You can subscribe to this list here.
2005 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}
(1) 
_{Sep}

_{Oct}
(11) 
_{Nov}
(184) 
_{Dec}
(182) 

2006 
_{Jan}
(224) 
_{Feb}
(404) 
_{Mar}
(244) 
_{Apr}
(232) 
_{May}
(162) 
_{Jun}
(193) 
_{Jul}
(174) 
_{Aug}
(161) 
_{Sep}
(170) 
_{Oct}
(283) 
_{Nov}
(310) 
_{Dec}
(130) 
2007 
_{Jan}
(210) 
_{Feb}
(129) 
_{Mar}
(174) 
_{Apr}
(246) 
_{May}
(269) 
_{Jun}
(212) 
_{Jul}
(229) 
_{Aug}
(202) 
_{Sep}
(190) 
_{Oct}
(194) 
_{Nov}
(172) 
_{Dec}
(128) 
2008 
_{Jan}
(343) 
_{Feb}
(137) 
_{Mar}
(186) 
_{Apr}
(266) 
_{May}
(156) 
_{Jun}
(147) 
_{Jul}
(140) 
_{Aug}
(78) 
_{Sep}
(128) 
_{Oct}
(126) 
_{Nov}
(100) 
_{Dec}
(106) 
2009 
_{Jan}
(152) 
_{Feb}
(165) 
_{Mar}
(209) 
_{Apr}
(166) 
_{May}
(97) 
_{Jun}
(152) 
_{Jul}
(159) 
_{Aug}
(196) 
_{Sep}
(151) 
_{Oct}
(107) 
_{Nov}
(128) 
_{Dec}
(64) 
2010 
_{Jan}
(105) 
_{Feb}
(77) 
_{Mar}
(129) 
_{Apr}
(151) 
_{May}
(126) 
_{Jun}
(97) 
_{Jul}
(86) 
_{Aug}
(99) 
_{Sep}
(64) 
_{Oct}
(88) 
_{Nov}
(59) 
_{Dec}
(91) 
2011 
_{Jan}
(159) 
_{Feb}
(111) 
_{Mar}
(153) 
_{Apr}
(114) 
_{May}
(88) 
_{Jun}
(201) 
_{Jul}
(158) 
_{Aug}
(124) 
_{Sep}
(101) 
_{Oct}
(149) 
_{Nov}
(160) 
_{Dec}
(68) 
2012 
_{Jan}
(74) 
_{Feb}
(68) 
_{Mar}
(121) 
_{Apr}
(92) 
_{May}
(172) 
_{Jun}
(100) 
_{Jul}
(85) 
_{Aug}
(65) 
_{Sep}
(74) 
_{Oct}
(105) 
_{Nov}
(76) 
_{Dec}
(21) 
2013 
_{Jan}
(101) 
_{Feb}
(57) 
_{Mar}
(76) 
_{Apr}
(35) 
_{May}
(43) 
_{Jun}
(50) 
_{Jul}
(32) 
_{Aug}
(50) 
_{Sep}
(33) 
_{Oct}
(58) 
_{Nov}
(26) 
_{Dec}
(49) 
2014 
_{Jan}
(46) 
_{Feb}
(49) 
_{Mar}
(54) 
_{Apr}
(33) 
_{May}
(46) 
_{Jun}
(57) 
_{Jul}
(34) 
_{Aug}
(36) 
_{Sep}
(69) 
_{Oct}
(37) 
_{Nov}
(27) 
_{Dec}
(57) 
2015 
_{Jan}
(25) 
_{Feb}
(52) 
_{Mar}
(97) 
_{Apr}
(41) 
_{May}
(44) 
_{Jun}
(36) 
_{Jul}
(27) 
_{Aug}
(33) 
_{Sep}
(29) 
_{Oct}
(45) 
_{Nov}
(23) 
_{Dec}
(23) 
2016 
_{Jan}
(6) 
_{Feb}
(31) 
_{Mar}
(17) 
_{Apr}
(41) 
_{May}
(31) 
_{Jun}
(51) 
_{Jul}
(12) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2
(1) 
3
(2) 
4
(6) 
5
(7) 
6
(5) 
7
(16) 
8
(3) 
9
(2) 
10
(3) 
11
(2) 
12
(5) 
13
(1) 
14
(16) 
15

