
Crash Course

by Alexander Walz

What is Agena ?

� Agena is an interpreted procedural programming language.

� It can be used in scientific, scripting, and many other applications.

� Its syntax looks like very simplified Algol 68 with elements taken from

Maple, Lua and SQL, and some other languages.

� Binaries are available for Solaris, Mac OS X, Windows, OS/2 – ArcaOS,

Linux, Raspberry Pi, and DOS.

� Agena is Open Source, thus it is free.

� The implementation is based on the ANSI C sources of Lua 5.1.

� Sources and binaries are available at:

http://agena.sourceforge.net

2

Contents, 1

� Installing Agena

� Running Agena

� AgenaEdit

� First Steps

� Names & Assignment

� Data Types

� Integral & Rational Numbers

� Complex Numbers

� Arithmetic

� Strings

3

Contents, 2

� Data Types, cont.

� Boolean Expressions & Relations

� Tables

� Arrays

� Dictionaries

� Sets

� Sequences & Registers

� Pairs

� Control Statements

� if Statements & if Operator

� case Statements

� onsuccess Clause

4

Contents, 3

� Loops

� for Loops

� while Loops

� do .. as, do .. until, and do .. od Loops

� Combined for/while Loops

� for/as and for/until Loops

� Loop Control

� Procedures

� Procedures

� Local Variables

� Variable Number of Arguments

� Options

5

Contents, 4

� Procedures, cont.

� Error Handling & Error Traps

� Type Checking

� Predefined Results

� Efficient Recursion

� State Tables

� Functions as Binary Operators

� Short-cut Procedures

� Object-Oriented Programming

� with and Related Statements

� Syntactic Sugar

6

Contents, 5

� Did you know ?

� Miscellaneous

� Precedence

� Mathematical Constants

7

Getting Started

Installing Agena

� In Solaris, OS/2 – ArcaOS, Linux, Windows, and Mac OS X, the
respective installer automatically installs and sets up Agena.

You do not have to add further settings yourself after installing the

binaries.

� Information on how to install the DOS and Windows portable version is

included in the manual or the respective read.me files.

9

Running Agena

� In Windows and OS/2 - ArcaOS, simply click the icon in the

programme group to start the interpreter.

� In Solaris, Linux, Mac and DOS, type agena in a shell.

� Statements can be entered right after the '> ' prompt.

10

AgenaEdit, 1

� AgenaEdit is an editor providing syntax-highlighting and a runtime
environment for Windows, Solaris and Linux. It can be started by
entering agenaedit in a shell.

11

AgenaEdit, 2

� Type your programme in the editor window and press F5 to run it.

� Mark consecutive lines in your programme with a mouse or the keyboard

and press F6 to execute only these lines.

� During computation, press the `break` button to interrupt the current

computation.

� Press the `restart` button to clear all variables.

� Save or open your programmes using the `File` menu in the editor

window.

� Just browse through the menu items for the other features.

12

First Steps, 1

� Any valid Agena code can be entered at the console with or without a
trailing colon or semicolon:

� If an expression or statement is finished with a colon, it will be
evaluated and its value printed at the console. (This is not supported

in AgenaEdit, use the print function instead.)

� If the expression ends with a semicolon or neither with a colon nor a

semicolon, it will be evaluated, but nothing is printed.

� You may optionally insert one or more white spaces between operands

in your statements.

� Assume you would like to add the numbers 1 and 2 and show the result.

Just type:

13

> 1 + 2:

3

First Steps, 2

� If you want to store a value to a variable, type:

� Now the value 25 is stored to the name c, and you can refer to this

number through the name c in subsequent calculations.

� Suppose that c is 25°Celsius. If you want to convert it to Fahrenheit,

enter:

� The cls statement clears the screen, restart clears all values, and bye

quits the interpreter.

14

> c := 25;

> 1.8*c + 32:

77

Names & Assignment

� A name always begins with an upper-case or lower-case letter or an
underscore, followed by one or more upper-case or lower-case letters,

underscores or numbers in any order.

� Use the assignment operator := to store a value to a name.

