Update of /cvsroot/wpdev/wolfpack/sqlite
In directory sc8-pr-cvs1:/tmp/cvs-serv5518
Modified Files:
attach.c auth.c btree.c btree.h btree_rb.c build.c config.h
copy.c delete.c expr.c func.c hash.c hash.h insert.c main.c
opcodes.c opcodes.h os.c pager.c pager.h parse.c parse.h
pragma.c random.c select.c sqlite.h sqliteInt.h table.c
tokenize.c trigger.c update.c util.c vacuum.c vdbe.c vdbe.h
where.c
Added Files:
date.c vdbeInt.h vdbeaux.c
Log Message:
Updated to current SQLite.
--- NEW FILE: date.c ---
/*
** 2003 October 31
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement date and time
** functions for SQLite.
**
** There is only one exported symbol in this file - the function
** sqliteRegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: date.c,v 1.1 2003/12/18 13:20:23 thiagocorrea Exp $
**
** NOTES:
**
** SQLite processes all times and dates as Julian Day numbers. The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system.
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implemention requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar. Historians usually
** use the Julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale. Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
** Jean Meeus
** Astronomical Algorithms, 2nd Edition, 1998
** ISBM 0-943396-61-1
** Willmann-Bell, Inc
** Richmond, Virginia (USA)
*/
#ifndef SQLITE_OMIT_DATETIME_FUNCS
#include <ctype.h>
#include <stdlib.h>
#include <assert.h>
#include "sqliteInt.h"
#include "os.h"
/*
** A structure for holding a single date and time.
*/
typedef struct DateTime DateTime;
struct DateTime {
double rJD; /* The julian day number */
int Y, M, D; /* Year, month, and day */
int h, m; /* Hour and minutes */
int tz; /* Timezone offset in minutes */
double s; /* Seconds */
char validYMD; /* True if Y,M,D are valid */
char validHMS; /* True if h,m,s are valid */
char validJD; /* True if rJD is valid */
char validTZ; /* True if tz is valid */
};
/*
** Convert N digits from zDate into an integer. Return
** -1 if zDate does not begin with N digits.
*/
static int getDigits(const char *zDate, int N){
int val = 0;
while( N-- ){
if( !isdigit(*zDate) ) return -1;
val = val*10 + *zDate - '0';
zDate++;
}
return val;
}
/*
** Read text from z[] and convert into a floating point number. Return
** the number of digits converted.
*/
static int getValue(const char *z, double *pR){
double r = 0.0;
double rDivide = 1.0;
int isNeg = 0;
int nChar = 0;
if( *z=='+' ){
z++;
nChar++;
}else if( *z=='-' ){
z++;
isNeg = 1;
nChar++;
}
if( !isdigit(*z) ) return 0;
while( isdigit(*z) ){
r = r*10.0 + *z - '0';
nChar++;
z++;
}
if( *z=='.' && isdigit(z[1]) ){
z++;
nChar++;
while( isdigit(*z) ){
r = r*10.0 + *z - '0';
rDivide *= 10.0;
nChar++;
z++;
}
r /= rDivide;
}
if( *z!=0 && !isspace(*z) ) return 0;
*pR = isNeg ? -r : r;
return nChar;
}
/*
** Parse a timezone extension on the end of a date-time.
** The extension is of the form:
**
** (+/-)HH:MM
**
** If the parse is successful, write the number of minutes
** of change in *pnMin and return 0. If a parser error occurs,
** return 0.
**
** A missing specifier is not considered an error.
*/
static int parseTimezone(const char *zDate, DateTime *p){
int sgn = 0;
int nHr, nMn;
while( isspace(*zDate) ){ zDate++; }
p->tz = 0;
if( *zDate=='-' ){
sgn = -1;
}else if( *zDate=='+' ){
sgn = +1;
}else{
return *zDate!=0;
}
zDate++;
nHr = getDigits(zDate, 2);
if( nHr<0 || nHr>14 ) return 1;
zDate += 2;
if( zDate[0]!=':' ) return 1;
zDate++;
nMn = getDigits(zDate, 2);
if( nMn<0 || nMn>59 ) return 1;
zDate += 2;
p->tz = sgn*(nMn + nHr*60);
while( isspace(*zDate) ){ zDate++; }
return *zDate!=0;
}
/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits. The
** fractional seconds FFFF can be one or more digits.
**
** Return 1 if there is a parsing error and 0 on success.
*/
static int parseHhMmSs(const char *zDate, DateTime *p){
int h, m, s;
double ms = 0.0;
h = getDigits(zDate, 2);
if( h<0 || zDate[2]!=':' ) return 1;
zDate += 3;
m = getDigits(zDate, 2);
if( m<0 || m>59 ) return 1;
zDate += 2;
if( *zDate==':' ){
s = getDigits(&zDate[1], 2);
if( s<0 || s>59 ) return 1;
zDate += 3;
if( *zDate=='.' && isdigit(zDate[1]) ){
double rScale = 1.0;
zDate++;
while( isdigit(*zDate) ){
ms = ms*10.0 + *zDate - '0';
rScale *= 10.0;
zDate++;
}
ms /= rScale;
}
}else{
s = 0;
}
p->validJD = 0;
p->validHMS = 1;
p->h = h;
p->m = m;
p->s = s + ms;
if( parseTimezone(zDate, p) ) return 1;
p->validTZ = p->tz!=0;
return 0;
}
/*
** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
** that the YYYY-MM-DD is according to the Gregorian calendar.
**
** Reference: Meeus page 61
*/
static void computeJD(DateTime *p){
int Y, M, D, A, B, X1, X2;
if( p->validJD ) return;
if( p->validYMD ){
Y = p->Y;
M = p->M;
D = p->D;
}else{
Y = 2000;
M = 1;
D = 1;
}
if( M<=2 ){
Y--;
M += 12;
}
A = Y/100;
B = 2 - A + (A/4);
X1 = 365.25*(Y+4716);
X2 = 30.6001*(M+1);
p->rJD = X1 + X2 + D + B - 1524.5;
p->validJD = 1;
p->validYMD = 0;
if( p->validHMS ){
p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
if( p->validTZ ){
p->rJD += p->tz*60/86400.0;
p->validHMS = 0;
p->validTZ = 0;
}
}
}
/*
** Parse dates of the form
**
** YYYY-MM-DD HH:MM:SS.FFF
** YYYY-MM-DD HH:MM:SS
** YYYY-MM-DD HH:MM
** YYYY-MM-DD
**
** Write the result into the DateTime structure and return 0
** on success and 1 if the input string is not a well-formed
** date.
*/
static int parseYyyyMmDd(const char *zDate, DateTime *p){
int Y, M, D;
Y = getDigits(zDate, 4);
if( Y<0 || zDate[4]!='-' ) return 1;
zDate += 5;
M = getDigits(zDate, 2);
if( M<=0 || M>12 || zDate[2]!='-' ) return 1;
zDate += 3;
D = getDigits(zDate, 2);
if( D<=0 || D>31 ) return 1;
zDate += 2;
while( isspace(*zDate) ){ zDate++; }
if( isdigit(*zDate) ){
if( parseHhMmSs(zDate, p) ) return 1;
}else if( *zDate==0 ){
p->validHMS = 0;
}else{
return 1;
}
p->validJD = 0;
p->validYMD = 1;
p->Y = Y;
p->M = M;
p->D = D;
if( p->validTZ ){
computeJD(p);
}
return 0;
