
long.tonumber, 692
long.tostring, 693
long.unm, 705
long.wrap, 707
long.zeroin, 705
long.zerosubnormal, 705
lookup.getsizes, 479
lookup.gettable, 479
lookup.include, 479
lookup.indices, 479
lookup.iterate, 479
lookup.map, 480
lookup.new, 480
lookup.next, 480
lookup.purge, 481
lookup.setsizes, 481
lookup.subs, 481
lower, 88, 285
map, 119, 128, 246, 285, 376, 383,

394, 396, 403, 418, 429
mapm Package Functions, 565
mapm.carccosh, 571
mapm.carcsinh, 571
mapm.carctan2, 571
mapm.carctanh, 571
mapm.cargument, 571
mapm.ccosc, 571
mapm.ccot, 571
mapm.ccoth, 571
mapm.ccsc, 571
mapm.ccsch, 571
mapm.cfma, 571
mapm.cnumber, 564, 569, 571
mapm.csec, 571
mapm.csech, 571
mapm.csinc, 571
mapm.ctanc, 571
mapm.ctocomplex, 564, 571
mapm.ctonumber, 571
mapm.ctostring, 571
mapm.xabs, 565
mapm.xadd, 565
mapm.xarccos, 565
mapm.xarccosh, 565
mapm.xarccsc, 565
mapm.xarcsec, 565

agena >> 1069

mapm.xarcsin, 565
mapm.xarcsinh, 565
mapm.xarctan, 565
mapm.xarctan2, 565
mapm.xarctanh, 565
mapm.xcbrt, 565
mapm.xceil, 567
mapm.xchebyt, 567
mapm.xcompare, 567
mapm.xcos, 565
mapm.xcosc, 565
mapm.xcosh, 565
mapm.xcot, 565
mapm.xcoth, 565
mapm.xcsc, 565
mapm.xcsch, 565
mapm.xcube, 566
mapm.xdigits, 564, 567, 569, 571
mapm.xdigitsin, 567, 571
mapm.xdiv, 565
mapm.xerf, 566
mapm.xerfc, 566
mapm.xexp, 565
mapm.xexp10, 565
mapm.xexp2, 565
mapm.xexponent, 567
mapm.xfactorial, 565
mapm.xfloor, 567
mapm.xfma, 566
mapm.xhypot, 566
mapm.xhypot4, 566
mapm.xidiv, 565
mapm.xinv, 567
mapm.xiseven, 567
mapm.xisodd, 567
mapm.xln, 565
mapm.xlog, 565
mapm.xlog10, 565
mapm.xlog2, 565
mapm.xmul, 565
mapm.xneg, 567
mapm.xnumber, 564, 567
mapm.xpow, 565
mapm.xrandom, 566
mapm.xrandomseed, 566
mapm.xrecip, 566
mapm.xround, 567
mapm.xsec, 565
mapm.xsech, 565
mapm.xsign, 565
mapm.xsin, 565
mapm.xsinc, 565

mapm.xsincos, 565
mapm.xsinh, 565
mapm.xsinhcosh, 565
mapm.xsqrt, 565
mapm.xsquare, 566
mapm.xsub, 565
mapm.xtan, 565
mapm.xtanc, 565
mapm.xterm, 566
mapm.xtonumber, 564, 567
mapm.xtostring, 567
math.accu, 516
math.agm, 516
math.bintodec, 517
math.branch, 517
math.ceillog2, 517
math.ceilpow2, 517
math.chi, 518
math.chop, 518
math.cld, 518
math.clip, 519
math.compose, 519
math.congruentprime, 519
math.convertbase, 519
math.copysign, 520
math.cosd, 520
math.cospi, 520
math.cotd, 520
math.cscd, 520
math.dblfact, 520
math.dd, 520
math.decompose, 521
math.dirac, 521
math.dms, 521
math.eps, 521
math.epsilon, 522
math.expminusone, 522
math.exponent, 522
math.fall, 523
math.fdim, 523
math.fib, 523
math.fibinv, 523
math.fld, 523
math.flipsign, 523
math.floorpow2, 524
math.fpclassify, 524
math.fraction, 524
math.frexp, 524
math.gammasign, 525
math.gcd, 525
math.hamming, 525
math.hextodec, 525

1070 Index

math.invmod, 525
math.iscube, 526
math.isfib, 526
math.isinfinity, 526
math.isirregular, 526
math.isminuszero, 526
math.isnormal, 527
math.isordered, 527
math.ispow2, 527
math.isprime, 527
math.isqrt, 527
math.issquare, 527
math.kbadd, 528
math.koadd, 528
math.largest, 529
math.lcm, 529
math.lnabs, 529
math.lnbinomial, 529
math.lnfact, 530
math.lnplusone, 530
math.logs, 530
math.mantissa, 530
math.max, 530
math.min, 531
math.modulus, 531
math.morton, 531
math.mulmod, 531
math.mulsign, 531
math.ndigits, 531
math.nearbyint, 532
math.nearmod, 532
math.nextafter, 532
math.nextmultiple, 532
math.nextpower, 532
math.nextprime, 532
math.norm, 532
math.normalise, 533
math.nthdigit, 533
math.octtodec, 533
math.piecewise, 533
math.pochhammer, 534
math.powmod, 534
math.prevprime, 534
math.quadrant, 534
math.ramp, 534
math.random, 535
math.randoms, 535
math.randomseed, 535
math.randomseeds, 536
math.rectangular, 536
math.redupi, 536
math.relerror, 537

math.rempio2, 537
math.rint, 537
math.secd, 537
math.signbit, 537
math.significand, 537
math.sincos, 538
math.sincospi, 538
math.sind, 538
math.sinhcosh, 538
math.sinpi, 538
math.smallest, 538
math.smallestnormal, 539
math.splitdms, 539
math.tand, 539
math.tanpi, 539
math.tocomplex, 539
math.todecimal, 539
math.todms, 540
math.tohex, 540
math.toradians, 540
math.tosgesim, 540
math.triangular, 540
math.trifact, 541
math.trunc, 541
math.two54, 541
math.uexponent, 541
math.ulp, 541
math.unitise, 542
math.unitstep, 542
math.wrap, 542
math.xlnplusone, 542
math.zerosubnormal, 543
max, 248
mdf, 509
member, 248, 376, 403, 418
memfile.append, 327
memfile.attrib, 328
memfile.bitfield, 328
memfile.bytebuf, 328
memfile.charbuf, 329
memfile.clearbit, 329
memfile.dump, 329
memfile.find, 330
memfile.gefield, 332
memfile.get, 330
memfile.getbit, 331
memfile.getbyte, 331
memfile.getbytes, 331
memfile.getchar, 331
memfile.getitem, 332
memfile.getsize, 332
memfile.iterate, 332

agena >> 1071

memfile.map, 332
memfile.match, 332
memfile.mfind, 333
memfile.move, 333
memfile.prepend, 333
memfile.purge, 334
memfile.put, 334
memfile.read, 334
memfile.replace, 335
memfile.resize, 335
memfile.reverse, 335
memfile.rewind, 336
memfile.setbit, 336
memfile.setbyte, 336
memfile.setchar, 336
memfile.setfield, 337
memfile.setitem, 337
memfile.shift, 337
memfile.substring, 337
memfile.tostring, 338
memfile.write, 338
min, 249
minus, 73, 106, 114, 120, 128, 382, 396,