� Delete a value by assigning it to null or use clear:

15

> a := 1;

> var1 := 'hello world';

> a := null;

> clear var1;

Assignment, 2

� Compound assignment is supported in three fashions:

16

> a := 1;

> inc a;

> a:

2

> a := 1;

> a +:= 1;

> a:

2

mod

div

mul

dec

inc

StatementFunction Compound

Addition +:=

Subtraction -:=

Multiplication *:=

Division /:=

Modulo %:=

> a := 1;

> inc a, 2;

> a:

3

> a := 1;

> a +:= 2;

> a:

3

> c := 1;

> a := c++;

> a, c:

1 2

> a := c--;

> a, c:

2 1

> c := 1;

> a := ++c;

> a, c:

2 2

> a := --c;

> a, c:

1 1

Data Types

Integral & Rational Numbers

� Numbers can be represented like in the following examples.

� Integers:

� More than one value can also be printed at one line:

� Rational numbers:

� Scientific notation:

18

> -1:

-1

> 0, 1, 1.0, 1, 1.0:

0 1 1 1 1

> 3.141592654, -1.0:

3.141592654 -1

> 10e-3, -1e3, 2.3e3:

0.01 -1000 2300

Complex Numbers

� There are two notations to represent complex numbers.

� The ! operator:

� The I operand:

� Real part:

� Imaginary part:

19

> 1!2, -1.1!-2, 3!0:

1+2*I -1.1-2*I 3

> 1+2*I, -1.1-2*I, 3+0*I:

1+2*I -1.1-2*I 3

> real(1+2*I):

1

> imag(1+2*I):

2

Arithmetic, 1

� Agena allows to mix rational and complex numbers in calculations.

� Addition, subtraction, multiplication, division, and integer division:

� Examples:

20

rational complex/mixed

2 + 3 2+3*I + 1!2

2 – 3 2 - 3+1*I

2 * 3 2!2 * 3-I

2 / 3 2!0 / 3!1

2 \ 3 2!0 \ 3!1

> 2+3, 2!0/3!1, 2 + 3!1:

5 0.6-0.2*I 5+I

Arithmetic, 2

� Modulus (for rational numbers only):

� Exponentiation with rational or integer power:

� Exponentiation with integer power only (faster):

21

> 2 % 3:

2

> 2 ^ 3.1, 2 ^ 3:

8.5741877002903 8

> 2 ** 3:

8

Strings, 1

� Strings can be enclosed in single or double quotes. There is no

difference in meaning.

� Concatenation of two or more strings:

22

> 'this is a text':

this is a text

> "this is a text":

this is a text

> 'Hello ' & 'world':

Hello world

> a := ’Hello ’;

> a &:= ’World’;

a:

Hello World

Strings, 2

� Substrings:

23

> str := 'abcd';

> str[2]:

b

> str[2 to 3]:

bc

> str[2 to -1]: # from 2nd to last character

bcd

> str[-1]: # last character

d

> str[-2 to -1]: # last two characters

cd

Boolean Expressions & Relations, 1

� Agena supports the logical values true and false, also called `Booleans`.

A third Boolean constant named fail indicates an error.

� Any condition, e.g. a < b, results to one of these logical values.

� Relational operators are:

24

Relation Operator

less than <

greater than >

less or equal <=

greater or equal >=

equality =

inequality <>

Boolean Expressions & Relations, 2

� Logical operators are:

25

Relation Operator

Boolean and and

Boolean or or

Boolean complement not

> 1 < 2:

true

> 1 < 2 and 1 = 0:

false

> true xor false:

true

norBoolean nor

Relation Operator

Boolean nand nand

Boolean exclusive-or xor

Boolean Expressions & Relations, 3

� If you add, subtract, multiply or divide a Boolean - or a relation that
evaluates to a Boolean - with a number, then `true` will represent

number 1 and `false` 0.

� Thus, you can comfortably write statements without having to use `if`

conditions, for example:

26

> return (x > 0)*x;

> return if x > 0 then x else 0 fi;

Tables, 1

� Tables are used to represent more complex data structures. Tables
consist of zero, one or more key-value pairs: the key referencing to the

position of the value in the table, and the value the data itself.

� Tables can contain other tables, as well.

� To get the data with key 1, input:

27

> tbl := [

> 1 ~ ['a', 7.71],

> 2 ~ ['b', 7.70],

> 3 ~ ['c', 7.59]

>];

> tbl[1]:

[a, 7.71]

> tbl := [

> ['a', 7.71],

> ['b', 7.70],

> ['c', 7.59]

>];

short formlong form

Tables, 2

� To get the second entry in the subtable, enter:

� There are two forms to create empty tables.

