[Toss-devel-svn] SF.net SVN: toss:[1453] trunk/Toss/www/reference
Status: Beta
Brought to you by:
lukaszkaiser
From: <luk...@us...> - 2011-05-22 13:40:41
|
Revision: 1453 http://toss.svn.sourceforge.net/toss/?rev=1453&view=rev Author: lukaszkaiser Date: 2011-05-22 13:40:35 +0000 (Sun, 22 May 2011) Log Message: ----------- Very small TeX and compilation corrections. Modified Paths: -------------- trunk/Toss/www/reference/Makefile trunk/Toss/www/reference/reference.tex Modified: trunk/Toss/www/reference/Makefile =================================================================== --- trunk/Toss/www/reference/Makefile 2011-05-22 11:11:05 UTC (rev 1452) +++ trunk/Toss/www/reference/Makefile 2011-05-22 13:40:35 UTC (rev 1453) @@ -1,4 +1,4 @@ -all: reference.pdf index.html +all: reference.pdf #index.html reference.pdf: reference.tex reference.bib pdflatex reference.tex Modified: trunk/Toss/www/reference/reference.tex =================================================================== --- trunk/Toss/www/reference/reference.tex 2011-05-22 11:11:05 UTC (rev 1452) +++ trunk/Toss/www/reference/reference.tex 2011-05-22 13:40:35 UTC (rev 1453) @@ -1941,10 +1941,10 @@ \subsubsection{Introducing and Using Defined Relations} -Consider generating defined relation for relation $R$ with GDL -defining clauses $\mathtt{(<= (R \ t^1_1 \ldots t^1_n) \ b_1)}, -\ldots, \mathtt{(<= (R \ t^k_1 \ldots t^k_n) \ b_k)}$. For $i$th -argument of $R$ ($i \in \{1,\ldots,n\}$) we will find +Consider generating defined relation for relation $R$ with GDL defining clauses +\[ \mathtt{(<= (R \ t^1_1 \ldots t^1_n) \ b_1)}, + \ldots, \mathtt{(<= (R \ t^k_1 \ldots t^k_n) \ b_k)}.\] +For the $i$th argument of $R$ ($i \in \{1,\ldots,n\}$) we will find $\mathtt{ArgType}(R,i)$ with possible values $(\mathtt{DefSide},\calS_i,p_i)$ and $(\mathtt{CallSide},p_i)$, with a mapping $\calS_i$ into state terms corresponding to the argument in a given context and a path $p_i \in @@ -1988,11 +1988,11 @@ above, let \begin{align*} -$E_{j,l} = & +E_{j,l} = & \bigwedge \big\{v_i=s^i_{j,l} \big| i \in \calI\big\} \wedge \bigwedge\big\{v_i=\mathtt{BL}(p_i \ot t^j_i) \big| i \in \{1,\ldots,n\} \setminus \calI\big\} \\ -$S_{j,l} = & +S_{j,l} = & \bigwedge\big\{\mathtt{true}\big(\mathtt{BL}(p_i \ot t^j_i)\big) \big| i \in \{1,\ldots,n\} \setminus \calI\big\} \end{align*} This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |