Anonymous - 2012-12-10

Wireless Security With Aircrack-ng

  1. Setup (airmon-ng)
    As mentioned above, to capture network traffic wihtout being associated with an access point, we need to set the wireless network card in monitor mode. To do that under linux, in a terminal window (logged in as root), type:

iwconfig (to find all wireless network interfaces and their status)
airmon-ng start wlan0 (to set in monitor mode, you may have to substitute wlan0 for your own interface name)
Note: You can use the su command to switch to a root account.
Other related Linux commands:

ifconfig (to list available network interfaces, my network card is listed as wlan0)
ifconfig wlan0 down (to stop the specified network card)
ifconfig wlan0 hw ether 00:11:22:33:44:55 (change the MAC address of a NIC - can even simulate the MAC of an associated client. NIC should be stopped before chaning MACaddress)
iwconfig wlan0 mode monitor (to set the network card in monitor mode)
ifconfig wlan0 up (to start the network card)
iwconfig - similar to ifconfig, but dedicated to the wireless interfaces.

  1. Recon Stage (airodump-ng)
    This step assumes you've already set your wireless network interface in monitor mode. It can be checked by executing the iwconfig command. Next step is finding available wireless networks, and choosing your target:
    airodump-ng mon0 - monitors all channels, listing available access points and associated clients within range. It is best to select a target network with strong signal (PWR column), more traffic (Beacons/Data columns) and associated clients (listed below all access points). Once you've selected a target, note its Channel and BSSID (MAC address). Also note any STATION associated with the same BSSID (client MAC addresses).
    WEP is much easier to crack than WPA-PSK, as it only requires data capturing (between 20k and 40k packets), while WPA-PSK needs a dictionary attack on a captured handshake between the access point and an associated client which may or may not work.

  2. Capture Data (airodump-ng)
    To capture data into a file, we use the airodump-ng tool again, with some additional switches to target a specific AP and channel. Most importantly, you should restrict monitoring to a single channel to speed up data collection, otherwise the wireless card has to alternate between all channels. Assuming our wireless card is mon0, and we want to capture packets on channel 6 into a text file called data:
    airodump-ng -c 6 bssid 00:0F:CC:7D:5A:74 -w data mon0 (-c6 switch would capture data on channel 6, bssid 00:0F:CC:7D:5A:74 is the MAC address of our target access point, -w data specifies that we want to save captured packets into a file called "data" in the current directory, mon0 is our wireless network adapter)
    Notes:
    You typically need between 20,000 and 40,000 data packets to successfully recover a WEP key.
    One can also use the "--ivs" switch with the airodump-ng command to capture only IVs, instead of whole packets, reducing the required disk space. However, this switch can only be used if targeting a WEP network, and renders some types of attacks useless.

  3. Increase Traffic (aireplay-ng) - optional step for WEP cracking
    An active network can usually be penetrated within a few minutes. However, slow networks can take hours, even days to collect enough data for recovering the WEP key.
    This optional step allows a compatible network interface to inject/generate packets to increase traffic on the wireless network, therefore greatly reducing the time required for capturing data. The aireplay-ng command should be executed in a separate terminal window, concurrent to airodump-ng. It requires a compatible network card and driver that allows for injection mode.
    Assuming your network card is capable of injecting packets, in a separate terminal window try:

aireplay-ng -3 -b 00:0F:CC:7D:5A:74 -h 00:14:A5:2F:A7:DE -x 50 wlan0
-3 --> this specifies the type of attack, in our case ARP-request replay
-b ..... --> MAC address of access point
-h ..... --> MAC address of associated client from airodump
-x 50 --> limit to sending 50 packets per second
wlan0 --> our wireless network interface

  1. Crack WEP (aircrack-ng)
    WEP cracking is a simple process, only requiring collection of enough data to then extract the key and connect to the network. You can crack the WEP key while capturing data. In fact, aircrack-ng will re-attempt cracking the key after every 5000 packets.
    To attempt recovering the WEP key, in a new terminal window, type:
    aircrack-ng data*.cap (assuming your capture file is called data...cap, and is located in the same directory)
    Notes:
    If your data file contains ivs/packets from different access points, you may be presented with a list to choose which one to recover.
    Usually, between 20k and 40k packets are needed to successfully crack a WEP key. It may sometimes work with as few as 10,000 packets with short keys.