� Tables can even be nested:

� The size operator returns the size of a table or any other structure.

28

> tbl[1, 2]:

7.71

> tbl := [];

> create table tbl;

> [1, [2, [3]]]:

[1, [2, [3]]]

Tables, 3

� To select a sequence of elements in a table, use the to notation:

� When trying to index a null value with square brackets, Agena returns an

error. When using curly brackets, however, Agena just returns null.

29

> tbl[1 to 2]:

[[a, 7.71], [b, 7.7]]

> tbl := null;

> tbl[1]:

Error in stdin at line 1:

attempt to index global `tbl` (a null value) with a number value

Stack traceback:

stdin, at line 1 in main chunk

> tbl{1}, tbl{1 to 2}:

null null

Arrays

� Tables with positive integral keys are called arrays.

� Values can be inserted into arrays in two ways:

� Values can be deleted like this:

30

> tbl := [10, 11, 12];

> tbl[4] := 'a'; tbl[5] := 'b';

> insert 'a', 'b' into tbl;

> tbl[1] := null;

> delete 'a', 'b' from tbl;

Dictionaries

� Another form of a table is the dictionary which indices can be any kind of
data - not only positive integers. Key-value pairs are entered with quoted

keys and tildes, or with unquoted names and =.

� As with arrays, indexed names are used to access the corresponding
values stored to dictionaries.

� If a table key is a string, you can also use the notation:

31

> dic := ['donald' ~ 'duck', mickey = 'mouse'];

> dic['donald']:

duck

> dic.donald:

duck

Sets, 1

� Sets are collections of unique items: numbers, strings, and any other

data except null. Any item is stored only once.

� If you want to check whether 'donald' is part of the set s, just index it as

follows:

32

> s := {'donald', 'mickey', 'donald'}:

{donald, mickey}

> s['donald']:

true

> s['daisy']:

false

Sets, 2

� If you want to add or delete items to or from a set, use the insert and

delete statements.

� The in operator also checks whether an item is part of a set.

� Sets consume around 40 % less memory than tables.

33

> insert 'daisy' into s;

> delete 'daisy' from s;

> 'donald' in s:

true

> 'daisy' in s:

false

Sequences, 1

� Sequences can hold any number of items except null.

� You can access the items the usual way:

� Values can be added as with tables.

34

> s := seq(1, 1, 'donald', true):

seq(1, 1, donald, true)

> s[2]:

donald

> s[4] := {1, 2, 2};

> insert [1, 2, 2] into s;

Sequences, 2

� Items can be deleted by setting their index position to null, or by applying
delete.

� The in operator checks whether a sequence contains a given item.

� Sequences are twice as fast when adding values than tables.

35

> s[4] := null;

> delete [1, 2, 2] from s;

> 'donald' in s:

donald

Registers, 1

� Registers are fixed-size arrays that also can store nulls.

� You can access the items the usual way:

� If a value is deleted, the size of the register will not change:

36

> r := reg(null, 1, 'donald', true):

reg(null, 1, donald, true)

> r[3]:

donald

> r[2] := null;

> r:

reg(null, null, donald, true)

Registers, 2

� Registers have a pointer to the top of a register that can be changed so
that data above the value of the top pointer can be hidden:

� Registers can be created with a predefined number of elements:

� The size of a register can be changed with the registers.reduce and

registers.extend functions.

37

> registers.settop(r, 3); print(r, registers.gettop(r));

reg(null, null, donald) 3

> create register r(8);

> r:

reg(null, null, null, null, null, null, null, null)

Pairs

� Pairs hold exactly two values of any type (including null and other pairs).

� The left and right operators provide read access to its left and right

operands; the standard indexing method using integers is supported, as

well:

� The left and right operand of a pair can be changed as follows:

38

> p := 10:11;

> left(p), right(p), p[1], p[2]:

10 11 10 11

> p[1] := -10;

Control Statements

if Statement, 1

� Conditions can be checked with the if statement. The elif and else

clauses are optional. The closing fi is obligatory.

� A short form is also available if only one statement shall be executed

and no else clause is needed:

40

> if 1 < 2 then

> print('valid')

> elif 1 = 2 then

> print('invalid')

> else

> print('invalid, too')

> fi;

valid

> 1 < 2 ? print('valid')

valid

if Statement, 2

� If statements also support simple assignments in the conditions, even in
elif clauses. If the right-hand side evaluates to neither false, fail nor null,

then the corresponding then part will be executed.