409, 424
mod, 73, 82
modf, 509
move, 249, 376, 404, 418
mp.add, 573
mp.addmul, 573
mp.andint, 576
mp.attrib, 578
mp.binomial, 576
mp.clrbit, 577
mp.cmp, 578
mp.cmpabs, 578
mp.com, 576
mp.combit, 577
mp.divide, 573
mp.factorial, 575
mp.fib, 576
mp.gcd, 575
mp.gcdext, 575
mp.getbit, 577
mp.getstring, 578
mp.hamdist, 577
mp.invert, 575
mp.iseven, 578
mp.isodd, 578
mp.jacobi, 575
mp.kronecker, 575
mp.lcm, 575
mp.leastsigbit, 577

mp.legendre, 575
mp.log2, 574
mp.lucas, 576
mp.modulus, 573
mp.mostsigbit, 577
mp.mul2exp, 574
mp.multiply, 573
mp.neg, 574
mp.nextprime, 575
mp.orint, 576
mp.popcount, 577
mp.powm, 574
mp.primorial, 576
mp.remove, 575
mp.root, 574
mp.scan0, 576
mp.scan1, 576
mp.setbit, 577
mp.setstring, 578
mp.sint, 573
mp.sizeinbase, 578
mp.submul, 573
mp.subtract, 573
mp.swap, 578
mp.tdiv, 574
mp.tdivq, 574
mp.tdivr, 574
mp.testprime, 574
mp.tonumber, 577
mp.tostring, 578
mp.uint, 572
mp.xorint, 576
mpf.agm, 580
mpf.ai, 580
mpf.arccosh, 580
mpf.arccoth, 580
mpf.arccsch, 580
mpf.arcsech, 580
mpf.arcsinh, 580
mpf.arctan2, 580
mpf.arctanh, 580
mpf.beta, 580
mpf.cbrt, 580
mpf.ceil, 580
mpf.clone, 583
mpf.cmpd, 583
mpf.copysign, 580
mpf.cot, 580
mpf.coth, 580
mpf.csc, 580
mpf.csch, 580
mpf.digamma, 580

1072 Index

mpf.dim, 580
mpf.eint, 580
mpf.erf, 580
mpf.erfc, 580
mpf.exp10, 580
mpf.exp2, 580
mpf.floor, 581
mpf.fma, 581
mpf.fmod, 581
mpf.fms, 581
mpf.gamma, 581
mpf.hypot, 581
mpf.hypot4, 581
mpf.Inf, 582
mpf.isfinite, 581
mpf.isinfinite, 581
mpf.isiundefined, 581
mpf.j0, 581
mpf.j1, 581
mpf.jn, 581
mpf.lgamma, 581
mpf.li2, 581
mpf.log10, 581
mpf.log2, 581
mpf.max, 582
mpf.min, 582
mpf.modf, 581
mpf.Nan, 582
mpf.new, 583
mpf.nexttoward, 581
mpf.precision, 583
mpf.pytha, 581
mpf.pytha4, 581
mpf.random, 581
mpf.relerror, 581
mpf.root, 581
mpf.round, 581
mpf.rounding, 583
mpf.sec, 581
mpf.sech, 581
mpf.signbit, 581
mpf.swap, 584
mpf.tonumber, 584
mpf.tostring, 584
mpf.trunc, 581
mpf.y0, 581
mpf.y1, 581
mpf.yn, 581
mpf.Zero, 582
mpf.zeta, 581
mul, 73, 82
muladd, 509

multiple, 509
mulup, 250, 404, 419
nan, 509, 705
nand, 73, 510
net.accept, 788
net.address, 789
net.admin Table, 789
net.bind, 789
net.block, 789
net.close, 789
net.closewinsock, 790
net.connect, 790
net.isconnected, 791
net.listen, 791
net.lookup, 791
net.open, 791
net.opensockets, 792
net.openwinsock, 792
net.receive, 793
net.remoteaddress, 793
net.send, 793
net.shutdown, 794
net.smallping, 794
net.survey, 795
net.wget, 796
next, 250
nonzero, 510, 704
nor, 73, 510
not, 97, 105
notin, 73, 283, 381, 395, 409, 430
numarray.attrib, 434
numarray.convert, 434
numarray.cycle, 434
numarray.double, 434
numarray.getbit, 434
numarray.getitem, 434
numarray.getsize, 435
numarray.int32, 435
numarray.isall, 435
numarray.iterate, 436
numarray.longdouble, 437
numarray.map, 437
numarray.purge, 437
numarray.read, 437
numarray.readdoubles, 438
numarray.readintegers, 438
numarray.readlongdoubles, 439
numarray.readuchars, 439
numarray.readuint32, 439
numarray.readushorts, 440
numarray.remove, 440
numarray.replicate, 440

agena >> 1073

numarray.resize, 440
numarray.satisfy, 441
numarray.select, 441
numarray.setbit, 441
numarray.setitem, 441
numarray.sort, 442
numarray.sorted, 442
numarray.subarray, 442
numarray.subs, 442
numarray.toarray, 442
numarray.toreg, 442
numarray.toseq, 443
numarray.totable, 443
numarray.uchar, 443
numarray.uint32, 443
numarray.used, 443
numarray.ushort, 443
numarray.whereis, 443
numarray.write, 444
odd, 510, 704
ops, 174, 251
optboolean, 251
optcomplex, 251
optint, 252
optnonnegative, 252
optnonnegint, 252
optnumber, 252
optposint, 252
optpositive, 253
optstring, 253
or, 73, 96
os.battery, 806
os.beep, 806
os.cdrom, 807
os.chdir, 807
os.chmod, 807
os.chown, 807
os.clock, 808
os.codepage, 808
os.computername, 808
os.cpuinfo, 808
os.cpuload, 809
os.curdir, 810
os.curdrive, 810
os.date, 810
os.datetosecs, 812
os.difftime, 813
os.dirname, 813
os.drives, 813
os.drivestat, 813
os.endian, 814
os.environ, 814

os.esd, 814
os.execute, 815
os.exists, 815, 816
os.exit, 815
os.fattrib, 817
os.fcopy, 818
os.filename, 818
os.freemem, 818
os.fstat, 819
os.ftok, 820
os.getadapter, 821
os.getdirpathsep, 821
os.getenv, 821
os.getextlibpath, 821
os.getip, 821
os.getlanguage, 821
os.getloadeddlls, 822
os.getlocale, 822
os.getmac, 823
os.getmodulefilename, 823
os.gettemppath, 824
os.getwinsysdirs, 824
os.groupname, 824
os.hasnetwork, 824
os.inode, 824
os.isansi, 824
os.isarm, 825
os.isarm32, 825
os.isarm64, 825
os.isdir, 825
os.isdos, 825
os.isdow, 826
os.isdriveletter, 826
os.isdst, 826
os.isfile, 826
os.islink, 826
os.islinux, 826, 827
os.islinux386, 827
os.islocale, 827
os.ismac, 827
os.ismounted, 827
os.isppc, 827
os.isremovable, 828
os.issysdir, 828
os.isunix, 828
os.isvaliddrive, 828
os.iswindows, 828
os.isx86, 829
os.iterate, 829
os.list, 829
os.listcore, 830
os.login, 830

