From: Natsumi K. <koi...@us...> - 2017-09-29 10:16:59
|
Update of /cvsroot/sp-tk/SPTK/doc/ref_e In directory sfp-cvs-1.v30.ch3.sourceforge.com:/tmp/cvs-serv15760 Modified Files: Makefile.in main.tex levdur.tex Added Files: rlevdur.tex Log Message: add manual of rlevdur command and modify manual of levdur command Index: Makefile.in =================================================================== RCS file: /cvsroot/sp-tk/SPTK/doc/ref_e/Makefile.in,v retrieving revision 1.37 retrieving revision 1.38 diff -C2 -d -r1.37 -r1.38 *** Makefile.in 31 Jul 2017 06:09:47 -0000 1.37 --- Makefile.in 29 Sep 2017 10:16:57 -0000 1.38 *************** *** 151,154 **** --- 151,155 ---- ramp.tex \ reverse.tex \ + rlevdur.tex \ rmse.tex \ root_pol.tex \ Index: levdur.tex =================================================================== RCS file: /cvsroot/sp-tk/SPTK/doc/ref_e/levdur.tex,v retrieving revision 1.25 retrieving revision 1.26 diff -C2 -d -r1.25 -r1.26 *** levdur.tex 16 May 2017 10:58:48 -0000 1.25 --- levdur.tex 29 Sep 2017 10:16:57 -0000 1.26 *************** *** 43,57 **** % ----------------------------------------------------------------- % \hypertarget{levdur}{} ! \name{levdur}{solve an autocorrelation normal equation using Levinson-Durbin method}{signal processing} \begin{synopsis} ! \item [levdur] [ --m $M$ ] [ --f $F$ ] [ {\em infile} ] \end{synopsis} \begin{qsection}{DESCRIPTION} ! {\em levdur} calculates linear prediction coefficients (LPC) ! from the autocorrelation matrix from {\em infile} (or standard input), sending the result to standard output. --- 43,57 ---- % ----------------------------------------------------------------- % \hypertarget{levdur}{} ! \name{levdur}{solve an autocorrelation normal equation using Levinson-Durbin method}{signal processing} \begin{synopsis} ! \item [levdur] [ --m $M$ ] [ --f $F$ ] [ {\em infile} ] \end{synopsis} \begin{qsection}{DESCRIPTION} ! {\em levdur} calculates linear prediction coefficients (LPC) ! from the autocorrelation matrix from {\em infile} (or standard input), sending the result to standard output. *************** *** 60,64 **** r(0),r(1),\dots,r(M). \end{displaymath} ! {\em levdur} uses the Levinson-Durbin algorithm to solve a system of linear equations obtained from the autocorrelation matrix. --- 60,64 ---- r(0),r(1),\dots,r(M). \end{displaymath} ! {\em levdur} uses the Levinson-Durbin algorithm to solve a system of linear equations obtained from the autocorrelation matrix. *************** *** 69,73 **** $K, a(1), \dots, a(M)$ of an all-pole digital filter \begin{displaymath} ! H(z) = \frac{K}{\displaystyle{1+\sum_{i=1}^{M}a(k)z^{-i}}}. \end{displaymath} The linear prediction coefficients are evaluated by solving --- 69,73 ---- $K, a(1), \dots, a(M)$ of an all-pole digital filter \begin{displaymath} ! H(z) = \frac{K}{\displaystyle{1+\sum_{i=1}^{M}a(i)z^{-i}}}. \end{displaymath} The linear prediction coefficients are evaluated by solving *************** *** 87,91 **** a(M) \\ \end{pmatrix} ! = - \begin{pmatrix} r(1) \\ --- 87,91 ---- a(M) \\ \end{pmatrix} ! = - \begin{pmatrix} r(1) \\ *************** *** 103,107 **** {E^{(i-1)}} \label{eqn:lev_dur_k}\notag\\ a^{(i)}(i) &= k(i) \notag\\ ! a^{(i)}(j) &= a^{(i-1)}(j) + k(i) a^{(i-1)}(i-j), \qquad 1\leq j \leq i-1\\ E^{(i)} &= (1-k^2(i)) E^{(i-1)} \label{eqn:lev_dur_E} --- 103,107 ---- {E^{(i-1)}} \label{eqn:lev_dur_k}\notag\\ a^{(i)}(i) &= k(i) \notag\\ ! a^{(i)}(j) &= a^{(i-1)}(j) + k(i) a^{(i-1)}(i-j), \qquad 1\leq j \leq i-1\\ E^{(i)} &= (1-k^2(i)) E^{(i-1)} \label{eqn:lev_dur_E} *************** *** 126,134 **** \begin{quote} \verb!frame < data.f | window | acorr -m 25 | levdur > data.lpc! ! \end{quote} \end{qsection} \begin{qsection}{NOTICE} ! The default value for -f option is zero as a trial. In the previous version, the default value is 1.0E-6. \end{qsection} --- 126,134 ---- \begin{quote} \verb!frame < data.f | window | acorr -m 25 | levdur > data.lpc! ! \end{quote} \end{qsection} \begin{qsection}{NOTICE} ! The default value for -f option is zero as a trial. In the previous version, the default value is 1.0E-6. \end{qsection} *************** *** 136,139 **** \begin{qsection}{SEE ALSO} \hyperlink{acorr}{acorr}, ! \hyperlink{lpc}{lpc} \end{qsection} --- 136,140 ---- \begin{qsection}{SEE ALSO} \hyperlink{acorr}{acorr}, ! \hyperlink{lpc}{lpc}, ! \hyperlink{rlevdur}{rlevdur} \end{qsection} --- NEW FILE: rlevdur.tex --- % ----------------------------------------------------------------- % % The