� Compare:

41

> flag := io.read();

> if flag then

> print(flag)

> fi;

> if flag := io.read() then

> print(flag)

> fi;

if Operator, 1

� The if operator checks a condition and returns the result:

� An optional preceding with clause allows to define one or more auxiliary

variables that are local to this operator only:

� You can also add one or more elif clauses.

42

> result := if 1 < 2 then 'valid' else 'invalid' fi;

> result:

valid

> x := Pi;

> a := with n := 2*x -> if x < 0 then n else 2*n fi;

> b := with m, n := x, 2*x -> if x < 0 then m else n fi;

if Operator, 2

� The extended version of the if operator is similar to the if statement. Note
the sequence `if is` and the obligatory return expressions in the bodies;

elif’s and else’s are optional, as are the statements in the bodies.

43

> a := 10;

> sgn := if is a < 0 then # determines sign of `a'

> print('I am negative');

> [further statements ...]

> return -1

> elif a = 0 then

> print('I am zero'); # just one statement

> return 0

> else # no statement

> return 1

> fi;

> sgn:

1

case Statements, 1

� The case statement facilitates comparing values and executing
corresponding statements.

44

> c := 10;

> case c

> of -1 then # one value to be compared

> print('negative')

> of 0, 1 then # multiple values to be compared

> print('non-negative')

> of 2 to infinity # a range

> print('non-negative, too')

> else

> print('negative, too')

> esle # this keyword is optional, just a beautifier

> esac;

non-negative, too

case Statements, 2

� A variant works like the if statement and may improve readability of
code.

45

> x := 10;

> case

> of x < 0 then return -1

> of x = 0 then return 0

> else return 1

> esac

1

onsuccess Clause

� Both if and case statements support an optional onsuccess clause. If at
least one of the conditions evaluated to true, then the statements in the

onsuccess clause are also executed.

46

> c := 'agena'; flag := false;

> case c

> of 'agena' then

> print('Agena !')

> of 'lua' then

> print('Lua !')

> onsuccess

> flag := true

> else

> print('Another programming language !')

> esac;

Agena !

> flag:

true

Alternative end Clause

� You can now use the end token instead of the closing fi, od, esac, yrt

and epocs keywords. Examples:

47

> if 1=1 then print(true) else print(false) end;

> for i to 10 do

> print('Agena !')

> end;

Loops

for Loops, 1

� A for loop iterates over one or more statements.

� A numeric for loop begins with an initial numeric value (from clause), and

proceeds up to and including a given numeric value (to clause). The step

size can also be given (step clause). The od keyword indicates the end

of the loop body.

� The current iteration value is stored to a control variable (i in this

example) which can be used in the loop body.

49

> for i from 1 to 3 by 1 do

> print(i, i^2, i^3)

> od;

1 1 1

2 4 8

3 9 27

for Loops, 2

� The from and step clauses are optional.

� If the from clause is omitted, the loop will start with the initial value 1.

� If the step clause is omitted, the step size will be 1.

50

> for i to 3 do

> print(i, i^2, i^3)

> od;

1 1 1

2 4 8

3 9 27

for Loops, 3

� The value of the control variable can be accessed outside the loop.

� Since after the last iteration, the control variable is internally increased

by the step size a very last time, its contents is:

51

> for i to 3 do

> result := i^2

> od;

> i:

4

for Loops, 4

� A for/in loop iterates over all values in a table, set, and sequence. With
strings, it iterates over each character from the left to the right.

52

> for i in ['Agena', 'programming', 'language'] do

> print(i)

> od

Agena

programming

language

> for i in 'Agena' do print(i) od

A

g

e

n

a

for Loops, 5

� You can also iterate over the keys of a table (or sequence) or both keys
and values:

53

> for keys i in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do

> print(i)

> od;

daisy

donald

> for i, j in ['donald' ~ 'duck', 'daisy' ~ 'duck'] do

> print(i, j)

> od;

daisy duck

donald duck

while Loops, 1

� A while loop first checks a condition and if this condition is true or any
other value except false, fail, or null, it will iterate the loop body again

and again as long as the condition remains true.

� The following statements calculate the largest Fibonacci number less
than 1000.