}
/*
** Attempt to parse the given string into a Julian Day Number. Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
** DDDD.DD
** now
**
** In the first form, the +/-HH:MM is always optional. The fractional
** seconds extension (the ".FFF") is optional. The seconds portion
** (":SS.FFF") is option. The year and date can be omitted as long
** as there is a time string. The time string can be omitted as long
** as there is a year and date.
*/
static int parseDateOrTime(const char *zDate, DateTime *p){
int i;
memset(p, 0, sizeof(*p));
for(i=0; isdigit(zDate[i]); i++){}
if( i==4 && zDate[i]=='-' ){
return parseYyyyMmDd(zDate, p);
}else if( i==2 && zDate[i]==':' ){
return parseHhMmSs(zDate, p);
return 0;
}else if( i==0 && sqliteStrICmp(zDate,"now")==0 ){
double r;
if( sqliteOsCurrentTime(&r)==0 ){
p->rJD = r;
p->validJD = 1;
return 0;
}
return 1;
}else if( sqliteIsNumber(zDate) ){
p->rJD = atof(zDate);
p->validJD = 1;
return 0;
}
return 1;
}
/*
** Compute the Year, Month, and Day from the julian day number.
*/
static void computeYMD(DateTime *p){
int Z, A, B, C, D, E, X1;
if( p->validYMD ) return;
Z = p->rJD + 0.5;
A = (Z - 1867216.25)/36524.25;
A = Z + 1 + A - (A/4);
B = A + 1524;
C = (B - 122.1)/365.25;
D = 365.25*C;
E = (B-D)/30.6001;
X1 = 30.6001*E;
p->D = B - D - X1;
p->M = E<14 ? E-1 : E-13;
p->Y = p->M>2 ? C - 4716 : C - 4715;
p->validYMD = 1;
}
/*
** Compute the Hour, Minute, and Seconds from the julian day number.
*/
static void computeHMS(DateTime *p){
int Z, s;
if( p->validHMS ) return;
Z = p->rJD + 0.5;
s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
p->s = 0.001*s;
s = p->s;
p->s -= s;
p->h = s/3600;
s -= p->h*3600;
p->m = s/60;
p->s += s - p->m*60;
p->validHMS = 1;
}
/*
** Process a modifier to a date-time stamp. The modifiers are
** as follows:
**
** NNN days
** NNN hours
** NNN minutes
** NNN.NNNN seconds
** NNN months
** NNN years
** start of month
** start of year
** start of week
** start of day
** weekday N
** unixepoch
**
** Return 0 on success and 1 if there is any kind of error.
*/
static int parseModifier(const char *zMod, DateTime *p){
int rc = 1;
int n;
double r;
char z[30];
for(n=0; n<sizeof(z)-1; n++){
z[n] = tolower(zMod[n]);
}
z[n] = 0;
switch( z[0] ){
case 'u': {
/*
** unixepoch
**
** Treat the current value of p->rJD as the number of
** seconds since 1970. Convert to a real julian day number.
*/
if( strcmp(z, "unixepoch")==0 && p->validJD ){
p->rJD = p->rJD/86400.0 + 2440587.5;
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
rc = 0;
}
break;
}
case 'w': {
/*
** weekday N
**
** Move the date to the beginning of the next occurrance of
** weekday N where 0==Sunday, 1==Monday, and so forth. If the
** date is already on the appropriate weekday, this is equivalent
** to "start of day".
*/
if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
&& (n=r)==r && n>=0 && r<7 ){
int Z;
computeYMD(p);
p->validHMS = 0;
p->validTZ = 0;
p->validJD = 0;
computeJD(p);
Z = p->rJD + 1.5;
Z %= 7;
if( Z>n ) Z -= 7;
p->rJD += n - Z;
p->validYMD = 0;
p->validHMS = 0;
rc = 0;
}
break;
}
case 's': {
/*
** start of TTTTT
**
** Move the date backwards to the beginning of the current day,
** or month or year.
*/
if( strncmp(z, "start of ", 9)!=0 ) break;
zMod = &z[9];
computeYMD(p);
p->validHMS = 1;
p->h = p->m = 0;
p->s = 0.0;
p->validTZ = 0;
p->validJD = 0;
if( strcmp(zMod,"month")==0 ){
p->D = 1;
rc = 0;
}else if( strcmp(zMod,"year")==0 ){
computeYMD(p);
p->M = 1;
p->D = 1;
rc = 0;
}else if( strcmp(zMod,"day")==0 ){
rc = 0;
}
break;
}
case '+':
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
n = getValue(z, &r);
if( n<=0 ) break;
zMod = &z[n];
while( isspace(zMod[0]) ) zMod++;
n = strlen(zMod);
if( n>10 || n<3 ) break;
strcpy(z, zMod);
if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
computeJD(p);
rc = 0;
if( n==3 && strcmp(z,"day")==0 ){
p->rJD += r;
}else if( n==4 && strcmp(z,"hour")==0 ){
computeJD(p);
p->rJD += r/24.0;
}else if( n==6 && strcmp(z,"minute")==0 ){
computeJD(p);
p->rJD += r/(24.0*60.0);
}else if( n==6 && strcmp(z,"second")==0 ){
computeJD(p);
p->rJD += r/(24.0*60.0*60.0);
}else if( n==5 && strcmp(z,"month")==0 ){
int x, y;
computeYMD(p);
p->M += r;
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
p->Y += x;
p->M -= x*12;
p->validJD = 0;
computeJD(p);
y = r;
if( y!=r ){
p->rJD += (r - y)*30.0;
}
}else if( n==4 && strcmp(z,"year")==0 ){
computeYMD(p);
p->Y += r;
p->validJD = 0;
computeJD(p);
}else{
rc = 1;
}
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
break;
}
default: {
break;
}
}
return rc;
}
/*
** Process time function arguments. argv[0] is a date-time stamp.
** argv[1] and following are modifiers. Parse them all and write
** the resulting time into the DateTime structure p. Return 0
** on success and 1 if there are any errors.
*/
static int isDate(int argc, const char **argv, DateTime *p){
int i;
if( argc==0 ) return 1;
if( parseDateOrTime(argv[0], p) ) return 1;
for(i=1; i<argc; i++){
if( parseModifier(argv[i], p) ) return 1;
}
return 0;
}
/*
** The following routines implement the various date and time functions
** of SQLite.
*/
/*
** julianday( TIMESTRING, MOD, MOD, ...)
**
** Return the julian day number of the date specified in the arguments
*/
static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
computeJD(&x);
sqlite_set_result_double(context, x.rJD);
}
}
/*
** datetime( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD HH:MM:SS
*/
static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
char zBuf[100];
computeYMD(&x);
computeHMS(&x);
sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
(int)(x.s));
sqlite_set_result_string(context, zBuf, -1);