16

17
(8) 
18
(5) 
19
(8) 
20
(10) 
21
(13) 
22

23

24
(3) 
25
(7) 
26
(5) 
27
(5) 
28
(2) 
29
(15) 
30
(1) 
31
(8) 





From: Willis Cheung <wcheung@pd...>  20110110 21:08:29

Thanks. I'm following the workaround by redefining my nested class in the interface file. However, the name of this nested class conflicts with another class (not nested). I am wondering if there is a workaround for this (without having to rename the nested class)? Original Message From: William Fulton [mailto:william@...] On Behalf Of William S Fulton Sent: Friday, January 07, 2011 11:23 AM To: wcheung@... Cc: swiguser@... Subject: Re: [Swiguser] swig nested class support On 07/01/11 09:34, wcheung@... wrote: > Hi, > > I'm wondering if there is like a beta version of swig available that > supports wrapping the c++ nested classes? If not, will they be any swig > future releases coming soon that will support this feature? There is no nested class development being done now or planned for the future that I am aware of. The latest nested class support and workarounds is documented here for 2.0: http://www.swig.org/Doc2.0/SWIGPlus.html#SWIGPlus_nested_classes William 
From: Mathieu Malaterre <mathieu.malaterre@gm...>  20110110 15:38:49

On Fri, Jan 7, 2011 at 8:33 PM, William S Fulton <wsf@...> wrote: > On 06/01/11 10:42, Mathieu Malaterre wrote: >> >> class my_vector >> { >> std::vector<int> I; >> public: >> typedef std::vector<int>::size_type SizeType; // not working >> //typedef size_t SizeType; // working >> >> SizeType Count() const; >> }; >> > > Add in an empty template instantiation to get the type system to recognise > it as you'd expect: > > %template() std::vector<int>; > > A named %template instantiation will work too, but that will generate a > proxy class for std::vector which you probably don't want. Thanks William ! You rock !  Mathieu 
From: Bill Birkett <wbirkett@do...>  20110110 13:34:41