54

> a := 0; b := 1;

> while b < 1000 do

> c := b; b := a + b; a := c

> od;

> c:

987

while Loops, 2

� A simple assignment can also be done in the while condition. This allows
for shorter code. If the right-hand side evaluates to neither false, fail or

null, then the loop body will be executed.

� Just compare the following two statements.

55

> flag := true;

> while flag do

> flag := io.read();

> if flag = 'Z' then break fi

> od

> while flag := io.read() do

> if flag = 'Z' then break fi

> od

do .. as & do .. until Loops

� Variations of while are the do .. as and do .. until loops which check a

condition at the end of the iteration.

� Thus – contrary to while loops - the loop body will always be executed at

least once.

56

> c := 0; c := 0

> do > do

> inc c > inc c

> as c < 10; > until i = 10;

> c: > c:

10 10

do .. od Loops

� Infinite loops are Support by do .. od loops, a syntactic sugar for `while

true do .. od`.

� See the `Loop Control` sheet on how to exit these loops.

57

> c := 0;

> do

> inc c;

> if c > 9 then break fi

> od;

> c:

10

Combined for/while Loops

� All flavours of for loops can be combined with a while condition. As long

as the while condition is satisfied, i.e. is true, the for loop iterates.

� Likewise, the until condition quits the loop:

58

> for x to 10 while ln(x) <= 1 do

> print(x, ln(x))

> od;

1 0

2 0.69314718055995

> for x to 10 until ln(x) > 1 do

> print(x, ln(x))

> od;

1 0

2 0.69314718055995

for/until and for/as Loops

� for loops can also be combined with a closing until or as condition.

59

> for x to 10 do

> print(x)

> as x < 3;

1

2

3

> for x to 10 do

> print(x)

> until x = 3;

1

2

3

Loop Control, 1

� Agena features three statements to control loop execution. The following
two are applicable to all loop types.

� The skip statement causes another iteration of the loop to begin at
once, thus skipping all of the following loop statements after the skip

keyword for the current iteration.

� The break statement quits the execution of the loop entirely and

proceeds with the next statement right after the end of the loop.

60

> for i to 5 do

> if i = 3 then skip fi;

> print(i);

> if i = 4 then break fi

> od;

1

2

4

Loop Control, 2

� skip and break can also be combined with the when condition:

61

> for i to 5 do

> skip when i = 3;

> print(i);

> break when i = 4

> od;

1

2

4

Loop Control, 3

� The redo statement restarts the current iteration of a for/to or for/in loop
from its beginning, without incrementing the loop control variable or

processing the next item in a structure.

62

> flag := true;

> for i to 3 do

> print(i);

> if flag and i = 2 then

> flag := false;

> redo

> fi

> od;

1

2

2

3

Loop Control, 4

� The relaunch statement, however, restarts a for/to or for/in loop
completely.

63

> flag := true;

> for i to 3 do

> print(i);

> if flag and i = 2 then

> flag := false;

> relaunch

> fi

> od;

1

2

1

2

3

Procedures

Procedures, 1

� Let us write a procedure to compute the factorial of an integer.

� A procedure can call itself to generate the final result.

� The return statement passes the result of a computation.

� The procname keyword is substituted by the name with which the

procedure was invoked.

65

> factorial := proc(n) is # factorial of an integer

> if n < 0 then return fail

> elif n = 0 then return 1

> else return procname(n-1)*n

> fi

> end;

> factorial(4):

24

Procedures, 2

� Alternatively, a function can be defined with the procedure statement.

You can put the local keyword before the procedure keyword to define

local procedures.

66

> procedure factorial (n) is # factorial of an integer

> if n < 0 then return fail

> elif n = 0 then return 1

> else return procname(n-1)*n

> fi

> end;

> factorial(4):

24

Local Variables

� A local variable is known only to the respective procedure and the block

where it has been declared.

� It cannot be used in other procedures, the interactive Agena level, or

outside the block where it has been declared.

67

> factorial := proc(n) is

> local result;

> result := 1;

> for i from 1 to n do result := result * i od;

> return result

> end;

> factorial(10):

3628800

Variable Number of Arguments

� If you want to pass a variable number of arguments, use the ? keyword

in the parameter list.

� The varargs system table contains all variable arguments passed with

the ? facility. Values can be accessed like with any other table.

� The system variable nargs contains the number of arguments passed

(both with the ? facility and without).

