From: LastRenshai <las...@us...> - 2005-07-29 15:59:46
|
Update of /cvsroot/stack/stack-1-0/lang/en/doc In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv27286/lang/en/doc Modified Files: student_factsformula.php Log Message: Index: student_factsformula.php =================================================================== RCS file: /cvsroot/stack/stack-1-0/lang/en/doc/student_factsformula.php,v retrieving revision 1.3 retrieving revision 1.4 diff -C2 -d -r1.3 -r1.4 *** student_factsformula.php 14 Jul 2005 08:46:52 -0000 1.3 --- student_factsformula.php 29 Jul 2005 15:59:31 -0000 1.4 *************** *** 330,338 **** \cos^2A={1+\cos 2A\over 2}$'; ! $stackFact['trig_notes_notation']['name'] = 'A Note on Trigonometric Notation'; ! $stackFact['trig_notes_notation']['fact'] = '$\sin^2 A$ is the notation used for $(\sin A)^2$. Similarly ! $\cos^2A$ means $(\cos A)^2$ etc. This notation is used with ! trigonometric and hyperbolic functions but with positive integer ! powers only.'; --- 330,353 ---- \cos^2A={1+\cos 2A\over 2}$'; ! $stackFact['part_frac']['name'] = 'Partial Fraction Form'; ! $stackFact['part_frac']['fact'] = '\noindent ! Partial Fraction Form is the result of reversing the process of adding fractions. ! It involves splitting a complicated rational expression into the sum of two or ! more simpler ones.\smallbreak \noindent ! Example: Find the partial form of ! $$\frac{5x + 14}{(x+1)(x+4)}$$ ! $$\frac{5x + 14}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+4}$$ ! $$5X+14=A(x+4) + B(x+1)$$ ! Let $$x=-4$$ ! Then $$5(-4) + 14 = 0 + B(-3)$$ ! $$-6 = -3B$$ ! $$B=2$$ ! Let $$x =-1$$ ! Then $$5(-1) + 14 = A(3) + 0$$ ! $$9 = 3A$$ ! $$A=3$$ ! Hence the partial fraction form of ! $$\frac{5x + 14}{(x+1)(x+4)}$$ is ! $$\frac{3}{x+1} + \frac{2}{x+4}$$.'; |