}
}
/*
** time( TIMESTRING, MOD, MOD, ...)
**
** Return HH:MM:SS
*/
static void timeFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
char zBuf[100];
computeHMS(&x);
sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
sqlite_set_result_string(context, zBuf, -1);
}
}
/*
** date( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD
*/
static void dateFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
char zBuf[100];
computeYMD(&x);
sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
sqlite_set_result_string(context, zBuf, -1);
}
}
/*
** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
**
** Return a string described by FORMAT. Conversions as follows:
**
** %d day of month
** %f ** fractional seconds SS.SSS
** %H hour 00-24
** %j day of year 000-366
** %J ** Julian day number
** %m month 01-12
** %M minute 00-59
** %s seconds since 1970-01-01
** %S seconds 00-59
** %w day of week 0-6 sunday==0
** %W week of year 00-53
** %Y year 0000-9999
** %% %
*/
static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
int n, i, j;
char *z;
const char *zFmt = argv[0];
char zBuf[100];
if( isDate(argc-1, argv+1, &x) ) return;
for(i=0, n=1; zFmt[i]; i++, n++){
if( zFmt[i]=='%' ){
switch( zFmt[i+1] ){
case 'd':
case 'H':
case 'm':
case 'M':
case 'S':
case 'W':
n++;
/* fall thru */
case 'w':
case '%':
break;
case 'f':
n += 8;
break;
case 'j':
n += 3;
break;
case 'Y':
n += 8;
break;
case 's':
case 'J':
n += 50;
break;
default:
return; /* ERROR. return a NULL */
}
i++;
}
}
if( n<sizeof(zBuf) ){
z = zBuf;
}else{
z = sqliteMalloc( n );
if( z==0 ) return;
}
computeJD(&x);
computeYMD(&x);
computeHMS(&x);
for(i=j=0; zFmt[i]; i++){
if( zFmt[i]!='%' ){
z[j++] = zFmt[i];
}else{
i++;
switch( zFmt[i] ){
case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
case 'f': {
int s = x.s;
int ms = (x.s - s)*1000.0;
sprintf(&z[j],"%02d.%03d",s,ms);
j += strlen(&z[j]);
break;
}
case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
case 'W': /* Fall thru */
case 'j': {
int n;
DateTime y = x;
y.validJD = 0;
y.M = 1;
y.D = 1;
computeJD(&y);
n = x.rJD - y.rJD + 1;
if( zFmt[i]=='W' ){
sprintf(&z[j],"%02d",(n+6)/7);
j += 2;
}else{
sprintf(&z[j],"%03d",n);
j += 3;
}
break;
}
case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
case 's': {
sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0));
j += strlen(&z[j]);
break;
}
case 'S': sprintf(&z[j],"%02d",(int)x.s); j+=2; break;
case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
case '%': z[j++] = '%'; break;
}
}
}
z[j] = 0;
sqlite_set_result_string(context, z, -1);
if( z!=zBuf ){
sqliteFree(z);
}
}
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
/*
** This function registered all of the above C functions as SQL
** functions. This should be the only routine in this file with
** external linkage.
*/
void sqliteRegisterDateTimeFunctions(sqlite *db){
static struct {
char *zName;
int nArg;
int dataType;
void (*xFunc)(sqlite_func*,int,const char**);
} aFuncs[] = {
#ifndef SQLITE_OMIT_DATETIME_FUNCS
{ "julianday", -1, SQLITE_NUMERIC, juliandayFunc },
{ "date", -1, SQLITE_TEXT, dateFunc },
{ "time", 1, SQLITE_TEXT, timeFunc },
{ "datetime", -1, SQLITE_TEXT, datetimeFunc },
{ "strftime", -1, SQLITE_TEXT, strftimeFunc },
#endif
};
int i;
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
sqlite_create_function(db, aFuncs[i].zName,
aFuncs[i].nArg, aFuncs[i].xFunc, 0);
if( aFuncs[i].xFunc ){
sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
}
}
}
--- NEW FILE: vdbeInt.h ---
/*
** 2003 September 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the header file for information that is private to the
** VDBE. This information used to all be at the top of the single
** source code file "vdbe.c". When that file became too big (over
** 6000 lines long) it was split up into several smaller files and
** this header information was factored out.
*/
/*
** The makefile scans this source file and creates the following
** array of string constants which are the names of all VDBE opcodes.
** This array is defined in a separate source code file named opcode.c
** which is automatically generated by the makefile.
*/
extern char *sqliteOpcodeNames[];
/*
** SQL is translated into a sequence of instructions to be
** executed by a virtual machine. Each instruction is an instance
** of the following structure.
*/
typedef struct VdbeOp Op;
/*
** Boolean values
*/
typedef unsigned char Bool;
/*
** A cursor is a pointer into a single BTree within a database file.
** The cursor can seek to a BTree entry with a particular key, or
** loop over all entries of the Btree. You can also insert new BTree
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
**
** Every cursor that the virtual machine has open is represented by an
** instance of the following structure.
**
** If the Cursor.isTriggerRow flag is set it means that this cursor is
** really a single row that represents the NEW or OLD pseudo-table of
** a row trigger. The data for the row is stored in Cursor.pData and
** the rowid is in Cursor.iKey.
*/
struct Cursor {
BtCursor *pCursor; /* The cursor structure of the backend */
int lastRecno; /* Last recno from a Next or NextIdx operation */
int nextRowid; /* Next rowid returned by OP_NewRowid */
Bool recnoIsValid; /* True if lastRecno is valid */
Bool keyAsData; /* The OP_Column command works on key instead of data */
Bool atFirst; /* True if pointing to first entry */
Bool useRandomRowid; /* Generate new record numbers semi-randomly */
Bool nullRow; /* True if pointing to a row with no data */
Bool nextRowidValid; /* True if the nextRowid field is valid */
Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
Btree *pBt; /* Separate file holding temporary table */
int nData; /* Number of bytes in pData */
char *pData; /* Data for a NEW or OLD pseudo-table */
int iKey; /* Key for the NEW or OLD pseudo-table row */
};
typedef struct Cursor Cursor;
/*
** A sorter builds a list of elements to be sorted. Each element of
** the list is an instance of the following structure.
*/
typedef struct Sorter Sorter;
struct Sorter {
int nKey; /* Number of bytes in the key */
char *zKey; /* The key by which we will sort */
int nData; /* Number of bytes in the data */
char *pData; /* The data associated with this key */
Sorter *pNext; /* Next in the list */
};
/*
** Number of buckets used for merge-sort.
*/
#define NSORT 30
/*
** Number of bytes of string storage space available to each stack
** layer without having to malloc. NBFS is short for Number of Bytes
** For Strings.
*/
#define NBFS 32
/*
** A single level of the stack is an instance of the following
** structure. Except, string values are stored on a separate
** list of of pointers to character. The reason for storing
** strings separately is so that they can be easily passed
** to the callback function.
*/
struct Stack {
int i; /* Integer value */
int n; /* Number of characters in string value, including '\0' */
int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
double r; /* Real value */
char z[NBFS]; /* Space for short strings */
};
typedef struct Stack Stack;
/*
** Memory cells use the same structure as the stack except that space
** for an arbitrary string is added.
*/
struct Mem {
Stack s; /* All values of the memory cell besides string */
char *z; /* String value for this memory cell */
};
typedef struct Mem Mem;
/*
** Allowed values for Stack.flags
*/
#define STK_Null 0x0001 /* Value is NULL */
#define STK_Str 0x0002 /* Value is a string */
#define STK_Int 0x0004 /* Value is an integer */
#define STK_Real 0x0008 /* Value is a real number */
#define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[] */
#define STK_Static 0x0020 /* zStack[] points to a static string */
#define STK_Ephem 0x0040 /* zStack[] points to an ephemeral string */
/* The following STK_ value appears only in AggElem.aMem.s.flag fields.