68

> f := proc(?) is

> return nargs, varargs, varargs[1]

> end;

> f('Beowulf', 'Grendel'):

2 [Beowulf, Grendel] Beowulf

Options, 1

� A function does not have to be called with exactly the number of

parameters given at procedure definition.

� You may optionally pass less or more values at run-time. If no value is

passed for a parameter, then this parameter will automatically be set to

null at function call.

� If you pass more arguments than there are actual parameters, excess

arguments will be ignored.

69

> f := proc(a, b, c) is

> return a, b, c

> end;

> f(1):

1 null null

Options, 2

� Let us build an extended square root function that either computes in the
real or complex domain. By default, i.e. if only one argument is given, the

real domain will be chosen, otherwise you may explicitly set the domain

using a pair as a second argument.

70

> xsqrt := proc(x, mode) is

> if nargs = 1 or mode = 'domain':'real' then

> return sqrt(x)

> elif mode = 'domain':'complex' then

> return sqrt(x + 0*I)

> else

> return fail

> fi

> end;

> xsqrt(-2):

undefined

> xsqrt(-2, 'domain':'real'):

undefined

Options, 3

� If the left-hand value of the pair in a function call shall denote a string,
you can spare the single quotes put between the string by using the =

token which converts the left-hand name to a string.

71

> xsqrt(-2, domain = 'complex'):

1.4142135623731*I

Error Handling & Error Traps

� The error function issues an error:

� The try/catch statement catches errors:

� Alternatively, the protect function traps errors, as well.

72

> success, s := true, null;

> try

> print(s[1]) # provoke an error by indexing null

> catch in msg then

> success := false

> yrt;

> success:

false

> if 1 = 1 then error('Oops !') fi

Oops !

Stack traceback: in `error`

stdin, at line 1 in `(null)` in `(null)`

Type Checking, 1

� You can check the type of arguments passed in two ways:

� Query the type with the :: or :- (the negation) operators:

� State the expected type in the parameter list:

73

> f := proc(x) is

> if x :- number then error('no number argument') fi;

> return x

> end;

> f('men ne cunnon hwyder helrunan hwyrftum scriþað.'):

wrong type of argument

> procedure f (x :: number) is

> return x

> end;

> f('men ne cunnon hwyder helrunan hwyrftum scriþað.'):

Error in stdin:

invalid type for argument #1: expected number, got string.

Type Checking, 2

� Up to five types may be given when putting them in curly brackets:

� Besides checking the arguments, the return can also be validated:

74

> f := proc(x :: number) :: number is

> return tostring(x)

> end

> f(1)

Error in stdin, at line 2:

`return` value must be of type number, got string.

> f := proc(x :: {number, complex}) is

> return tostring(x)

> end

> f(1!2)

1 2

Type Checking, 3

� Numbers can be examined further with the keywords

� integer (any integral number),

� posint (positive integer),

� nonnegint (nonnegative integer),

� positive (positive floats and integers),

� nonnegative (nonnegative floats and integers).

75

> f := proc(x :: integer) is

> return x

> end

> f(Pi)

Error in stdin:

type integer expected for argument #1, got number.

Type Checking, 4

� Function arguments can be checked further with the pre clause …

� … and the result with the post clause:

76

> f := proc(x :: number) is

> return post x > 0 with x

> end

> f(0)

In stdin at line 2:

Error in post-condition: invalid return.

> f := proc(x :: number) is

> pre x > 0 is

> return x

> end

> f(0):

In stdin at line 2:

Error in pre-condition: posture not satisfied.

Predefined Results

� Predefined results can be set with the rtable.defaults function by entering

them into a remember table.

� Agena will return the given predefined result if it exists and does not

compute it by executing the procedure body, so there is also an increase
in speed.

77

> rtable.defaults(fact, [# defaults for fact(0) .. fact(3)

> -1~undefined, 0~1, 1~1, 2~2, 3~6

>]);

> fact(-1):

undefined

> rtable.defaults(fact):

[[2] ~ [2], [1] ~ [1], [0] ~ [1], [3] ~ [6], [-1] ~ [undefined]]

Efficient Recursion

� Agena will remember procedure results if the rtable.remember function is
invoked. An optional table of predefined results can also be given. This

speeds up recursive procedures significantly.

� For the differences between defaults and remember, check the manual

(Chapter 14.4). Chapter 6.18.1 describes the feature reminisce shortcut.