1074 Index

os.lsd, 830
os.meminfo, 831
os.memstate, 831
os.mkdir, 832
os.mklink, 832
os.monitor, 832
os.mouse, 833
os.mouseclose, 833
os.mouseflush, 833
os.mouseopen, 833
os.mousestate, 834
os.move, 834
os.netdomain, 835
os.netsend, 835
os.netuse, 835
os.now, 835
os.os2info, 836
os.pause, 837
os.pid, 837
os.prefix, 837
os.readlink, 837
os.realpath, 838
os.remove, 838
os.rmdir, 838
os.screensize, 838
os.secstodate, 838
os.setenv, 838
os.setextlibpath, 839
os.setlocale, 839
os.settime, 839
os.strerror, 840
os.suffix, 840
os.symlink, 840
os.system, 840
os.terminate, 841
os.time, 841
os.tmpdir, 842
os.tmpname, 842
os.tzdiff, 843
os.unmount, 843
os.uptime, 843
os.usd, 844
os.username, 844
os.vga, 845
os.wait, 845
os.whereis, 845
os.winver, 846
package.checkclib, 860
package.loadclib, 860
package.loaded, 860
package.packages, 860
package.readlibbed, 860

pairs, 149, 253
pipeline, 253
polar, 510
pop, 121
popd, 866
prepend, 254, 372, 376, 399, 404, 414,

419
print, 52, 254
printf, 255
proot, 510
protect, 171, 255
purge, 108, 255, 377, 419
pushd, 866
put, 108, 256, 377, 404, 419
pytha, 511
pytha4, 511
qmdev, 511
qsumup, 106, 256, 377, 405, 419, 642
rawequal, 256
rawget, 257
rawset, 257
rbtree.entries, 468
rbtree.find, 468
rbtree.include, 469
rbtree.iterate, 469
rbtree.max, 469
rbtree.min, 469
rbtree.minmax, 469
rbtree.new, 470
rbtree.remove, 470
read, 257
readlib, 47, 257, 860
recip, 511, 580, 695
recurse, 259, 377, 394, 405, 420
reduce, 259, 285
regex.count, 365
regex.find, 366
regex.flags, 366
regex.match, 366
regex.new, 367
registers.dimension, 426
registers.extend, 426
registers.isall, 426
registers.new, 427
registers.newreg, 428
registers.numintersect, 428
registers.numminus, 428
registers.numunion, 428
registers.reduce, 428
registers.settop, 428
registry.anchor, 864
registry.anyid, 864

agena >> 1075

registry.get, 198, 864
remove, 261, 378, 394, 405, 420
replace, 87, 90, 286
restart, 262
reverse, 263, 378, 405, 420
right, 123, 124, 263
roll, 73, 490
root, 511
round, 512, 532
rtable.defaults, 189, 861
rtable.forget, 190, 862
rtable.get, 190, 862
rtable.init, 190, 862
rtable.mode, 190, 862
rtable.purge, 190, 862
rtable.put, 190, 863
rtable.remember, 186, 261, 861
rtable.rget, 861
rtable.roinit, 190, 862
run, 263
satisfy, 263
save, 263
scalbn, 512
sec, 512
sech, 512
select, 227, 264, 378, 383, 394, 396,

405, 410, 420, 425
selectremove, 265, 378, 394, 405, 420
sema.close, 884
sema.isopen, 884
sema.open, 885
sema.reset, 885
sema.shrink, 885
sema.state, 885
seq, 115
sequences.dimension, 411
sequences.isall, 411
sequences.new, 411
sequences.newseq, 412
sequences.numintersect, 412
sequences.numminus, 412
sequences.numunion, 413
sequences.resize, 413
setbit, 265
setbits, 266
setmetatable, 120, 124, 128, 191, 266,

378, 406, 421
setnbits, 266
sets.isall, 397
sets.newset, 397
sets.numintersect, 397
sets.numminus, 397

sets.numunion, 397
sets.resize, 398
settype, 116, 120, 123, 124, 177, 266
shift, 267, 378, 406, 421
sign, 80, 512, 580, 695
signum, 513, 695
sin, 80, 513, 579, 701
sinc, 513, 702
sinh, 80, 513, 579, 702
size, 87, 106, 114, 119, 127, 267, 286,

379, 394, 406, 421, 429
skew.entries, 465
skew.height, 465
skew.include, 465
skew.indices, 465
skew.iterate, 466
skew.new, 465, 466
skew.remove, 466
skew.reorder, 466
skycrane.bagtable, 934
skycrane.dice, 934
skycrane.fcopy, 934
skycrane.formatline, 934
skycrane.getlocales, 935
skycrane.isemail, 935
skycrane.iterate, 935
skycrane.move, 936
skycrane.readcsv, 936
skycrane.replaceinfile, 936
skycrane.scribe, 937
skycrane.sorted, 938
skycrane.stopwatch, 938
skycrane.tee, 938
skycrane.timestamp, 939
skycrane.tocomma, 940
skycrane.todate, 940
skycrane.tolerance, 940
skycrane.trimpath, 940
skycrane.xmlmatch, 940
sort, 106, 119, 127, 267, 379, 406, 421
sorted, 268, 379, 406, 421
split, 73, 87, 283
sqrt, 80, 513, 514, 580, 699
square, 580, 699
squareadd, 73, 491, 699
stack.absd, 874, 883
stack.addtod, 874
stack.addtwod, 882
stack.antilogd, 878
stack.arccosd, 880
stack.arccoshd, 880
stack.arcsind, 880

1076 Index

stack.arcsinhd, 880
stack.arctan2d, 881
stack.arctand, 880
stack.arctanhd, 880
stack.attribd, 867
stack.cbrtd, 877
stack.choosed, 867
stack.cosd, 880
stack.coshd, 880
stack.dequeued, 868
stack.divtwod, 882
stack.dumpd, 868
stack.enqueued, 868
stack.exp10d, 879
stack.exp2d, 879
stack.expd, 879
stack.explored, 868
stack.fmad, 877
stack.fracd, 875
stack.hypot4d, 878
stack.hypotd, 878
stack.insertd, 869
stack.intd, 875
stack.intdivd, 875
stack.intdivtwod, 882
stack.invhypotd, 878
stack.lnd, 878
stack.logd, 878
stack.lowerd, 883
stack.mapd, 869
stack.meand, 881
stack.modd, 876
stack.modtwod, 882
stack.mulbyd, 874
stack.multwod, 882
stack.mulupd, 881
stack.negated, 874
stack.powd, 876
stack.powtwod, 882
stack.pushstringd, 870
stack.pushvalued, 870
stack.pythad, 876
stack.readbytes, 870
stack.recipd, 875
stack.removed, 870
stack.replaced, 871
stack.resetd, 872
stack.reversed, 872
stack.rootd, 877
stack.rotated, 872
stack.selected, 872
stack.shrinkd, 872

stack.sind, 880
stack.sinhd, 880
stack.sized, 873
stack.sorted, 873
stack.sqrtd, 877
stack.squared, 876
stack.subtwod, 882
stack.sumupd, 881
stack.swapd, 873
stack.switchto, 873
stack.tand, 880
stack.tanhd, 880
stack.upperd, 883
stack.writebytes, 873
stats.accu, 655
stats.acf, 656
stats.acv, 656
stats.ad, 657
stats.amean, 657
stats.beta, 658
stats.binomd, 658
stats.binompdf, 658
stats.cauchy, 658
stats.cdf, 659
stats.cdfnormald, 659
stats.chauvenet, 659
stats.checkcoordinate, 660
stats.chisquare, 660
stats.colnorm, 660
stats.countentries, 661
stats.cumsum, 661
stats.dbscan, 661
stats.deltalist, 662
stats.durbinwatson, 662
stats.ema, 662
stats.extrema, 663
stats.F, 663
stats.Fc, 664
stats.fivenum, 664
stats.fprod, 664
stats.fratio, 665
stats.freqd, 665
stats.fsum, 665
stats.gammacdf, 666
stats.gammad, 666
stats.gammadc, 666
stats.gammapdf, 666
stats.gema, 667
stats.geometric, 667
stats.gini, 668
stats.gmean, 668
stats.gsma, 669