** It indicates that the corresponding AggElem.aMem.z points to a
** aggregate function context that needs to be finalized.
*/
#define STK_AggCtx 0x0040 /* zStack[] points to an agg function context */
/*
** The "context" argument for a installable function. A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
** There is a typedef for this structure in sqlite.h. So all routines,
** even the public interface to SQLite, can use a pointer to this structure.
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbe.c because it uses substructures
** (Stack) which are only defined there.
*/
struct sqlite_func {
FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
Stack s; /* Small strings, ints, and double values go here */
char *z; /* Space for holding dynamic string results */
void *pAgg; /* Aggregate context */
u8 isError; /* Set to true for an error */
u8 isStep; /* Current in the step function */
int cnt; /* Number of times that the step function has been called */
};
/*
** An Agg structure describes an Aggregator. Each Agg consists of
** zero or more Aggregator elements (AggElem). Each AggElem contains
** a key and one or more values. The values are used in processing
** aggregate functions in a SELECT. The key is used to implement
** the GROUP BY clause of a select.
*/
typedef struct Agg Agg;
typedef struct AggElem AggElem;
struct Agg {
int nMem; /* Number of values stored in each AggElem */
AggElem *pCurrent; /* The AggElem currently in focus */
HashElem *pSearch; /* The hash element for pCurrent */
Hash hash; /* Hash table of all aggregate elements */
FuncDef **apFunc; /* Information about aggregate functions */
};
struct AggElem {
char *zKey; /* The key to this AggElem */
int nKey; /* Number of bytes in the key, including '\0' at end */
Mem aMem[1]; /* The values for this AggElem */
};
/*
** A Set structure is used for quick testing to see if a value
** is part of a small set. Sets are used to implement code like
** this:
** x.y IN ('hi','hoo','hum')
*/
typedef struct Set Set;
struct Set {
Hash hash; /* A set is just a hash table */
HashElem *prev; /* Previously accessed hash elemen */
};
/*
** A Keylist is a bunch of keys into a table. The keylist can
** grow without bound. The keylist stores the ROWIDs of database
** records that need to be deleted or updated.
*/
typedef struct Keylist Keylist;
struct Keylist {
int nKey; /* Number of slots in aKey[] */
int nUsed; /* Next unwritten slot in aKey[] */
int nRead; /* Next unread slot in aKey[] */
Keylist *pNext; /* Next block of keys */
int aKey[1]; /* One or more keys. Extra space allocated as needed */
};
/*
** An instance of the virtual machine. This structure contains the complete
** state of the virtual machine.
**
** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
** is really a pointer to an instance of this structure.
*/
struct Vdbe {
sqlite *db; /* The whole database */
Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
FILE *trace; /* Write an execution trace here, if not NULL */
int nOp; /* Number of instructions in the program */
int nOpAlloc; /* Number of slots allocated for aOp[] */
Op *aOp; /* Space to hold the virtual machine's program */
int nLabel; /* Number of labels used */
int nLabelAlloc; /* Number of slots allocated in aLabel[] */
int *aLabel; /* Space to hold the labels */
int tos; /* Index of top of stack */
Stack *aStack; /* The operand stack, except string values */
char **zStack; /* Text or binary values of the stack */
char **azColName; /* Becomes the 4th parameter to callbacks */
int nCursor; /* Number of slots in aCsr[] */
Cursor *aCsr; /* One element of this array for each open cursor */
Sorter *pSort; /* A linked list of objects to be sorted */
FILE *pFile; /* At most one open file handler */
int nField; /* Number of file fields */
char **azField; /* Data for each file field */
int nVar; /* Number of entries in azVariable[] */
char **azVar; /* Values for the OP_Variable opcode */
int *anVar; /* Length of each value in azVariable[] */
u8 *abVar; /* TRUE if azVariable[i] needs to be sqliteFree()ed */
char *zLine; /* A single line from the input file */
int nLineAlloc; /* Number of spaces allocated for zLine */
int magic; /* Magic number for sanity checking */
int nMem; /* Number of memory locations currently allocated */
Mem *aMem; /* The memory locations */
Agg agg; /* Aggregate information */
int nSet; /* Number of sets allocated */
Set *aSet; /* An array of sets */
int nCallback; /* Number of callbacks invoked so far */
Keylist *pList; /* A list of ROWIDs */
int keylistStackDepth; /* The size of the "keylist" stack */
Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
int pc; /* The program counter */
int rc; /* Value to return */
unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
int errorAction; /* Recovery action to do in case of an error */
int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
int inTempTrans; /* True if temp database is transactioned */
int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
int returnDepth; /* Next unused element in returnStack[] */
int nResColumn; /* Number of columns in one row of the result set */
char **azResColumn; /* Values for one row of result */
int (*xCallback)(void*,int,char**,char**); /* Callback for SELECT results */
void *pCbArg; /* First argument to xCallback() */
int popStack; /* Pop the stack this much on entry to VdbeExec() */
char *zErrMsg; /* Error message written here */
u8 explain; /* True if EXPLAIN present on SQL command */
};
/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
/*
** Here is a macro to handle the common case of popping the stack
** once. This macro only works from within the sqliteVdbeExec()
** function.
*/
#define POPSTACK \
assert(p->tos>=0); \
if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \
p->tos--;
/*
** Function prototypes
*/
void sqliteVdbeCleanupCursor(Cursor*);
void sqliteVdbeSorterReset(Vdbe*);
void sqliteVdbeAggReset(Agg*);
void sqliteVdbeKeylistFree(Keylist*);
void sqliteVdbePopStack(Vdbe*,int);
#if !defined(NDEBUG) || defined(VDBE_PROFILE)
void sqliteVdbePrintOp(FILE*, int, Op*);
#endif
--- NEW FILE: vdbeaux.c ---
/*
** 2003 September 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite_vm" as it is known to the outside world.) Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"
/*
** When debugging the code generator in a symbolic debugger, one can
** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
** as they are added to the instruction stream.
*/
#ifndef NDEBUG
int sqlite_vdbe_addop_trace = 0;
#endif
/*
** Create a new virtual database engine.
*/
Vdbe *sqliteVdbeCreate(sqlite *db){
Vdbe *p;
p = sqliteMalloc( sizeof(Vdbe) );
if( p==0 ) return 0;
p->db = db;
if( db->pVdbe ){
db->pVdbe->pPrev = p;
}
p->pNext = db->pVdbe;
p->pPrev = 0;
db->pVdbe = p;
p->magic = VDBE_MAGIC_INIT;
return p;
}
/*
** Turn tracing on or off
*/
void sqliteVdbeTrace(Vdbe *p, FILE *trace){
p->trace = trace;
