sFFT-4.0 Code
Brought to you by:
alexparrado
File | Date | Author | Commit |
---|---|---|---|
Makefile | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
README | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
estimate-values.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
estimate-values.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
fft.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
fft.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
flat-windows.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
flat-windows.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
gnuplot_i.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
gnuplot_i.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
hash-to-bins.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
hash-to-bins.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
locate-signal.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
locate-signal.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
sfft4.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
sfft4.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
test-sfft42-1.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
test-sfft42-2.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
test-sfft42-3.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
timer.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
timer.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
utils.c | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
utils.h | 2015-06-24 |
![]() |
[ccd78c] Initial commit |
sFFT-4.0 is the implementation of the MIT's Nearly Optimal Sparse Fast Fourier Transform Algorithm. Compiling ------------- Prerequisites: Intel C Compiler or change Makefile to use GNU C Compiler, FFTW3 library for development. Just run make at folder. After compilation three executable binary files are created: test-sfft42-1, test-sfft42-2, and test-sfft42-3. Running tests ------------------ Run ./test-sfft42-1 to get a simple test that plots results using GNUplot. Run ./test-sfft42-2 to get a test that measures average runtimes compared with FFTW in terms of signal size and sparsity order. Run ./test-sfft42-3 to get a simple without using GNUplot.