agena >> 1077

stats.gsmm, 669
stats.herfindahl, 669
stats.hmean, 669
stats.hypergeom, 670
stats.invF, 670
stats.invnormald, 670
stats.ios, 670
stats.iqmean, 671
stats.iqr, 671
stats.isall, 671
stats.isany, 672
stats.issorted, 672
stats.kurtosis, 672
stats.laplace, 673
stats.logistic, 673
stats.lognormald, 673
stats.logseries, 674
stats.mad, 674
stats.md, 674
stats.mean, 675
stats.meanmed, 675
stats.meanvar, 675
stats.median, 676
stats.midrange, 676
stats.minmax, 676
stats.mode, 677
stats.moment, 677
stats.nde, 677
stats.ndf, 678
stats.negbinompdf, 678
stats.neighbours, 678
stats.normald, 678
stats.obcount, 679
stats.obpart, 680
stats.pdf, 681
stats.peaks, 681
stats.percentile, 682
stats.poisson, 682
stats.poissond, 682
stats.prange, 682
stats.probit, 683
stats.qcd, 683
stats.qmean, 683
stats.quartiles, 684
stats.rownorm, 684
stats.scale, 684
stats.sd, 685
stats.skewness, 685
stats.sma, 686
stats.smallest, 686
stats.smm, 686
stats.sorted, 687

stats.spread, 687
stats.standardise, 688
stats.studentst, 688
stats.sumdata, 688
stats.sumdataln, 689
stats.tovals, 689
stats.trimean, 689
stats.trimmean, 690
stats.var, 690
stats.weights, 691
stats.winsor, 691
stats.zscore, 691
strings.a64, 288
strings.advance, 288
strings.align, 289
strings.appendmissing, 289
strings.between, 289
strings.bigrams, 289
strings.byte, 289
strings.capitalise, 289
strings.charmap, 290
strings.charset, 290
strings.chomp, 290
strings.chop, 291
strings.compare, 291
strings.contains, 291
strings.cut, 291
strings.diamap, 291
strings.dice, 292
strings.diffs, 292
strings.dleven, 293
strings.dump, 293
strings.fields, 293, 722
strings.find, 89, 91, 294
strings.format, 295
strings.fuzzy, 297, 298
strings.glob, 298
strings.gmatch, 299
strings.gmatches, 299
strings.gseparate, 299
strings.gsub, 300
strings.hits, 301
strings.include, 301
strings.isaligned, 301
strings.isalpha, 301
strings.isalphanumeric, 301, 302
strings.isalphaspace, 302
strings.isalphaspec, 302
strings.isascii, 302
strings.isblank, 302
strings.iscenumeric, 302
strings.iscontrol, 303

1078 Index

strings.isdia, 303
strings.isending, 303
strings.isfloat, 303
strings.isgraph, 304
strings.ishex, 303
strings.isisoalpha, 304
strings.isisolower, 304
strings.isisoprint, 304
strings.isisospace, 304
strings.isisoupper, 304
strings.islatin, 304
strings.islatinnumeric, 305
strings.isloweralpha, 305
strings.islowerlatin, 305
strings.ismagic, 305
strings.ismultibyte, 305
strings.isnumber, 306
strings.isnumberspace, 306
strings.isnumeric, 306
strings.isolower, 306
strings.isoupper, 306
strings.isprintable, 307
strings.isspace, 307
strings.isspec, 307
strings.isstarting, 307
strings.isupperalpha, 307
strings.isupperlatin, 308
strings.isutf8, 308
strings.iswrapped, 308
strings.iterate, 308
strings.jaro, 309
strings.ljustify, 309
strings.lrtrim, 309
strings.ltrim, 310
strings.match, 91, 310
strings.matches, 310
strings.mfind, 310
strings.ngrams, 311
strings.obfusxor, 311
strings.pack, 311
strings.packsize, 311
strings.random, 311
strings.remove, 312
strings.repeat, 312
strings.reverse, 312
strings.rjustify, 312
strings.rotateleft, 313
strings.rotateright, 313
strings.rtrim, 313
strings.separate, 313
strings.shannon, 314
strings.strchr, 314

strings.strcmp, 314
strings.strcoll, 315
strings.strcspn, 314
strings.stricmp, 315
strings.strlen, 315
strings.strncmp, 316
strings.strrchr, 316
strings.strspn, 316
strings.strstr, 316
strings.strtoul, 316
strings.strverscmp, 317
strings.sub, 317
strings.tobytes, 318
strings.tochars, 318
strings.tolatin, 319
strings.tolower, 319
strings.toupper, 319
strings.toutf8, 319
strings.transform, 319
strings.uncapitalise, 319
strings.unpack, 320
strings.unwrap, 320
strings.utf8size, 320
strings.walker, 320
strings.words, 321
strings.wrap, 321
subs, 268, 379, 406, 421
subset, 73, 96, 105, 114, 120, 128, 382,

396, 409, 424
subsop, 269, 379, 406, 422
sumup, 106, 228, 270, 379, 407, 422
swap, 271, 379, 407, 422
switchd, 867
symmod, 73, 490
tables.allocate, 384
tables.array, 384
tables.borders, 384
tables.concat, 384
tables.dimension, 384
tables.entries, 385
tables.getarray, 385
tables.getfield, 385
tables.gethash, 385
tables.getsize, 385
tables.getsizes, 386
tables.gettable, 386
tables.hash, 386
tables.hashole, 386
tables.indices, 387
tables.isall, 387, 435
tables.isarray, 388
tables.ishash, 388

agena >> 1079

tables.isnullarray, 388
tables.maxn, 388
tables.move, 388
tables.new, 389
tables.newtable, 390
tables.numintersect, 390
tables.numminus, 390
tables.numunion, 390
tables.pack, 390
tables.parts, 391
tables.reshuffle, 391
tables.setfield, 391
tables.settable, 391
tables.unpack, 391
tan, 80, 514, 579, 701
tanc, 514
tanh, 80, 514, 579, 702
tar.close, 776
tar.extract, 776
tar.lines, 776
tar.list, 777
tar.open, 777
time, 271, 378
times, 271
tonumber, 286
top, 119, 127, 272, 380, 407, 422
toreg, 272, 287
toseq, 273, 287
toset, 272, 273
tostring, 287
tostringx, 287
totable, 273, 287
trim, 88, 288
tuples.getitem, 475
tuples.getsize, 475
tuples.map, 475
tuples.remove, 475
tuples.select, 475
tuples.setitem, 475
tuples.subs, 475
tuples.toreg, 476
tuples.toseq, 476
tuples.tostring, 476
tuples.totable, 476
tuples.tuple, 476
tuples.unpack, 476
type, 119, 124, 127, 166, 380, 394, 407,

422, 429
typeof, 116, 119, 124, 166, 274, 380,

395, 407, 422, 430
ulist.append, 450
ulist.checkulist, 450

ulist.dump, 450
ulist.getitem, 451
ulist.getllist, 451
ulist.getsize, 451
ulist.has, 451
ulist.isulist, 451
ulist.iterate, 451
ulist.list, 451
ulist.prepend, 451
ulist.purge, 451
ulist.put, 452
ulist.setitem, 452
ulist.sort, 452
ulist.swap, 452
ulist.toseq, 452
ulist.tostring, 452
ulist.totable, 452
unassigned, 274
union, 73, 106, 114, 120, 128, 382, 396,