}
/*
** Add a new instruction to the list of instructions current in the
** VDBE. Return the address of the new instruction.
**
** Parameters:
**
** p Pointer to the VDBE
**
** op The opcode for this instruction
**
** p1, p2 First two of the three possible operands.
**
** Use the sqliteVdbeResolveLabel() function to fix an address and
** the sqliteVdbeChangeP3() function to change the value of the P3
** operand.
*/
int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
int i;
i = p->nOp;
p->nOp++;
assert( p->magic==VDBE_MAGIC_INIT );
if( i>=p->nOpAlloc ){
int oldSize = p->nOpAlloc;
Op *aNew;
p->nOpAlloc = p->nOpAlloc*2 + 100;
aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
if( aNew==0 ){
p->nOpAlloc = oldSize;
return 0;
}
p->aOp = aNew;
memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
}
p->aOp[i].opcode = op;
p->aOp[i].p1 = p1;
if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
p2 = p->aLabel[-1-p2];
}
p->aOp[i].p2 = p2;
p->aOp[i].p3 = 0;
p->aOp[i].p3type = P3_NOTUSED;
#ifndef NDEBUG
if( sqlite_vdbe_addop_trace ) sqliteVdbePrintOp(0, i, &p->aOp[i]);
#endif
return i;
}
/*
** Create a new symbolic label for an instruction that has yet to be
** coded. The symbolic label is really just a negative number. The
** label can be used as the P2 value of an operation. Later, when
** the label is resolved to a specific address, the VDBE will scan
** through its operation list and change all values of P2 which match
** the label into the resolved address.
**
** The VDBE knows that a P2 value is a label because labels are
** always negative and P2 values are suppose to be non-negative.
** Hence, a negative P2 value is a label that has yet to be resolved.
*/
int sqliteVdbeMakeLabel(Vdbe *p){
int i;
i = p->nLabel++;
assert( p->magic==VDBE_MAGIC_INIT );
if( i>=p->nLabelAlloc ){
int *aNew;
p->nLabelAlloc = p->nLabelAlloc*2 + 10;
aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
if( aNew==0 ){
sqliteFree(p->aLabel);
}
p->aLabel = aNew;
}
if( p->aLabel==0 ){
p->nLabel = 0;
p->nLabelAlloc = 0;
return 0;
}
p->aLabel[i] = -1;
return -1-i;
}
/*
** Resolve label "x" to be the address of the next instruction to
** be inserted. The parameter "x" must have been obtained from
** a prior call to sqliteVdbeMakeLabel().
*/
void sqliteVdbeResolveLabel(Vdbe *p, int x){
int j;
assert( p->magic==VDBE_MAGIC_INIT );
if( x<0 && (-x)<=p->nLabel && p->aOp ){
if( p->aLabel[-1-x]==p->nOp ) return;
assert( p->aLabel[-1-x]<0 );
p->aLabel[-1-x] = p->nOp;
for(j=0; j<p->nOp; j++){
if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
}
}
}
/*
** Return the address of the next instruction to be inserted.
*/
int sqliteVdbeCurrentAddr(Vdbe *p){
assert( p->magic==VDBE_MAGIC_INIT );
return p->nOp;
}
/*
** Add a whole list of operations to the operation stack. Return the
** address of the first operation added.
*/
int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){
int addr;
assert( p->magic==VDBE_MAGIC_INIT );
if( p->nOp + nOp >= p->nOpAlloc ){
int oldSize = p->nOpAlloc;
Op *aNew;
p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
if( aNew==0 ){
p->nOpAlloc = oldSize;
return 0;
}
p->aOp = aNew;
memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
}
addr = p->nOp;
if( nOp>0 ){
int i;
for(i=0; i<nOp; i++){
int p2 = aOp[i].p2;
p->aOp[i+addr] = aOp[i];
if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2);
p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED;
#ifndef NDEBUG
if( sqlite_vdbe_addop_trace ){
sqliteVdbePrintOp(0, i+addr, &p->aOp[i+addr]);
}
#endif
}
p->nOp += nOp;
}
return addr;
}
/*
** Change the value of the P1 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqliteVdbeAddOpList but we want to make a
** few minor changes to the program.
*/
void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
assert( p->magic==VDBE_MAGIC_INIT );
if( p && addr>=0 && p->nOp>addr && p->aOp ){
p->aOp[addr].p1 = val;
}
}
/*
** Change the value of the P2 operand for a specific instruction.
** This routine is useful for setting a jump destination.
*/
void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
assert( val>=0 );
assert( p->magic==VDBE_MAGIC_INIT );
if( p && addr>=0 && p->nOp>addr && p->aOp ){
p->aOp[addr].p2 = val;
}
}
/*
** Change the value of the P3 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqliteVdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqliteMalloc().
** A value of n==0 means copy bytes of zP3 up to and including the
** first null byte. If n>0 then copy n+1 bytes of zP3.
**
** If n==P3_STATIC it means that zP3 is a pointer to a constant static
** string and we can just copy the pointer. n==P3_POINTER means zP3 is
** a pointer to some object other than a string.
**
** If addr<0 then change P3 on the most recently inserted instruction.
*/
void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
Op *pOp;
assert( p->magic==VDBE_MAGIC_INIT );
if( p==0 || p->aOp==0 ) return;
if( addr<0 || addr>=p->nOp ){
addr = p->nOp - 1;
if( addr<0 ) return;
}
pOp = &p->aOp[addr];
if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
sqliteFree(pOp->p3);
pOp->p3 = 0;
}
if( zP3==0 ){
pOp->p3 = 0;
pOp->p3type = P3_NOTUSED;
}else if( n<0 ){
pOp->p3 = (char*)zP3;
pOp->p3type = n;
}else{
sqliteSetNString(&pOp->p3, zP3, n, 0);
pOp->p3type = P3_DYNAMIC;
}
}
/*
** If the P3 operand to the specified instruction appears
** to be a quoted string token, then this procedure removes
** the quotes.
**
** The quoting operator can be either a grave ascent (ASCII 0x27)
** or a double quote character (ASCII 0x22). Two quotes in a row
** resolve to be a single actual quote character within the string.
*/
void sqliteVdbeDequoteP3(Vdbe *p, int addr){
Op *pOp;
assert( p->magic==VDBE_MAGIC_INIT );
if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
pOp = &p->aOp[addr];
if( pOp->p3==0 || pOp->p3[0]==0 ) return;
if( pOp->p3type==P3_POINTER ) return;
if( pOp->p3type!=P3_DYNAMIC ){
pOp->p3 = sqliteStrDup(pOp->p3);
pOp->p3type = P3_DYNAMIC;
}
sqliteDequote(pOp->p3);
}
/*
** On the P3 argument of the given instruction, change all
** strings of whitespace characters into a single space and
** delete leading and trailing whitespace.
*/
void sqliteVdbeCompressSpace(Vdbe *p, int addr){
unsigned char *z;
int i, j;
Op *pOp;
assert( p->magic==VDBE_MAGIC_INIT );
if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
pOp = &p->aOp[addr];
if( pOp->p3type==P3_POINTER ){
return;
}
if( pOp->p3type!=P3_DYNAMIC ){
pOp->p3 = sqliteStrDup(pOp->p3);
pOp->p3type = P3_DYNAMIC;
}
z = (unsigned char*)pOp->p3;
if( z==0 ) return;
i = j = 0;
while( isspace(z[i]) ){ i++; }
while( z[i] ){
if( isspace(z[i]) ){
z[j++] = ' ';
while( isspace(z[++i]) ){}
}else{
z[j++] = z[i++];
}
}
while( j>0 && isspace(z[j-1]) ){ j--; }
z[j] = 0;
