Simulation on energy management of an uneven clustered EH-WSNs by cooperative q-learning

Power management in wireless sensor networks (WSNs) is very important due to the limited energy of batteries. Sensor nodes with harvesters can extract energy from environmental sources as supplemental energy to break this limitation. In a clustered solar-powered sensor network where nodes in the network are grouped into clusters, data collected by cluster members are sent to their cluster head and finally transmitted to the base station. The goal of the whole network is to maintain an energy neutrality state and to maximize the effective data throughput of the network. The cooperative Q-learning is applied in this multi-agent environment the solar-powered wireless sensor networks to keep harvested energy more balanced among the whole clustered network.

Project Activity

See All Activity >

Follow Simulation on Clustered EH-WSNs

Simulation on Clustered EH-WSNs Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

The database for AI-powered applications.

MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Rate This Project
Login To Rate This Project

User Ratings

★★★★★
★★★★
★★★
★★
0
0
1
0
0
ease 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
features 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
design 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
support 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5

User Reviews

  • ABC
Read more reviews >

Additional Project Details

Registered

2021-02-15