409, 424
unique, 106, 119, 128, 274, 380, 407,

422
units.celsius, 946
units.fahren, 946
units.foot, 946
units.km, 946
units.meter, 946
units.mile, 946
units.yard, 946
unity, 275
unpack, 119, 128, 275
upper, 88, 288
utf8.charpattern, 340
utf8.chars, 340
utf8.codepoint, 341
utf8.codes, 340
utf8.len, 341
utf8.offset, 341
utils.calendar, 921
utils.checkdate, 921
utils.decodea85, 921
utils.decodeb32, 921
utils.decodeb64, 922
utils.decodeb85, 922
utils.decodexml, 922
utils.encodea85, 923
utils.encodeb32, 923
utils.encodeb64, 923
utils.encodeb85, 923
utils.encodexml, 924
utils.findfiles, 924
utils.hexlify, 925

1080 Index

utils.metre, 946
utils.numiters, 925
utils.posrelat, 925
utils.readini, 929
utils.readxml, 930
utils.singlesubs, 930
utils.speed, 930
utils.unhexlify, 931
utils.uuid, 931
utils.writecsv, 931
utils.writeini, 932
values, 276, 380, 407, 422
watch, 276
whereis, 276, 407, 423
with, 47, 860
write, 276
writeline, 277
xbase.attrib, 743
xbase.close, 744
xbase.field, 744
xbase.fields, 744
xbase.fieldtype, 744
xbase.filepos, 744
xbase.header, 744
xbase.ismarked, 745
xbase.isopen, 745
xbase.isvoid, 745
xbase.kernel, 745
xbase.lock, 746
xbase.mark, 746
xbase.new, 746
xbase.open, 750
xbase.purge, 751
xbase.readdbf, 751
xbase.readvalue, 751
xbase.record, 752
xbase.records, 752
xbase.sync, 752
xbase.unlock, 752
xbase.wipe, 752
xbase.writeboolean, 753
xbase.writebyte, 753
xbase.writecomplex, 753
xbase.writedate, 754
xbase.writedecimal, 754
xbase.writedouble, 754
xbase.writefloat, 755
xbase.writelong, 755
xbase.writenumber, 756
xbase.writestring, 756
xbase.writetime, 756
xdf, 514

xml.close, 770
xml.decode, 769
xml.decodexml, 770
xml.getbase, 770
xml.getcallbacks, 770
xml.new, 770
xml.parse, 771
xml.pos, 771
xml.readxml, 770
xml.setbase, 771
xml.setencoding, 771
xnor, 73, 97, 515
xor, 73, 96, 515
xpcall, 277, 893
xsubset, 73, 96, 105, 114, 382, 396, 409,

424
zero, 515, 704
zip, 119, 128, 277, 408, 423
zx.ABS, 602
zx.ACS, 603
zx.ADD, 603
zx.AND, 603
zx.ASN, 603
zx.ATN, 603
zx.ATNH, 604
zx.COS, 604
zx.COSH, 604
zx.COT, 604
zx.COTH, 604
zx.CSC, 604
zx.CSCH, 605
zx.DIV, 605
zx.E, 605
zx.ERF, 605
zx.EXP, 605
zx.GAM, 605
zx.genseries, 608
zx.getcoeffs, 608
zx.INT, 605
zx.LGAM, 606
zx.LN, 606
zx.MUL, 606
zx.NOT, 606
zx.OR, 606
zx.PI, 606
zx.POW, 606
zx.reduce, 609
zx.SEC, 607
zx.SECH, 607
zx.setcoeffs, 608
zx.SGN, 607
zx.SIN, 607

agena >> 1081

zx.SINH, 607
zx.SQR, 607
zx.SUB, 607
zx.TAN, 608
zx.TANH, 608

G

Garbage Collection, 54, 72, 198, 233,
262, 567, 570, 850, 861, 1012
Global Environment, 47, 237
Golden ratio, 1014
Graphics, 897

Arc, 900, 901, 909
Background Colour, 901
Circle, 901, 909
Colour Palette, 901, 902, 909
Colours, 898, 900, 902, 912
Ellipse, 902, 910
File Formats, 903
Flushing, 901, 902
Font, 902, 912
Line, 903, 910
Line Dash, 902
Line Thickness, 912
Plotting, 897, 899, 903, 908
Point, 908, 911
Rectangle, 909, 911
Triangle, 911, 912

H

Haiku, 47, 51, 564
Handlers

Exit, 231
Restart, 262

Hardware
Battery Status, 806
Clock, 843
CPU, 808
Drives, 807, 813, 827, 828, 843
Endianness, 809, 814, 858, 892
Keyboard, 209, 210, 718, 720
Memory, 818, 831
Mouse, 833, 834
Reboot, etc., 841
RS-232, 799
Screen, 838, 845
Serial Ports, 799
Sound, 806

USB, 797
Hashes

Bit Mix, 354
Bob Jenkins' Hash, 353
Daniel J. Bernstein Hash, 349
Digit Sum, 349
Fletcher's Algorithm, 351
Fowler-Noll-Vo Hash, 351
GNU Hash, 356
Internet Checksum, 360
ISpell, 352
MD5 Hash, 354
MurmurHash2, 355
MurmurHash3, 355
ndbm Hash, 358
One-at-a-Time Hash, 355
SHA256, 358
SHA512, 358
Shift-Add-XOR Hash, 357
SuperFastHash, 360
System V Hash, 360
Variable-Length Hash, 361

Home Directory, 1015

I

I/O, 207, 717, 719, 733
Applications, 210, 211, 725, 726, 815
Base32, 923
Base64, 922, 923
Base85, 922, 923
Buffering, 729
Closing Files, 719
CSV Files, 211, 936
Errors, 719
Flushing, 729
INI Files, 929, 932
io Library, 717
Keyboard, 209, 718, 726
Locks, 723
Opening Files, 718
Output, 254, 255, 730, 937
Temporary Files or Directories, 724, 729,

824
Text Files, 207, 208, 726, 727
Windows Clipboard, 720, 726
XML Files, 211, 770, 922, 924, 930

iconv Port, 342
if Operator, 136, 137
if Statement, 57, 133

elif Clause, 133, 134

1082 Index

else Clause, 133, 134
onsuccess Clause, 133, 135

import/alias Statement, 62
inc Statement, 77
infinity, 1014
INI

Reading & Writing Initialisation Files, 211
Initialisation, 47, 48, 184, 241, 254, 262,
856, 1020, 1021, 1022
Input

(please see I/O), 207
Input Conventions, 51
insert Statement, 55, 102, 118
Installation

DOS, 46
Linux, 43
Mac OS X, 47
OS/2 Warp 4 and later, 46
Solaris 10 & OpenSolaris, 43
UNIX Dependencies, 43, 44
Windows Binary Installer, 44
Windows Portable Edition, 45

Internet
(please see Network), 783

ISO 8859/1 Latin-1, 304
Iterator, 148, 201, 693, 935, 942

J

JSON
Decoding, 775
Encoding, 775

K

Keywords, 68

L

LANs
(please see Network), 783

Latin-1/15
(please see Strings), 288

Libraries
ads Library, 758
astro Library, 595
binio Library, 733
bloom Library, 362, 365

calc Library, 610
clock Library, 592
cordic Library, 600
coroutine Library, 887
debug Library, 888
divs Library, 585
dual Library, 589
environ Library, 847
fractals Library, 913
gdi Library, 897
Initialisation, 62
io Library, 717
json Library, 775
libusb Binding, 797
linalg Library, 640
llist Library, 344
mapm Library, 564
mp Library, 572
mpf Library, 579
net Library, 783
os Library, 805
rtable Library, 861
skycrane Library, 934
stats Library, 654
strings Library, 288
tables Library, 383
tar Library, 776
utils Library, 921
xBase Library, 743
xml Library, 769
zx Library, 602

library.agn, 47, 254, 292, 1016, 1020
Licence, 1047
Linear Algebra, 640

All-ones Matrix, 646
Back Substitution, 641, 645, 706
Backward Substitution, 643, 645
Cross Product, 641, 644
Determinant, 644
Diagonal, 644, 645
Eigenvalues, 644, 645
Eigenvectors, 644
Equality Check, 648, 652, 653
Gaussian Elimination, 643, 645, 706
Hilbert Matrix, 646
Identity Matrix, 646
Inverse Matrix, 646
Lower Triangular Form, Check for, 646
LU Decomposition, 647
Matrix, 648
Matrix Multiplication, 649
Norm, 649

agena >> 1083

Normalisation, 651
Reduced Row Echelon Form, 650
Scalar Multiplication, 650
Solving Linear Equations, 647
Trace, 652
Transpose, 652
Upper Triangular Form, Check for, 647
Vector, 652
Vector Dot Product, 644
Zero Matrix, 647
Zero Vector, 646, 647, 653

