Menu

Tree [ddde10] master /
 History

HTTPS access


File Date Author Commit
 docs 2019-03-19 j-berg j-berg [ae39a9] Initial beta release
 images 2019-03-25 j-berg j-berg [ddde10] Adding Docker files
 tests 2019-03-19 j-berg j-berg [ae39a9] Initial beta release
 xpresspipe 2019-03-22 j-berg j-berg [f59c71] Minor updates
 .gitattributes 2019-03-07 j-berg j-berg [717013] Finished debugged bed_bw issue, revised git tra...
 .gitignore 2019-03-07 j-berg j-berg [47ba63] Continuing tests and moding of align and ref bu...
 .travis.yml 2019-03-19 j-berg j-berg [8951b5] Tuning setup.py for travis
 LICENSE 2019-02-15 Jordan Berg Jordan Berg [904409] Initial commit
 README.md 2019-03-20 j-berg j-berg [4f2f11] Updated get_peaks() to accept variable number o...
 build.sh 2019-02-24 j-berg j-berg [eb1590] Fixed to allow run
 conda_upload.sh 2019-03-05 j-berg j-berg [db4e49] Prep documentation
 meta.yaml 2019-03-19 j-berg j-berg [ae39a9] Initial beta release
 requirements.yml 2019-03-20 j-berg j-berg [3ef995] Updates to makeFlat -- now grabs from UCSC sinc...
 setup.py 2019-03-25 j-berg j-berg [ddde10] Adding Docker files

Read Me

XPRESSpipe

A toolkit for navigating and analyzing gene expression datasets

Build Status
codecov.io
Documentation Status
PyPi Status

Find documentation here

Development Notes:

  • XPRESSpipe is still in beta production
  • All metagene modules are currently broken due to Picard CollectRnaSeqMetrics memory handling issues with refFlat files

Citation:

Berg, JA (2019). XPRESSyourself suite: Gene expression processing and analysis made easy. https://github.com/XPRESSyourself.

Installation:

Installation options not currently available

pip install xpresspipe
conda install -c bioconda xpresspipe

Other Requirements:

If using this package to perform batch effect normalization or differential expression analysis, you must install R

QuickStart:

$ xpresspipe riboprof -i /path/to/raw/data/ -o /path/to/output/ -r /path/to/reference/ ...

Important Notes:

In order for many of the XPRESSpipe functions to perform properly and for the output to be reliable after alignment (except for generation of a raw counts table), recommended file naming conventions must be followed.

  1. Download your raw sequence data and place in a folder -- this folder should contain all the sequence data and nothing else.
  2. Make sure files follow a pattern naming scheme. For example, if you had 3 genetic backgrounds of ribosome profiling data, the naming scheme would go as follows:
ExperimentName_BackgroundA_FP.fastq(.qz)
ExperimentName_BackgroundA_RNA.fastq(.qz)
ExperimentName_BackgroundB_FP.fastq(.qz)
ExperimentName_BackgroundB_RNA.fastq(.qz)
ExperimentName_BackgroundC_FP.fastq(.qz)
ExperimentName_BackgroundC_RNA.fastq(.qz)
  1. If the sample names are replicates, their sample number needs to be indicated.
  2. If you want the final count table to be in a particular order and the samples ordered that way are not alphabetically, append a letter in front of the sample name to force this ordering.
ExperimentName_a_WT.fastq(.qz)
ExperimentName_a_WT.fastq(.qz)
ExperimentName_b_exType.fastq(.qz)
ExperimentName_b_exType.fastq(.qz)
  1. If you have replicates:
ExperimentName_a_WT_1.fastq(.qz)
ExperimentName_a_WT_1.fastq(.qz)
ExperimentName_a_WT_2.fastq(.qz)
ExperimentName_a_WT_2.fastq(.qz)
ExperimentName_b_exType_1.fastq(.qz)
ExperimentName_b_exType_1.fastq(.qz)
ExperimentName_b_exType_2.fastq(.qz)
ExperimentName_b_exType_2.fastq(.qz)
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.