78

> fib := proc(n) is

> assume(n >= 0);

> return fib(n-2) + fib(n-1)

> end;

> rtable.remember(fib, [0~1, 1~1]);

> fib(50):

20365011074

State Tables

� A table can be assigned to a function with the store feature. This internal
table will remain active during a whole session and you can read or write

values to it in subsequent calls to the function.

79

> f := proc() is

> feature store

> store[1] := Pi

> store.entry := E

> return store, store[1], store.entry

> end;

> f():

[1 ~ 3.1415926535898, entry ~ 2.718281828459] 3.1415926535898

2.718281828459

Functions as Binary Operators

� An ordinary function of two arguments can be called just like a binary

operator.

� When using a function this way, it has always the highest precedence.

80

> plus := proc(x, y) is return x + y end;

> 1 plus 2:

3

Short-cut Procedures, 1

� If your procedure consists of exactly one expression, then you may use
an abridged syntax if the procedure does not include statements such as

if, for, insert, etc.

� Let us define a simple factorial function with one argument.

� A function with two arguments:

81

> factorial := << (x) -> exp(lngamma(x+1)) >>;

> factorial(4):

24

> sum := << (x, y) -> x + y >>;

> sum(1, 2):

3

Short-cut Procedures, 2

� The `with` clause allows to define local variables.

� Alternatively, you can define a function with the def or define statement:

82

> fact := << (x :: number)

> with n := 1

> -> exp(lngamma(x + n)) >>;

> fact := << (x :: number)

> with m, n := 0, 1

> -> exp(lngamma(x + n)) + m >>;

> define sum (x, y) -> x + y >>;

> sum(1, 2):

3

Object-Oriented Programming, 1

� Methods for tables can be implemented OOP-style using the @@
syntax:

83

> account := ['balance' ~ 0];

> proc account@@deposit(x) is

> inc self.balance, x;

> end;

> account@@deposit(100)

> account.balance:

100

> proc account@@withdraw(x) is

> dec self.balance, x

> end;

Object-Oriented Programming, 2

� A constructor that created new accounts:

84

> proc account@@new(o) is

> setmetatable(o, self);

> self.__index := self;

> return o

> end;

> a := account@@new(['balance' ~ 0]);

> a.balance:

0

Object-Oriented Programming, 3

� Inheritance: here we define a new account class based on the one
defined above that does not allow overdrafts.

� For more information, please check Chapter 6.24 of the Primer and
Reference.

85

> creditaccount := account@@new();

> proc creditaccount@@withdraw(x) is

> if x > self.balance then error('Error, not enough credit.') fi;

> dec self.balance, x;

> return self.balance

> end;

> b := creditaccount@@new();

> b@@withdraw(1000):

Error, not enough credit.

with and Related Statements, 1

• The with statement unpack table values, indexed by string keys, declare
them local and then access them in the respective block. After leaving

the block, all the values listed right between the with and in tokens are

automatically written back to the table.

86

> zips := [duedo = 40210, bonn = 53111, cologne = 50667];

> with duedo, cologne in zips do

> duedo := 40237; # change duedo entry

> cologne := null # cologne will be deleted ☺

> od;

> zips:

[duedo = 40237, bonn = 53111]

> duedo, bonn in zips; # equals duedo, bonn := zips.duedo, zips.bonn

> duedo, bonn:

40237 53111

with and Related Statements, 2

� A flavour of the with statement allows to reference an entry by just an

underscore. It also allows to actively change values in the table.

87

> zips := [duedo = 4000, bonn = 5300]

> with zips do

> print(_.bonn);

> _.bonn := 53111

> od

5300

> zips:

[bonn ~ 53111, duedo ~ 4000]

with and Related Statements, 3

� Yet another variant allows to easily define local variables to be used in a

block:

88

> with a, b := 1, 2 do

> c := a + b

> od;

> print(a, b, c):

null null 3

Syntactic Sugar

� Just an overview of some syntactic sugar available:

89

> break when x <> 0;

> if x <> 0 then break fi;

> skip when x <> 0;

> if x <> 0 then skip fi;

> return when x <> 0;

> if x <> 0 then return fi;

> return when x <> 0 with y;

> if x <> 0 then return y fi;

Did you know ?

Did you know, 1 ?