Linked Lists, 212, 215, 344, 446
Doubly-linked, 214, 453
Singly-linked, 213, 447
Unrolled singly-linked, 450

Linux, 43, 291, 564, 719, 720, 778, 783,
826, 828, 843, 854, 897, 913, 1022,
1026, 1046
Loca, 827
Locale, 822, 839, 840, 935

for String Comparison, 315
Logical Operators

and, 96
nand, 97
nor, 97
not, 97
or, 96
xnor, 97
xor, 96

Loops, 58, 140, 161, 178, 180
break Statement, 59, 144, 152
Control Variables, 146
Counting Backwards, 144
do/as Loops, 59, 141
do/od Loops, 142
do/until Loops, 142
for/as Loops, 59, 151
for/downto Loops, 145
for/in Loops, 145, 202
for/to Loops, 143
for/until Loops, 59, 151
for/while Loops, 150
Interruption, 168
Iteration Over Procedures, 148, 202
Iteration Over Sequences, 147
Iteration Over Sets, 147
Iteration Over Strings, 147
Iteration Over Tables, 145
Kahan-Babuška Summation, 144
Kahan-Ozawa Summation, 144
Key ~ Value Pairs, 146

keys Keyword, 146
Neumaier Summation, 144
redo Statement, 153
relaunch Statement, 153
Round-Off Errors, 144
skip Statement, 59, 152
to/do Loops, 144
while Loops, 140

Lua, 35

M

Mac, 47, 564, 720, 778, 783, 808, 818,
827, 831, 840, 841, 845, 854, 897, 913,
917, 1019, 1022, 1026, 1046
Maple V Release 3, 38
Mapping & Zipping, 109, 226, 246, 277,
285, 376, 382, 394, 396, 403, 408, 409,
418, 423, 425, 429, 649, 653
Matrices, 384, 397, 411, 426, 640, 648
Memory, 818, 858
Metamethods, 190, 239, 257, 266, 375,
378, 393, 402, 406, 417, 421, 1012

__call, 196, 850, 944
Protecting, 195
Registry, 197
Weak References, 199

Multisets, 67, 456, 934

N

Names, 68
nargs, 164
Network, 783

Accepting Connections, 784, 788
Adapters, 821
Administrative Information, 789
Bi-directional Connections, 786
Binding Sockets, 784, 789
Black and White Lists, 787, 788, 790
Blocking Mode, 789
Closing Connections, 784, 789
Connecting to a Network Drive, 835
Connecting to a Server, 785, 790
Creating Sockets, 783, 791
Domain Name, 821, 835
HTTP, 796
IP Address, 821

1084 Index

Listening for Incoming Connections,
784, 791

Lookups, 791
MAC Address, 821, 823
Maximum Number of Sockets, 789
Ping, 794
Receiving Data, 784, 793
Sending Data, 785, 793
Socket Activities, 795
Socket Status Information, 785, 792
Sockets, 783
Windows & Winsock, 790, 792

null, 54, 67, 72, 96, 145
Numbers, 52, 67, 73, 76, 80, 167, 209,
244, 274, 287, 296, 507

Abbreviations, 74
Billion, 74
Binary, 74, 517
Conversion to a Base, 316, 519
Conversion to String, 287
Decimal Comma, 940
Dozen, 74
Hexadecimal, 74, 525
Million, 74
Minus Zero, 75, 512, 526, 537, 695, 707
Octal, 74, 533
Percentage, 74
Scientific Notation, 74
Smallest and Largest, 529, 538, 539
Thousand, 74
Thousands Separator, 74
Trillion, 74

O

OOP
methods, 204

Opening Files
Files, 721

OpenSolaris, 43, 828
Operating System Access

Group Name, 824
os Library, 805
User Name, 844
Waiting, 845

Operators
Binary, 1011
Logical, 97
Self-Defined, 204
Unary, 76, 80, 1011

OS/2 Warp 4, 46, 258, 564, 719, 720,
721, 769, 778, 806, 807, 808, 810, 813,
817, 818, 820, 821, 826, 827, 829, 831,
832, 833, 834, 836, 838, 839, 840, 841,
843, 845, 854, 949, 951, 1022, 1025,
1026

Process Id, 837
Output

Formatting, 254, 295
printf Function, 255, 295
Printing Results, 51, 52, 179, 254
Printing Tables, 98, 254
Writing to Console or File, 276, 277, 938
Writing to CSV Files, 931
Writing to DBF Files, 753
Writing to XML Files, 933

P

Packages, 181, 183
80-Bit Floating-Point, 692
Agena Environment, 847
Algebra, 485, 544, 564
Analysis, 610
Arbitrary Precision, 544, 564, 572, 579
Astronomy, 595
Basic Library, 225
Binary I/O, 733
Bloom Filter, 362, 365
Calculus, 610
Clock, 592
Combinatorics, 711
Coroutines, 887
Databases, 758
Fractals, 913
Graphics, 897
gzip Compression, 778
I/O, 717
Initialisation, 62, 860
Initialisation Message, 184, 185
Initialisation Procedure, 185
initialise Function, 241
JSON, 775
Linear Algebra, 640
Linked Lists, 344
Modules, 860
Networking via IPv4, 783
Operating System, 805
readlib Function, 860
Registers, 414

agena >> 1085

Registry Access, 864
Remember Tables, 861
Sequences, 399
Sets, 392, 429
Sexagesimals, 592
Sinclair ZX Spectrum Functions, 602
Statistics, 654
Strings, 281
Tables, 371
UNIX tar, 776
Utilities, I, 921
Utilities, II, 934
XML Parser, 769

Pairs, 57, 67, 73, 122, 167, 232, 245
Assignment, 57, 122
Colon Operator, 122
Deep Copying, 429
Indexing, 122
left & right Operators, 122
Operators & Functions, 124, 128
Size, 429
Type, 380, 394, 407, 422, 429
User-defined Type, 380, 395, 407, 422,

430
Physical Units

Celsius, 946
Fahrenheit, 946
Foot, 946
Kilometre, 946
Metre, 946
Miles, 946
Yards, 946

pop Statement, 118, 119, 120, 127
Precedence, 73, 80

Associativity, 73
Procedures, 60, 67, 148, 159, 167, 176

Arguments, 160, 163, 166
Attributes, 849
Closures, 201
Double Colon Notation, 166, 168
Error Handling, 166, 236, 255
Exception Handling, 171, 255, 277
Extending Built-in Functions, 198, 200
Global Variables, 163, 852
Iterator Functions, 148, 201
Local Variables, 161, 178, 889, 890
Loops, 180
Metamethods, 190, 890
Multiple Returns, 174
nargs, 164
Number of Arguments Passed, 164