Speech Signal Processing Toolkit (SPTK) % % developed by SPTK Working Group % % http://sp-tk.sourceforge.net/ % % ----------------------------------------------------------------- % % % % Copyright (c) 1984-2007 Tokyo Institute of Technology % % Interdisciplinary Graduate School of % % Science and Engineering % % % % 1996-2017 Nagoya Institute of Technology % % Department of Computer Science % % % % All rights reserved. % % % % Redistribution and use in source and binary forms, with or % % without modification, are permitted provided that the following % % conditions are met: % % % % - Redistributions of source code must retain the above copyright % % notice, this list of conditions and the following disclaimer. % % - Redistributions in binary form must reproduce the above % % copyright notice, this list of conditions and the following % % disclaimer in the documentation and/or other materials provided % % with the distribution. % % - Neither the name of the SPTK working group nor the names of its % % contributors may be used to endorse or promote products derived % % from this software without specific prior written permission. % % % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND % % CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, % % INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF % % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE % % DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS % % BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, % % EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED % % TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, % % DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON % % ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, % % OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY % % OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % % POSSIBILITY OF SUCH DAMAGE. % % ----------------------------------------------------------------- % \hypertarget{rlevdur}{} \name{rlevdur}{solve an autocorrelation normal equation using reverse Levinson-Durbin method}{signal processing} \begin{synopsis} \item [rlevdur] [ --m $M$ ] [ {\em infile} ] \end{synopsis} \begin{qsection}{DESCRIPTION} {\em rlevdur} calculates the autocorrelation matrix from the linear prediction coefficients (LPC) from {\em infile} (or standard input), sending the result to standard output. The input is the $M$-th order linear prediction coefficients which are the set of coefficients $K, a(1), \dots, a(M)$ of an all-pole digital filter \begin{displaymath} H(z) = \frac{K}{\displaystyle{1+\sum_{i=1}^{M}a(i)z^{-i}}}. \end{displaymath} {\em rlevdur} uses the reverse Levinson-Durbin algorithm to solve a system of linear equations obtained from linear prediction coefficients. Input and output data are in float format. The output is the $M$-th order autocorrelation matrix \begin{displaymath} r(0),r(1),\dots,r(M). \end{displaymath} The autocorrelation matrix are evaluated by solving the following set of linear equations, which were obtained through the autocorrelation method, \begin{displaymath} \begin{pmatrix} r(0) & r(1) & \dots & r(M-1) \\ r(1) & r(0) & & \vdots \\ \vdots & & \ddots & \\ r(M-1) & & \dots & r(0) \\ \end{pmatrix} \begin{pmatrix} a(1) \\ a(2) \\ \vdots \\ a(M) \\ \end{pmatrix} = - \begin{pmatrix} r(1) \\ r(2) \\ \vdots \\ r(M) \\ \end{pmatrix} \end{displaymath} The Durbin iterative and efficient algorithm is used to solve the system above. It takes advantage of the Toeplitz characteristic of the autocorrelation matrix. \end{qsection} \begin{options} \argm{m}{M}{order of correlation}{25} \end{options} \begin{qsection}{EXAMPLE} In this example, the linear prediction coefficients in float format are read from {\em data.lpc} and the CSM coefficients are written to {\em data.csm}: \begin{quote} \verb!lpc < data.lpc | rlevdur | acr2csm > data.csm! \end{quote} \end{qsection} \begin{qsection}{SEE ALSO} \hyperlink{lpc}{lpc}, \hyperlink{acr2csm}{acr2csm}, \hyperlink{levdur}{levdur} \end{qsection} Index: main.tex =================================================================== RCS file: /cvsroot/sp-tk/SPTK/doc/ref_e/main.tex,v retrieving revision 1.59 retrieving revision 1.60 diff -C2 -d -r1.59 -r1.60 *** main.tex 31 Jul 2017 06:09:47 -0000 1.59 --- main.tex 29 Sep 2017 10:16:57 -0000 1.60 *************** *** 274,277 **** --- 274,278 ---- \include{raw2wav} \include{reverse} + \include{rlevdur} \include{rmse} \include{root_pol} |