The AdPreqFr4SL learning framework for Bayesian Network Classifiers is designed to handle the cost / performance trade-off and cope with concept drift. Our strategy for incorporating new data is based on bias management and gradual adaptation. Starting with the simple Naive Bayes, we scale up the complexity by gradually updating attributes and structure. Since updating the structure is a costly task, we use new data to primarily adapt the parameters and only if this is really necessary, do we adapt the structure. The method for handling concept drift is based on the Shewhart P-Chart.
Project homepage: http://adpreqfr4sl.sourceforge.net
License
GNU General Public License version 3.0 (GPLv3)Follow AdPreqFr4SL
Other Useful Business Software
Streamline Hiring with Skill Assessments
Canditech offers innovative, cheat-proof skill assessments and job simulations to transform your hiring process. From technical skills to soft skills, we help you assess candidates on actual job performance. With over 500 customizable tests and powerful video interview features, you can evaluate real-world capabilities, streamline your hiring, and reduce biases. Whether you’re hiring for remote roles, mass hiring, or looking to expand your diversity pool, Canditech’s data-driven platform ensures the right candidates are chosen for the job every time.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of AdPreqFr4SL!