Optional Arguments, 163, 166, 232
Parameters, 159, 163
Persistent Storage, 205, 890
Predefined Results, 189
procname, 160
Protected Calls, 171
Remember Tables, 186
Returning Procedure Names, 888
Returning Procedures, 175
Returns, 60, 159, 175
Sandboxes, 180
Scoping Rules, 178
Shortcut Definition, 60, 176
Summary, 207
Type Checking, 166, 168, 170, 178
User Information, 858
varargs System Table, 164
Variable Number of Arguments, 164

Programmes, 61
Running, 61, 246, 263
Saving, 61

R

Raspberry Pi, 825
Registers, 125, 245

Counting Items, 421, 428, 966
Creation, 427
Deletion, 422
Entries, 422
Equality, 423
Indexing, 417
Inequality, 424
Numeric Registers, 427
registers.new Function, 427
Set Operations, 424
Shift, 267
Size, 421
Subset Check, 424
Swapping Elements, 271

Registry, 197, 215, 864, 890
Regular Expressions

Lua-style, 90
PCRE2, 365

Remember Tables, 186
Access, 890
Functions, 190, 862
Read-Only, 188
Standard, 186

Replacing
within Strings, 286, 300, 301, 312

1086 Index

within Structures, 108, 109, 119, 128,
255, 256, 377, 378, 379, 394, 404,
405, 406, 419, 420, 421, 422

restart Statement, 53, 855
return Statement, 159
rotate Statement, 121
RS-232, 799

S

Sandboxes, 180
Scope, 178, 179, 200, 201

Block, 178
scope Keyword, 179, 200

Scripting, 1017
Exit Status, 815, 1018

Searching
in Files, 720
in Strings, 87, 88, 89, 90, 283, 284, 301,

307, 310, 321, 940
in Structures, 105, 108, 109, 114, 119,

124, 127, 227, 230, 236, 240, 259,
261, 264, 265, 276, 294, 298, 299,
374, 375, 377, 378, 383, 387, 393,
394, 395, 396, 397, 401, 403, 405,
407, 409, 410, 416, 418, 420, 423,
424, 425, 429, 430

Sequences, 57, 67, 105, 108, 115, 122,
147, 167, 190, 209, 245

Assignment, 57, 115
Attributes, 848, 849
bottom Operator, 121
Counting Items, 234, 406, 412, 661, 966
create Statement, 117, 122
Creation, 411
Deep Copying, 119, 124, 127
delete Statement, 117
Deletion, 274
Duplicate Entries, 274
Entries, 174, 175, 251, 275, 276, 407
Equality, 408
Indexing, 115, 402
Indices, 276, 407, 423
Inequality, 408
insert Statement, 117
Insertion and Deletion, 117
Numeric Sequences, 411
Operators & Functions, 120
pop Statement, 118, 120
Read-Only, 194

Self-Reference, 118
seq Operator, 115
sequences.new, 411
Set Operations, 409
Shift, 267
Size, 119, 127, 267, 406
Sorting, 119, 127, 267, 268, 672
Subset Check, 409
Substitution, 268, 269
Swapping Elements, 271
top Operator, 121
Weak Ones, 199

Serialisation, 246, 293, 548, 552
Sets, 56, 67, 105, 112, 122, 147, 167,
190, 209

Assignment, 56, 112
Attributes, 848, 849
Bags, 456
Counting Items, 234, 374, 394, 397, 966
create Statement, 113
Deep Copying, 114, 392
Multisets, 456
Operators, 114
Read-Only, 195
Self-Reference, 113
Size, 114, 267
Substitution, 268, 269

Short-Circuit Evaluation, 97
Size

Files, 724
Sockets

(please see Network), 783
Solaris, 43, 291, 564, 719, 720, 778, 783,
843, 854, 897, 913, 951, 1022, 1026,
1046
Sorting, 267, 268, 687

Check, 672
Destructive, 267, 379, 406
Heapsort, 687
Internal Numeric Stack, 873
Introsort, 687
Non-destructive, 268, 406, 687, 938
Pixelsort, 687
Quicksort, 687

Sound, 806
Sparc, 43, 901
Stack Programming, 120

bottom Operator, 121
Built-in Numerical Stack, 865
duplicate Topmost Item, 122
exchange Topmost Items, 122

agena >> 1087

insert Statement, 120
pop Operator, 121
pop Statement, 121
rotate Statement, 121
top Operator, 121

Statements
Assignment, 69
break Jump Control, 152
case Condition, 138
clear Deletion, 71
create dict Initialisation, 104, 122
create sequence Initialisation, 117, 122
create set Initialisation, 113, 122
create table Initialisation, 103, 122
dec Decrementation, 77
delete Data Removal, 102, 118
div Division, 78
do/as Loop, 141
do/od Loop, 142
do/until Loop, 142
duplicate Sequence Elements, 122
enum Enumeration, 71
exchange Sequence Elements, 122
for/as Loop, 151
for/in Loop, 145, 147, 148
for/to Loop, 143
for/until Loop, 151
for/while Loop, 150
if Condition, 133
inc Incrementation, 77
insert Data Entry, 102, 118
insert Stack Item Entry, 121
local Declaration, 161
mul Multiplication, 78
pop Stack Item Deletion, 120
redo Jump Control, 153
relaunch Jump Control, 152
rotate Structure Elements, 121
scope Statement, 179
skip Jump Control, 152
try/catch Error Interception, 172, 173
unless Clause, 152, 161
when Clause, 152, 160
while Loop, 140

Statistics, 654
Absolute Deviation, 657, 940
Arithmetic-Geometric Mean, 516, 580
Autocorrelation, 656
Beta Distribution, 658
Binomial Probability Density, 658
Cauchy Distribution, 658
Chisquare Distribution, 660

Clusters, 661
Combinations, 496
Complemented F Distribution, 664
Cumulative Density Function, 659
Cumulative Probability Binomial

Distribution, 658
Cumulative Probability Poisson

Distribution, 682
Cumulative Sum, 661
Durbin-Watson Test, 662
Exponential Moving Average, 662, 667
F Distribution, 663
Fisher's F Distribution, 665
Five-number Summary, 664, 684
Frequency Distribution Function, 665
Gamma Cumulative Distribution, 666
Gamma Distribution Function, 666
Gamma Distribution PDF, 666
Geometric Cumulative Distribution, 667
Geometric Mean, 668
Harmonic Mean, 669
Herfindahl-Hirschman Index, 669
Hypergeometric Probability Density

Function, 670
Interquartile Range, 671, 683
Inverse Normal Distribution, 670
Inverse of Complemented F Distribution,

670
Kurtosis, 672
Laplace Distribution, 673
Local Extrema, 663, 681
Log Series Cumulative Distribution, 674
Logarithmic Normal Density Function,

673
Logistic Distribution, 628, 673
Mean, 671, 675, 683, 690
Mean Deviation, 657, 674
Median, 675, 676
Median Absolute Deviation, 674
Median Deviation, 674
Mode, 677
Moment, 228, 511, 677
Negative Binomial Distribution, 678
Neighbourhoods, 678
Normal Distribution, 678, 683
Normalisation, 660, 684
Observation, 679
Outlier, 659, 684
Percentile, 682
Periodicy, 656
Poisson Probability Density, 682
Probability Density Function, 681

1088 Index

Quadratic Mean, 683
Simple Moving Average, 669, 686
Simple Moving Median, 669, 686
Skewness, 685
Standard Deviation, 511, 685, 940
Standard Normal Distribution, 632, 681
Standard Score, 691
Standardisation, 688
Student's t-Distribution, 688
Summation Function, 228, 250, 256,