� If you do not like the default prompt, just enter something like:
_PROMPT := '% '

� You can load your own programmes into an Agena session by using the
run function (e.g. run 'progname.agn') or starting Agena from the
shell with agena –i progname.agn.

� If you want your self-written procedures, constants, etc. to be available

every time you invoke the interpreter, just put them into an agena.ini file

residing in your home directory.

� Data you compute in a session can be stored to a file using the save

function, to be read into subsequent session later by read.

� You can send and receive data on the TCP level across the Internet and

LANs with the net package.

91

Did you know, 2 ?

� Data stored in CSV and XML files can be imported with the utils.readcsv

and utils.readxml functions. See xml package, too.

� The way Agena outputs tables, sets, sequences, complex numbers, and

pairs can be changed by modifying the environ.aux.print* procedures in
the library.agn file located in the lib directory of your Agena installation.

92

Miscellaneous

Precedence

� Operator precedence follows the table below, from lowest to highest.

94

Prec Operators

10 or xor nor xnor

9 and nand

8 < > <= >= = == <> ~= ~<> :: :- |

7 in notin subset xsubset union minus intersect atendof |-

6 & : @ $ $$

5 + - || ^^ split inc dec

4 * / % \ <<< >>> <<<< >>>> && *% /% +% -% %% symmod mul

div intdiv mod

3 not - +++ ---

2 ^ **

1 ! ~~ and all other unary operators

Packages, 1

� Agena features various packages.

95

Functions to process hours, minutes, and secondsclock

Bi-directional mapsbimaps

GNU iconv port, to transform strings between codepagesaconv

Bits and bytes twiddlingbytes

Package Function

ads Database specialised on storing and retrieving strings

bags Multisets, Cantor sets that count occurrences

astro Astronomical time and date functions

binio Functions for processing binary files

calc Undergraduate Calculus package

com RS-232 communication via COM ports

Packages, 2

96

Combinatorial functionscombinat

Skewed & binary heaps plus AVL treesheaps

CORDIC numeric functionscordic

Fractionsdiv

Dual numbersdual

Access to the Agena environmentenviron

Numeric approximationsfastmath

Package Function

fractals Various fractals & plotting routines, some FRACTINT support

gdi Graphics

gzip Read and Write UNIX gzip compressed files

hashes String hashes

Packages, 3

97

80-Bit Floating-Point Arithmeticlong

Lookup tableslookup

Input/output functions for console and filesio

JSON encoding & decodingjson

Undergraduate Linear Algebralinalg

Linked listsllist

String memory filesmemfile

GNU Multiple Precision Arithmetic Library (GMP)mp

Additional mathematical functionsmath

Mathematical arbitrary precision librarymapm

GNU Multiple Precision Floating-Point Reliable Library (MPFR)mpf

Package Function

Packages, 4

98

IPv4-based exchange of data over the Internet or LANs net

Red-black binary treesrbtree

Numeric C arraysnumarray

Functions to operate with the underlying operating systemos

Regular expression matching (PCRE2)regex

Functions for stack operationsstack

Functions for register administrationregisters

Functions to access the registryregistry

Administration of remember tablesrtable

Unique integer IDssema

Utilities and easy-to-use wrappers to some functionsskycrane

Package Function

Packages, 5

99

Statistical functionsstats

Various string handling functionsstrings

Functions specialised on table processingtables

Functions to list, read, and extract UNIX tar archivestar

Utility functions, e.g. CSV import and exportutils

XML encoding & decoding (LuaExpat port)xml

xBase file support (i.e. dBASE (tm) III+)xbase

Sinclair ZX Spectrum numeric functionszx

Package Function

Mathematical Constants

� Agena features the following numeric constants, some of them are:

� See also Chapter A3 of the Primer and Reference.

100

Constant Meaning

Eps Equals 1.4901161193847656e-08

degrees 180/Pi to convert radians to degrees

Exp Constant e = exp(1) = 2.71828182845904523536

I Imaginary unit

infinity Infinity

undefined An expression stating that it is undefined, e.g. a singularity

Pi Equals 3.14159265358979323846

radians Factor Pi/180 to convert degrees to radians

Any Questions ?

� For further information, please consult

� the Primer and Reference,

a manual explaining Agena on 1050+

pages

� the Quick Reference,

an overview of all the functions available

� Both are available at

http://sourceforge.net/projects/agena/Manuals/

101

(Take the last slash in its URL.)

