File | Date | Author | Commit |
---|---|---|---|
.idea | 2019-12-22 |
![]() |
[6fc907] Change Biopython option to subprocess to run bl... |
calculate | 2019-12-22 |
![]() |
[6a6e60] Round option changed |
examples | 2019-09-16 |
![]() |
[07eead] Modifications of GUI and author format change o... |
ui | 2019-09-16 |
![]() |
[d88a3b] Cherry Picking at merge and matrix plot impleme... |
.gitignore | 2019-12-22 |
![]() |
[3eaef7] GUI modifications and all matrix calculations f... |
LICENSE | 2019-09-16 |
![]() |
[102cd7] Create LICENSE |
README.md | 2020-01-09 |
![]() |
[8c45b0] Authors and bibliographical references modifica... |
SeqDivA.py | 2019-12-22 |
![]() |
[470b14] Revert "Change Biopython option to subprocess t... |
requirements.txt | 2019-12-22 |
![]() |
[3eaef7] GUI modifications and all matrix calculations f... |
Sequence Diversity Analysis
Sequence Diversity Analysis - SeqDivA version 1.0 is a python-based tool with a friendly GUI designed for Linux and Mac OS.
Utility: Run alignment algorithms (water, needle, and blast) to compare all-vs.-all protein, DNA, and RNA sequences. SeqDivA provides similarity, identity, and bit-score matrixes and dot plots to explore/illustrate the diversity (homology degree) of the sequences, enabling the delimitation of the twilight zone.
Installation Prerequisites:
matplotlib
numpy
pandas
pyqt
biopython
Installation:
Download SeqDivA at https://github.com/eancedeg/SeqDivA
decompress the “.zip or tar.gz” file
Load the graphical interface by executing python SeqDivA.py. Python 3.7 is recommended.
Authors:
Evys Ancede-Gallardo (eancedeg@gmail.com), Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile.
Guillermin Agüero-Chapin (gaguero@gmail.com), CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Portugal
Reference: Agüero-Chapin, G., Galpert, D., Molina-Ruiz, R., Ancede-Gallardo, E., Pérez-Machado, G., De la Riva, G. A., & Antunes, A. (2019). Graph Theory-Based Sequence Descriptors as Remote Homology Predictors. Biomolecules, 10(1), 26. https://doi.org/10.3390/biom10010026