270, 377, 379, 404, 419, 688, 689
Trimean, 689
Variance, 511, 675, 676, 690, 940
Volatility, 670, 940
Weights, 691
Winsorised Mean, 691
Z-Score, 691

stdin, stdout, stderr, 210, 718
Streams

stdin, stdout, stderr, 210
Strings, 54, 67, 84, 147, 167, 192, 245,
274, 281, 313

Alignment, 289, 309, 312
ASCII Code, 87, 88, 210, 228, 283, 290,

318, 720
Bigrams, 289
Blanks, 302
Captures, 323
Character Classes, 322
Checks, 89, 301, 302, 303, 304, 305,

306, 307, 308
Comparison, 283, 291, 292, 293, 298,

314, 315, 317, 940
Concatenation, 54, 73, 106, 282, 283,

285, 301, 312, 376, 384, 418, 1012
Control Characters, 303
Conversion to Number, 286, 689
Counting, 301, 321
Counting Characters, 286, 320
Damerau-Levenshtein, 293
Deletion, 312
Diacritics, 282, 303
Diacritics and Ligatures, 291
Dice Coefficient, 292
Embedded Zero, 261
Empty Strings, 84
Escape Sequences, 86, 1024
Formatting, 295, 297
Insertion, 301
ISO 8859/1 Latin-1, 95, 304, 306, 319,

342
Jaro Similarity, 309

Jaro-Winkler Similarity, 309
Lower & Upper Case, 88, 282, 285, 288,

289, 305, 307, 308, 319
Mapping a Function, 285, 319
Multiline Strings, 84
n-Grams, 311
Normalised Pair Distance, 292
Obfuscation, 311
Operators, 88
Padding, 309, 312
Pattern Items, 323
Pattern Matching, 90, 299, 300, 301,

303, 307, 310, 322
Printable Characters, 307
Punctuation Characters, 307
Regular Expressions, 365
Repetition, 312
Search & Replace Functions, 54, 87, 88,

89, 90, 95, 283, 284, 286, 294, 298,
299, 300, 303, 307, 310, 311, 312,
314, 315, 316, 930, 936, 940

Serialisation, 311, 320
Shannon Entropy, 314, 320
Size, 88, 286, 315, 320
Special Characters, 302, 307
Splitting into Characters, 272, 273, 287
Splitting into Words, 88, 283, 291, 299,

313
strings Library, 288
Substrings, 54, 288, 317
Trimming, 88, 288, 309, 310, 313
UTF-8, 305, 308, 319, 320, 340, 341, 342

Structures, 67
Read-Only, 194
Recursive Descent, 235, 240, 259, 374,

375, 377, 392, 393, 394, 401, 403,
405, 416, 418, 420, 429

Weak Ones, 199
Substrings, 54
System Information, 830, 838, 840
System Settings, 98, 852, 1015, 1020
System Variables, 47, 821, 1015

_G, 182, 237, 262, 1016
_origG, 262
_PROMPT, 1016
_RELEASE, 261
AGENAPATH, 44, 46, 47, 258
ans, 53
environ.buffersize, 736, 871
environ.homedir, 48, 262, 1015
environ.kernel/debug, 853

agena >> 1089

environ.kernel/digits, 853
environ.kernel/emptyline, 853, 854
environ.kernel/gui, 854
environ.kernel/libnamereset, 855
environ.kernel/longtable, 855
environ.kernel/promptnewline, 855, 856
environ.kernel/signeddigits, 856
environ.kernel/skipagenapath, 856
environ.kernel/zeroedcomplex, 856
environ.withprotected, 242
environ.withverbose, 242
Getting Environment Variables, 814
io.stderr, 210
io.stdin, 210
io.stdout, 210
lasterror, 171, 255
libname, 47, 48, 184, 241, 257, 258,

262, 855, 1015, 1020, 1023
mainlibname, 47, 241, 257, 262, 855,

1015
Setting Environment Variables, 838

T

Tables, 55, 67, 98, 105, 108, 110, 111,
112, 122, 145, 167, 183, 186, 190, 209,
212, 215, 245, 371

Array Part, 105, 384, 385, 388, 391
Arrays, 99, 388
Assignment, 55, 98, 99, 103, 384, 428
Attributes, 388, 847, 848
bottom Operator, 121
Counting Items, 234, 267, 374, 385,

386, 388, 390, 661, 966
create Statement, 101, 122
Creation, 389, 390
Cycles, 111
Deep Copying, 110, 373, 393, 401, 416
delete Statement, 102
Deletion, 102, 108, 109, 255, 274, 377,

380, 419
Dictionaries, 103, 388
Duplicate Entries, 236, 274, 374, 401,

416
Empty Tables, 101
Entries, 109, 174, 175, 251, 275, 276,

375, 385
Equality, 380, 381
Functions, 108, 226, 227, 261, 264, 268,

379, 383, 425, 481
Hash Part, 105, 385, 386, 388, 391

Holes, 102, 107, 385, 386, 388, 978
Holes, Removing, 274, 380
Indexing, 55, 99, 100, 375
Indices, 276, 384, 407, 423, 858
Inequality, 381
insert Statement, 102
Insertion, 102, 108, 109, 256, 384
Key ~ Value Pairs, 104
Linked Lists, 212, 215
Nested Tables, 100, 248
Numeric Tables, 389
Operators, 107
pop Statement, 120
Read-Only, 194
Recursive Descent, 248
References, 110, 212, 215, 852
Removing Holes, 102, 247, 269, 385
Self-Reference, 111
Set Operations, 382
Shift, 267
Size, 103, 267, 379, 385, 386, 388, 978
Sorting, 106, 267, 268, 672
Subset Check, 382
Substitution, 268, 269, 481
Swapping Elements, 271
tables Library, 383
tables.new Function, 389
top Operator, 121
Unpacking Table Values by Name, 111,

155, 162
Weak Ones, 199

TCP
(please see Network), 783

Threads, 887
TI-30, 520, 521, 539
Timestamp, 681, 756, 939
Tokens, 68
try/catch Statement, 172, 173
Type, 251, 252, 253
Types, 67, 125, 129, 168, 233, 240, 266,
274, 380, 959

Double Colon Notation, 168
Lightuserdata, 129
Threads, 129
Userdata, 129
User-Defined, 116, 123, 177

1090 Index

U

Unassignment, 54
clear Statement, 71, 233, 234

undefined, 1014
UNIX, 47, 51, 61, 241, 257, 258, 723,
726, 735, 746, 765, 806, 808, 818, 819,
828, 829, 831, 832, 840, 845, 860, 901,
906, 1019, 1022
UTF-8

(please see Strings), 288
UUID, 857, 931

V

Values
Assigned Names, 229, 274
Comparisons, 256, 380, 381, 395, 408,

423, 430
Defining new Variables within

Procedures, 183
Reading Values from File, 257
Reading Values within Procedures, 183
Saving Values to File, 263

Vectors, 640, 652

W

while Loops, 58, 140
Windows, 44, 47, 51, 61, 241, 257, 258,
291, 564, 719, 720, 721, 723, 726, 735,
746, 765, 778, 783, 806, 807, 808, 810,
813, 817, 818, 826, 828, 829, 831, 832,
833, 834, 838, 840, 841, 843, 845, 854,
860, 897, 901, 906, 913, 917, 1022,
1026, 1046

Clipboard, 720, 726
Loaded Modules (DLLs), 822
Process Id, 822, 837
System Directory, 824
Windows Directory, 824

with Statement, 155

X

xBASE Files, 743
XML, 940

Dealing with SOAP Messages, 182
expat Binding, 769
Reading XML Streams, 211, 769, 770,

922, 930
Writing XML Streams, 211, 924, 933

agena >> 1091