Hello, SWIG list. I'm trying to create an interface between Perl and a particular LAPACK subroutine. On OS X, the vecLib framework contains an optimized version of CLAPACK and BLAS. I've created a SWIG wrapper, compiled and linked it successfully. But when I test the Perl module, it doesn't work as expected. No doubt I am missing a simple, yet important part of the process. Here is my interface file: /* Lapack.i */ %module "ICC::Support::Lapack" /* code in this section is passed verbatim to Lapack_wrap.c */ %{ #include <vecLib/clapack.h> %} #if defined(__LP64__) /* In LP64 match sizes with the 32 bit API */ typedef int __CLPK_integer; typedef int __CLPK_logical; typedef float __CLPK_real; typedef double __CLPK_doublereal; typedef __CLPK_logical (*__CLPK_L_fp)(); typedef int __CLPK_ftnlen; #else typedef long int __CLPK_integer; typedef long int __CLPK_logical; typedef float __CLPK_real; typedef double __CLPK_doublereal; typedef __CLPK_logical (*__CLPK_L_fp)(); typedef long int __CLPK_ftnlen; #endif typedef struct { __CLPK_real r, i; } __CLPK_complex; typedef struct { __CLPK_doublereal r, i; } __CLPK_doublecomplex; /* LAPACK subroutine dgels */ int dgels_(char *trans, __CLPK_integer *m, __CLPK_integer *n, __CLPK_integer * nrhs, __CLPK_doublereal *a, __CLPK_integer *lda, __CLPK_doublereal *b, __CLPK_integer *ldb, __CLPK_doublereal *work, __CLPK_integer *lwork, __CLPK_integer *info); The C code is extracted from the clapack.h header. This library contains hundreds of subroutines, but I only want to use the one named "dgels". The typedef statements are needed because there are multiple architectures on OS X. I've compiled a bundle containing libraries for i386, ppc and X86_64 architectures. All of that seems to work fine (no errors or warnings). My Perl test script is: #!/usr/bin/perl w # test program for subroutine dgels use Lapack; # Purpose # ======= # DGELS solves overdetermined or underdetermined real linear systems # involving an MbyN matrix A, or its transpose, using a QR or LQ # factorization of A. It is assumed that A has full rank. # The following options are provided: # 1. If TRANS = 'N' and m >= n: find the least squares solution of # an overdetermined system, i.e., solve the least squares problem # minimize  B  A*X . # 2. If TRANS = 'N' and m < n: find the minimum norm solution of # an underdetermined system A * X = B. # 3. If TRANS = 'T' and m >= n: find the minimum norm solution of # an undetermined system A**T * X = B. # 4. If TRANS = 'T' and m < n: find the least squares solution of # an overdetermined system, i.e., solve the least squares problem # minimize  B  A**T * X . # Several right hand side vectors b and solution vectors x can be # handled in a single call; they are stored as the columns of the # MbyNRHS right hand side matrix B and the NbyNRHS solution # matrix X. # Arguments # ========= # TRANS (input) CHARACTER*1 # = 'N': the linear system involves A; # = 'T': the linear system involves A**T. $TRANS = 'N'; # M (input) INTEGER # The number of rows of the matrix A. M >= 0. $M = 3; # N (input) INTEGER # The number of columns of the matrix A. N >= 0. $N = 3; # NRHS (input) INTEGER # The number of right hand sides, i.e., the number of # columns of the matrices B and X. NRHS >=0. $NRHS = 3; # A (input/output) DOUBLE PRECISION array, dimension (LDA,N) # On entry, the MbyN matrix A. # On exit, # if M >= N, A is overwritten by details of its QR # factorization as returned by DGEQRF; # if M < N, A is overwritten by details of its LQ # factorization as returned by DGELQF. $A = []; # LDA (input) INTEGER # The leading dimension of the array A. LDA >= max(1,M). $LDA = 1; # B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) # On entry, the matrix B of right hand side vectors, stored # columnwise; B is MbyNRHS if TRANS = 'N', or NbyNRHS # if TRANS = 'T'. # On exit, if INFO = 0, B is overwritten by the solution # vectors, stored columnwise: # if TRANS = 'N' and m >= n, rows 1 to n of B contain the least # squares solution vectors; the residual sum of squares for the # solution in each column is given by the sum of squares of # elements N+1 to M in that column; # if TRANS = 'N' and m < n, rows 1 to N of B contain the # minimum norm solution vectors; # if TRANS = 'T' and m >= n, rows 1 to M of B contain the # minimum norm solution vectors; # if TRANS = 'T' and m < n, rows 1 to M of B contain the # least squares solution vectors; the residual sum of squares # for the solution in each column is given by the sum of # squares of elements M+1 to N in that column. $B = []; # LDB (input) INTEGER # The leading dimension of the array B. LDB >= MAX(1,M,N). $LDB = 1; # WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) # On exit, if INFO = 0, WORK(1) returns the optimal LWORK. $WORK = []; # LWORK (input) INTEGER # The dimension of the array WORK. # LWORK >= max( 1, MN + max( MN, NRHS ) ). # For optimal performance, # LWORK >= max( 1, MN + max( MN, NRHS )*NB ). # where MN = min(M,N) and NB is the optimum block size. # If LWORK = 1, then a workspace query is assumed; the routine # only calculates the optimal size of the WORK array, returns # this value as the first entry of the WORK array, and no error # message related to LWORK is issued by XERBLA. $LWORK = 1; # INFO (output) INTEGER # = 0: successful exit # < 0: if INFO = i, the ith argument had an illegal value # > 0: if INFO = i, the ith diagonal element of the # triangular factor of A is zero, so that A does not have # full rank; the least squares solution could not be # computed. $INFO = undef; # ===================================================================== # call test subroutine ICC::Support::Lapack::dgels_($TRANS, $M, $N, $NRHS, $A, $LDA, $B, $LDB, $WORK, $LWORK, $INFO); When I run the test script, I get the error: TypeError in method 'dgels_', argument 2 of type '__CLPK_integer *' It looks like SWIG needs some additional input. Do I need to make a typemap file? I'd appreciate any suggestions and/or examples. Thanks, Bill  William B. Birkett  <wbirkett@...> Print Quality Consultant Doppelganger, LLC  http://www.doplganger.com/ 48799 Meadow Drive, Plymouth, MI 48170 (USA) Office: (734) 9274232 FAX: (734) 4680580 Cell: (734) 5164790 