}
/*
** Search for the current program for the given opcode and P2
** value. Return the address plus 1 if found and 0 if not found.
*/
int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
int i;
assert( p->magic==VDBE_MAGIC_INIT );
for(i=0; i<p->nOp; i++){
if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
}
return 0;
}
/*
** Return the opcode for a given address.
*/
VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
assert( p->magic==VDBE_MAGIC_INIT );
assert( addr>=0 && addr<p->nOp );
return &p->aOp[addr];
}
/*
** The following group or routines are employed by installable functions
** to return their results.
**
** The sqlite_set_result_string() routine can be used to return a string
** value or to return a NULL. To return a NULL, pass in NULL for zResult.
** A copy is made of the string before this routine returns so it is safe
** to pass in an ephemeral string.
**
** sqlite_set_result_error() works like sqlite_set_result_string() except
** that it signals a fatal error. The string argument, if any, is the
** error message. If the argument is NULL a generic substitute error message
** is used.
**
** The sqlite_set_result_int() and sqlite_set_result_double() set the return
** value of the user function to an integer or a double.
**
** These routines are defined here in vdbe.c because they depend on knowing
** the internals of the sqlite_func structure which is only defined in
** this source file.
*/
char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
assert( !p->isStep );
if( p->s.flags & STK_Dyn ){
sqliteFree(p->z);
}
if( zResult==0 ){
p->s.flags = STK_Null;
n = 0;
p->z = 0;
p->s.n = 0;
}else{
if( n<0 ) n = strlen(zResult);
if( n<NBFS-1 ){
memcpy(p->s.z, zResult, n);
p->s.z[n] = 0;
p->s.flags = STK_Str;
p->z = p->s.z;
}else{
p->z = sqliteMallocRaw( n+1 );
if( p->z ){
memcpy(p->z, zResult, n);
p->z[n] = 0;
}
p->s.flags = STK_Str | STK_Dyn;
}
p->s.n = n+1;
}
return p->z;
}
void sqlite_set_result_int(sqlite_func *p, int iResult){
assert( !p->isStep );
if( p->s.flags & STK_Dyn ){
sqliteFree(p->z);
}
p->s.i = iResult;
p->s.flags = STK_Int;
}
void sqlite_set_result_double(sqlite_func *p, double rResult){
assert( !p->isStep );
if( p->s.flags & STK_Dyn ){
sqliteFree(p->z);
}
p->s.r = rResult;
p->s.flags = STK_Real;
}
void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
assert( !p->isStep );
sqlite_set_result_string(p, zMsg, n);
p->isError = 1;
}
/*
** Extract the user data from a sqlite_func structure and return a
** pointer to it.
*/
void *sqlite_user_data(sqlite_func *p){
assert( p && p->pFunc );
return p->pFunc->pUserData;
}
/*
** Allocate or return the aggregate context for a user function. A new
** context is allocated on the first call. Subsequent calls return the
** same context that was returned on prior calls.
**
** This routine is defined here in vdbe.c because it depends on knowing
** the internals of the sqlite_func structure which is only defined in
** this source file.
*/
void *sqlite_aggregate_context(sqlite_func *p, int nByte){
assert( p && p->pFunc && p->pFunc->xStep );
if( p->pAgg==0 ){
if( nByte<=NBFS ){
p->pAgg = (void*)p->z;
}else{
p->pAgg = sqliteMalloc( nByte );
}
}
return p->pAgg;
}
/*
** Return the number of times the Step function of a aggregate has been
** called.
**
** This routine is defined here in vdbe.c because it depends on knowing
** the internals of the sqlite_func structure which is only defined in
** this source file.
*/
int sqlite_aggregate_count(sqlite_func *p){
assert( p && p->pFunc && p->pFunc->xStep );
return p->cnt;
}
#if !defined(NDEBUG) || defined(VDBE_PROFILE)
/*
** Print a single opcode. This routine is used for debugging only.
*/
void sqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp){
char *zP3;
char zPtr[40];
if( pOp->p3type==P3_POINTER ){
sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
zP3 = zPtr;
}else{
zP3 = pOp->p3;
}
if( pOut==0 ) pOut = stdout;
fprintf(pOut,"%4d %-12s %4d %4d %s\n",
pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
fflush(pOut);
}
#endif
/*
** Give a listing of the program in the virtual machine.
**
** The interface is the same as sqliteVdbeExec(). But instead of
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
*/
int sqliteVdbeList(
Vdbe *p /* The VDBE */
){
sqlite *db = p->db;
int i;
static char *azColumnNames[] = {
"addr", "opcode", "p1", "p2", "p3",
"int", "text", "int", "int", "text",
0
};
assert( p->popStack==0 );
assert( p->explain );
p->azColName = azColumnNames;
p->azResColumn = p->zStack;
for(i=0; i<5; i++) p->zStack[i] = p->aStack[i].z;
p->rc = SQLITE_OK;
for(i=p->pc; p->rc==SQLITE_OK && i<p->nOp; i++){
if( db->flags & SQLITE_Interrupt ){
db->flags &= ~SQLITE_Interrupt;
if( db->magic!=SQLITE_MAGIC_BUSY ){
p->rc = SQLITE_MISUSE;
}else{
p->rc = SQLITE_INTERRUPT;
}
sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0);
break;
}
sprintf(p->zStack[0],"%d",i);
sprintf(p->zStack[2],"%d", p->aOp[i].p1);
sprintf(p->zStack[3],"%d", p->aOp[i].p2);
if( p->aOp[i].p3type==P3_POINTER ){
sprintf(p->aStack[4].z, "ptr(%#x)", (int)p->aOp[i].p3);
p->zStack[4] = p->aStack[4].z;
}else{
p->zStack[4] = p->aOp[i].p3;
}
p->zStack[1] = sqliteOpcodeNames[p->aOp[i].opcode];
if( p->xCallback==0 ){
p->pc = i+1;
p->azResColumn = p->zStack;
p->nResColumn = 5;
return SQLITE_ROW;
}
if( sqliteSafetyOff(db) ){
p->rc = SQLITE_MISUSE;
break;
}
if( p->xCallback(p->pCbArg, 5, p->zStack, p->azColName) ){
p->rc = SQLITE_ABORT;
}
if( sqliteSafetyOn(db) ){
p->rc = SQLITE_MISUSE;
}
}
return p->rc==SQLITE_OK ? SQLITE_DONE : SQLITE_ERROR;
}
/*
** Prepare a virtual machine for execution. This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqliteVdbeExec().
**
** The behavior of sqliteVdbeExec() is influenced by the parameters to
** this routine. If xCallback is NULL, then sqliteVdbeExec() will return
** with SQLITE_ROW whenever there is a row of the result set ready
** to be delivered. p->azResColumn will point to the row and
** p->nResColumn gives the number of columns in the row. If xCallback
** is not NULL, then the xCallback() routine is invoked to process each
** row in the result set.
*/
void sqliteVdbeMakeReady(
Vdbe *p, /* The VDBE */
int nVar, /* Number of '?' see in the SQL statement */
sqlite_callback xCallback, /* Result callback */
void *pCallbackArg, /* 1st argument to xCallback() */
int isExplain /* True if the EXPLAIN keywords is present */
){
int n;
assert( p!=0 );
assert( p->magic==VDBE_MAGIC_INIT );
/* Add a HALT instruction to the very end of the program.
