From: fujishita t. <fjs...@us...> - 2017-07-10 04:40:43
|
Update of /cvsroot/sp-tk/SPTK/doc/ref_e In directory sfp-cvs-1.v30.ch3.sourceforge.com:/tmp/cvs-serv30637 Modified Files: norm0.tex Log Message: modify manual of norm0 command Index: norm0.tex =================================================================== RCS file: /cvsroot/sp-tk/SPTK/doc/ref_e/norm0.tex,v retrieving revision 1.21 retrieving revision 1.22 diff -C2 -d -r1.21 -r1.22 *** norm0.tex 22 Dec 2016 10:52:58 -0000 1.21 --- norm0.tex 10 Jul 2017 04:40:41 -0000 1.22 *************** *** 54,64 **** sending the result to standard output. ! For the input sequence \begin{displaymath} ! x(0), x(1), \dots, x(M), \end{displaymath} ! the normalized output sequence is \begin{displaymath} ! 1/x(0), x(1)/x(0), \dots, x(M)/x(0). \end{displaymath} --- 54,76 ---- sending the result to standard output. ! If the input data is a set of coefficients ! $b(0), b(1), \dots, b(M)$ of an all zero digital filter, \begin{displaymath} ! H(z) = \sum_{m=0}^{M} b(m) z^{-m}, \end{displaymath} ! the output data will be a set of coefficients ! $K, a(1), \dots, a(M)$ of an all pole digital filter: ! \begin{align} ! H(z) &= \frac{\displaystyle{\frac{1}{b(0)}}}{\displaystyle{1+\sum_{m=1}^{M}\frac{b(m)}{b(0)}z^{-m}}} \notag \\ ! &\equiv \frac{K}{\displaystyle{1+\sum_{m=1}^{M}a(m)z^{-m}}} \notag ! \end{align} ! Conversely, when a set of coefficients of an all pole digital filter is inputted, a set of coefficients of an all zero digital filter will be outputted. ! In this case, the input sequence \begin{displaymath} ! K, a(1), \dots, a(M) ! \end{displaymath} ! is normalized as follows. ! \begin{displaymath} ! 1/K, a(1)/K, \dots, a(M)/K \end{displaymath} *************** *** 71,80 **** \begin{qsection}{EXAMPLE} ! Speech data is read from {\em data.f} in float format, ! the 15-th order autocorrelation coefficients are evaluated ! and normalized, and the results is written to {\em data.nacorr}: \begin{quote} ! \verb!frame < data.f | window | acorr -m 15 |\ !\\ ! \verb!norm0 -m 15 > data.nacorr! \end{quote} \end{qsection} --- 83,89 ---- \begin{qsection}{EXAMPLE} ! In the example below, 15-th order coefficients of an all zero digital filter in float format are read from {\em data.z}, and then the coefficients of an all pole digital filter are written to {\em data.p}: \begin{quote} ! \verb!norm0 -m 15 data.z > data.p! \end{quote} \end{qsection} |