  2. Crack WPA or WPA2 PSK (aircrack-ng)
    WPA, unlike WEP rotates the network key on a per-packet basis, rendering the WEP method of penetration useless. Cracking a WPA-PSK/WPA2-PSK key requires a dictionary attack on a handshake between an access point and a client. What this means is, you need to wait until a wireless client associates with the network (or deassociate an already connected client so they automatically reconnect). All that needs to be captured is the initial "four-way-handshake" association between the access point and a client. Essentially, the weakness of WPA-PSK comes down to the passphrase. A short/weak passphrase makes it vulnerable to dictionary attacks.
    To successfully crack a WPA-PSK network, you first need a capture file containing handshake data. This can be obtained using the same technique as with WEP in step 3 above, using airodump-ng.
    You may also try to deauthenticate an associated client to speed up this process of capturing a handshake, using:
    aireplay-ng --deauth 3 -a MAC_AP -c MAC_Client mon0 (where MAC_IP is the MAC address of the access point, MAC_Client is the MAC address of an associated client, mon0 is your wireless NIC).

The command output looks something like:
12:34:56 Waiting for beakon frame (BSSID: 00:11:22:33:44:55:66) on channel 6
12:34:56 Sending 64 directed DeAuth. STMAC: [00:11:22:33:44:55:66] [ 5:62 ACKs]
Note the last two numbers in brackets [ 5:62 ACKs] show the number of acknowledgements received from the client NIC (first number) and the AP (second number). It is important to have some number greater than zero in both. If the first number is zero, that indicates that you're too far from the associated client to be able to send deauth packets to it, you may want to try adding a reflector to your antenna (even a simple manilla folder with aluminum foil stapled to it works as a reflector to increase range and concentrate the signal significantly), or use a larger antenna.
Once you have captured a four-way handshake, you also need a large/relevant dictinary file (commonly known as wordlists) with common passphrases. See related links below for some wordlist links.
You can, then execute the following command in a linux terminal window (assuming both the dictionary file and captured data file are in the same directory):
aircrack-ng -w wordlist capture_file (where wordlist is your dictionary file, and capture_file is a .cap file with a valid WPA handshake)

Additional Notes:
Cracking WPA-PSK and WPA2-PSK only needs 4 packets of data from the network (a handshake). After that, an offline dictionary attack on that handshake takes much longer, and will only succeed with weak passphrases and good dictionary files. A good size wordlist should be 20+ Megabytes in size, cracking a strong passphrase will take hours and is CPU intensive.
Cracking WPA/WPA2 usually takes many hours, testing tens of millions of possible keys for the chance to stumble on a combination of common numerals or dictionary words. Still, a weak/short/common/human-readable passphrase can be broken within a few minutes using an offline dictionary attack. My record time was less than a minute on an all-caps 10-character passphrase using common words with less than 11,000 tested keys! A modern laptop can process over 10 Million possible keys in less than 3 hours.
WPA hashes the network key using the wireless access point's SSID as salt. This prevents the statistical key-grabbing techniques that broke WEP, and makes hash precomputation more dificult because the specific SSID needs to be added as salt for the hash. There are some tools like coWPAtty that can use precomputed hash files to speed up dictionary attacks. Those hash files can be very effective (sicne they're much less CPU intensive and therefore faster), but quite big in size. The Church of WiFi has computed hash tables for the 1000 most common SSIDs against a million common passphrases that are 7Gb and 33Gb in size...

Conclusion
As demonstrated above, WEP cracking has become increasingly easier over the years, and what used to take hundreds of thousands packets and days of capturing data can be accomplished today within 15 minutes with a mere 20k data frames.
WPA/WPA2-PSK encryption is holding its ground if using a strong, long key. However, weak passphrases are vulnerable to dictionary attacks.