*/
if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
sqliteVdbeAddOp(p, OP_Halt, 0, 0);
}
/* No instruction ever pushes more than a single element onto the
** stack. And the stack never grows on successive executions of the
** same loop. So the total number of instructions is an upper bound
** on the maximum stack depth required.
**
** Allocation all the stack space we will ever need.
*/
if( p->aStack==0 ){
p->nVar = nVar;
assert( nVar>=0 );
n = isExplain ? 10 : p->nOp;
p->aStack = sqliteMalloc(
n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zStack */
+ p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */
);
p->zStack = (char**)&p->aStack[n];
p->azColName = (char**)&p->zStack[n];
p->azVar = (char**)&p->azColName[n];
p->anVar = (int*)&p->azVar[p->nVar];
p->abVar = (u8*)&p->anVar[p->nVar];
}
sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
p->agg.pSearch = 0;
#ifdef MEMORY_DEBUG
if( sqliteOsFileExists("vdbe_trace") ){
p->trace = stdout;
}
#endif
p->tos = -1;
p->pc = 0;
p->rc = SQLITE_OK;
p->uniqueCnt = 0;
p->returnDepth = 0;
p->errorAction = OE_Abort;
p->undoTransOnError = 0;
p->xCallback = xCallback;
p->pCbArg = pCallbackArg;
p->popStack = 0;
p->explain |= isExplain;
p->magic = VDBE_MAGIC_RUN;
#ifdef VDBE_PROFILE
for(i=0; i<p->nOp; i++){
p->aOp[i].cnt = 0;
p->aOp[i].cycles = 0;
}
#endif
}
/*
** Remove any elements that remain on the sorter for the VDBE given.
*/
void sqliteVdbeSorterReset(Vdbe *p){
while( p->pSort ){
Sorter *pSorter = p->pSort;
p->pSort = pSorter->pNext;
sqliteFree(pSorter->zKey);
sqliteFree(pSorter->pData);
sqliteFree(pSorter);
}
}
/*
** Pop the stack N times. Free any memory associated with the
** popped stack elements.
*/
void sqliteVdbePopStack(Vdbe *p, int N){
assert( N>=0 );
if( p->zStack==0 ) return;
assert( p->aStack || sqlite_malloc_failed );
if( p->aStack==0 ) return;
while( N-- > 0 ){
if( p->aStack[p->tos].flags & STK_Dyn ){
sqliteFree(p->zStack[p->tos]);
}
p->aStack[p->tos].flags = 0;
p->zStack[p->tos] = 0;
p->tos--;
}
}
/*
** Reset an Agg structure. Delete all its contents.
**
** For installable aggregate functions, if the step function has been
** called, make sure the finalizer function has also been called. The
** finalizer might need to free memory that was allocated as part of its
** private context. If the finalizer has not been called yet, call it
** now.
*/
void sqliteVdbeAggReset(Agg *pAgg){
int i;
HashElem *p;
for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
AggElem *pElem = sqliteHashData(p);
assert( pAgg->apFunc!=0 );
for(i=0; i<pAgg->nMem; i++){
Mem *pMem = &pElem->aMem[i];
if( pAgg->apFunc[i] && (pMem->s.flags & STK_AggCtx)!=0 ){
sqlite_func ctx;
ctx.pFunc = pAgg->apFunc[i];
ctx.s.flags = STK_Null;
ctx.z = 0;
ctx.pAgg = pMem->z;
ctx.cnt = pMem->s.i;
ctx.isStep = 0;
ctx.isError = 0;
(*pAgg->apFunc[i]->xFinalize)(&ctx);
if( pMem->z!=0 && pMem->z!=pMem->s.z ){
sqliteFree(pMem->z);
}
}else if( pMem->s.flags & STK_Dyn ){
sqliteFree(pMem->z);
}
}
sqliteFree(pElem);
}
sqliteHashClear(&pAgg->hash);
sqliteFree(pAgg->apFunc);
pAgg->apFunc = 0;
pAgg->pCurrent = 0;
pAgg->pSearch = 0;
pAgg->nMem = 0;
}
/*
** Delete a keylist
*/
void sqliteVdbeKeylistFree(Keylist *p){
while( p ){
Keylist *pNext = p->pNext;
sqliteFree(p);
p = pNext;
}
}
/*
** Close a cursor and release all the resources that cursor happens
** to hold.
*/
void sqliteVdbeCleanupCursor(Cursor *pCx){
if( pCx->pCursor ){
sqliteBtreeCloseCursor(pCx->pCursor);
}
if( pCx->pBt ){
sqliteBtreeClose(pCx->pBt);
}
sqliteFree(pCx->pData);
memset(pCx, 0, sizeof(Cursor));
}
/*
** Close all cursors
*/
static void closeAllCursors(Vdbe *p){
int i;
for(i=0; i<p->nCursor; i++){
sqliteVdbeCleanupCursor(&p->aCsr[i]);
}
sqliteFree(p->aCsr);
p->aCsr = 0;
p->nCursor = 0;
}
/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open. It also deletes the values of
** variables in the azVariable[] array.
*/
static void Cleanup(Vdbe *p){
int i;
sqliteVdbePopStack(p, p->tos+1);
closeAllCursors(p);
if( p->aMem ){
for(i=0; i<p->nMem; i++){
if( p->aMem[i].s.flags & STK_Dyn ){
sqliteFree(p->aMem[i].z);
}
}
}
sqliteFree(p->aMem);
p->aMem = 0;
p->nMem = 0;
if( p->pList ){
sqliteVdbeKeylistFree(p->pList);
p->pList = 0;
}
sqliteVdbeSorterReset(p);
if( p->pFile ){
if( p->pFile!=stdin ) fclose(p->pFile);
p->pFile = 0;
}
if( p->azField ){
sqliteFree(p->azField);
p->azField = 0;
}
p->nField = 0;
if( p->zLine ){
sqliteFree(p->zLine);
p->zLine = 0;
}
p->nLineAlloc = 0;
sqliteVdbeAggReset(&p->agg);
if( p->aSet ){
for(i=0; i<p->nSet; i++){
sqliteHashClear(&p->aSet[i].hash);
}
}
sqliteFree(p->aSet);
p->aSet = 0;
p->nSet = 0;
if( p->keylistStack ){
int ii;
for(ii = 0; ii < p->keylistStackDepth; ii++){
sqliteVdbeKeylistFree(p->keylistStack[ii]);
}
sqliteFree(p->keylistStack);
p->keylistStackDepth = 0;
p->keylistStack = 0;
}
sqliteFree(p->zErrMsg);
p->zErrMsg = 0;
}
/*
** Clean up a VDBE after execution but do not delete the VDBE just yet.
** Write any error messages into *pzErrMsg. Return the result code.
**
** After this routine is run, the VDBE should be ready to be executed
** again.
*/
int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
sqlite *db = p->db;
int i;
if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
return SQLITE_MISUSE;
}
if( p->zErrMsg ){
if( pzErrMsg && *pzErrMsg==0 ){
*pzErrMsg = p->zErrMsg;
}else{
sqliteFree(p->zErrMsg);
}
p->zErrMsg = 0;
}
Cleanup(p);
if( p->rc!=SQLITE_OK ){
switch( p->errorAction ){
case OE_Abort: {
if( !p->undoTransOnError ){
for(i=0; i<db->nDb; i++){
if( db->aDb[i].pBt ){
sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
}
}
break;
}
/* Fall through to ROLLBACK */
}
case OE_Rollback: {
sqliteRollbackAll(db);
db->flags &= ~SQLITE_InTrans;
db->onError = OE_Default;
break;
}
default: {
if( p->undoTransOnError ){
sqliteRollbackAll(db);
db->flags &= ~SQLITE_InTrans;
db->onError = OE_Default;
}
break;
}
}
sqliteRollbackInternalChanges(db);
}
for(i=0; i<db->nDb; i++){
if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
sqliteBtreeCommitCkpt(db->aDb[i].pBt);
db->aDb[i].inTrans = 1;
}
}
assert( p->tos<p->pc || sqlite_malloc_failed==1 );
#ifdef VDBE_PROFILE
{
FILE *out = fopen("vdbe_profile.out", "a");
if( out ){
int i;
fprintf(out, "---- ");
for(i=0; i<p->nOp; i++){
fprintf(out, "%02x", p->aOp[i].opcode);
}
fprintf(out, "\n");
for(i=0; i<p->nOp; i++){
fprintf(out, "%6d %10lld %8lld ",
p->aOp[i].cnt,
p->aOp[i].cycles,
p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
);
sqliteVdbePrintOp(out, i, &p->aOp[i]);
}
fclose(out);
}
}
#endif
p->magic = VDBE_MAGIC_INIT;
return p->rc;
}
/*
** Clean up and delete a VDBE after execution. Return an integer which is
** the result code. Write any error message text into *pzErrMsg.
*/
int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
int rc;
sqlite *db;
if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
return SQLITE_MISUSE;
}
db = p->db;
rc = sqliteVdbeReset(p, pzErrMsg);
sqliteVdbeDelete(p);
if( db->want_to_close && db->pVdbe==0 ){
sqlite_close(db);
}
return rc;
}
/*
** Set the values of all variables. Variable $1 in the original SQL will
** be the string azValue[0]. $2 will have the value azValue[1]. And
** so forth. If a value is out of range (for example $3 when nValue==2)
** then its value will be NULL.
**
** This routine overrides any prior call.
*/
int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){
Vdbe *p = (Vdbe*)pVm;
if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){
return SQLITE_MISUSE;
}
if( i<1 || i>p->nVar ){
return SQLITE_RANGE;
}
i--;
if( p->abVar[i] ){
sqliteFree(p->azVar[i]);
}
if( zVal==0 ){
copy = 0;
len = 0;
}
if( len<0 ){
len = strlen(zVal)+1;
}
if( copy ){
p->azVar[i] = sqliteMalloc( len );
if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len);
}else{
p->azVar[i] = (char*)zVal;
}
p->abVar[i] = copy;
p->anVar[i] = len;
return SQLITE_OK;
}
/*
** Delete an entire VDBE.
*/
void sqliteVdbeDelete(Vdbe *p){
int i;
if( p==0 ) return;
Cleanup(p);
if( p->pPrev ){
p->pPrev->pNext = p->pNext;
}else{
assert( p->db->pVdbe==p );
p->db->pVdbe = p->pNext;
}
if( p->pNext ){
p->pNext->pPrev = p->pPrev;
}
p->pPrev = p->pNext = 0;
if( p->nOpAlloc==0 ){
p->aOp = 0;
p->nOp = 0;
}
for(i=0; i<p->nOp; i++){
if( p->aOp[i].p3type==P3_DYNAMIC ){
sqliteFree(p->aOp[i].p3);
}
}
for(i=0; i<p->nVar; i++){
if( p->abVar[i] ) sqliteFree(p->azVar[i]);
}
sqliteFree(p->aOp);
sqliteFree(p->aLabel);
sqliteFree(p->aStack);
p->magic = VDBE_MAGIC_DEAD;
sqliteFree(p);
}
Index: attach.c
===================================================================
RCS file: /cvsroot/wpdev/wolfpack/sqlite/attach.c,v
retrieving revision 1.1
retrieving revision 1.2
diff -C2 -d -r1.1 -r1.2
*** attach.c 26 Aug 2003 15:02:43 -0000 1.1
--- attach.c 18 Dec 2003 13:20:23 -0000 1.2
***************
*** 92,97 ****
db->flags &= ~SQLITE_Initialized;
if( pParse->nErr ) return;
! rc = sqliteInit(pParse->db, &pParse->zErrMsg);
if( rc ){
sqliteResetInternalSchema(db, 0);
pParse->nErr++;
--- 92,105 ----
db->flags &= ~SQLITE_Initialized;
if( pParse->nErr ) return;
! if( rc==SQLITE_OK ){
! rc = sqliteInit(pParse->db, &pParse->zErrMsg);
! }
if( rc ){
+ int i = db->nDb - 1;
+ assert( i>=2 );
+ if( db->aDb[i].pBt ){
+ sqliteBtreeClose(db->aDb[i].pBt);
+ db->aDb[i].pBt = 0;
+ }
sqliteResetInternalSchema(db, 0);
pParse->nErr++;
Index: auth.c
===================================================================
RCS file: /cvsroot/wpdev/wolfpack/sqlite/auth.c,v
retrieving revision 1.1
retrieving revision 1.2
diff -C2 -d -r1.1 -r1.2
*** auth.c 26 Aug 2003 15:02:43 -0000 1.1
--- auth.c 18 Dec 2003 13:20:23 -0000 1.2
***************
*** 90,94 ****
sqliteSetString(&pParse->zErrMsg, "illegal return value ", zBuf,
" from the authorization function - should be SQLITE_OK, "
! "SQLITE_IGNORE, or SQLITE_DENY", 0);
pParse->nErr++;
pParse->rc = SQLITE_MISUSE;
--- 90,94 ----
sqliteSetString(&pParse->zErrMsg, "illegal return value ", zBuf,
" from the authorization function - should be SQLITE_OK, "
! "SQLITE_IGNORE, or SQLITE_DENY", (char*)0);
pParse->nErr++;
pParse->rc = SQLITE_MISUSE;
***************
*** 152,159 ****
if( db->nDb>2 || pExpr->iDb!=0 ){
sqliteSetString(&pParse->zErrMsg,"access to ", zDBase, ".",
! pTab->zName, ".", zCol, " is prohibited", 0);
}else{
sqliteSetString(&pParse->zErrMsg,"access to ", pTab->zName, ".",
! zCol, " is prohibited", 0);
}
pParse->nErr++;
--- 152,159 ----
if( db->nDb>2 || pExpr->iDb!=0 ){
sqliteSetString(&pParse->zErrMsg,"access to ", zDBase, ".",
! pTab->zName, ".", zCol, " is prohibited", (char*)0);
}else{
sqliteSetString(&pParse->zErrMsg,"access to ", pTab->zName, ".",
! zCol, " is prohibited", (char*)0);
}
pParse->nErr++;
***************
*** 185,189 ****
rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
if( rc==SQLITE_DENY ){
! sqliteSetString(&pParse->zErrMsg, "not authorized", 0);
pParse->rc = SQLITE_AUTH;
pParse->nErr++;
--- 185,189 ----
rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
if( rc==SQLITE_...
[truncated message content] |