From: Wolfgang Grandegger <wg...@de...>
This patch adds a driver for the FEC Ethernet controllers available
on various SOCs of PowerPC and ARM processors from Freescale, e.g.
MPC8xx and i.MXn, n=[25,27,28,31,35,51,53,6Q,...].
It's derived from the files "drivers/net/ethernet/freescale/fec.[ch]"
of the mainline Linux 3.5 kernel (git tag v3.5-709-ga6be1fc).
To simplify the backport of Linux patches for the FEC driver, code
changes are minimized. Therefore existing coding style issues have
also not been addressed.
Due to heavy changes of the clock, platform and device-tree support,
version dependent switches are necessary (using LINUX_VERSION_CODE)
to support recent kernel versions >= 3.0.
The driver have been tested with v3.0.15 on an i.MX53 and i.MX6Q
board.
Signed-off-by: Wolfgang Grandegger <wg...@de...>
---
configure.ac | 11 +
drivers/GNUmakefile.am | 18 +
drivers/rt_fec.c | 1940 ++++++++++++++++++++++++++++++++++++++++++++++++
drivers/rt_fec.h | 153 ++++
4 files changed, 2122 insertions(+)
create mode 100644 drivers/rt_fec.c
create mode 100644 drivers/rt_fec.h
diff --git a/configure.ac b/configure.ac
index 88462d2..abedca3 100644
--- a/configure.ac
+++ b/configure.ac
@@ -921,6 +921,17 @@ AC_MSG_RESULT([${CONFIG_RTNET_DRV_MPC52XX_FEC:-n}])
AM_CONDITIONAL(CONFIG_RTNET_DRV_MPC52XX_FEC,[test "$CONFIG_RTNET_DRV_MPC52XX_FEC" = "y"])
+AC_MSG_CHECKING([whether to build fec enet driver])
+AC_ARG_ENABLE(fec,
+ AS_HELP_STRING([--enable-fec], [build fec driver]),
+ [case "$enableval" in
+ y | yes) CONFIG_RTNET_DRV_FEC=y ;;
+ *) CONFIG_RTNET_DRV_FEC=n ;;
+ esac])
+AC_MSG_RESULT([${CONFIG_RTNET_DRV_FEC:-n}])
+AM_CONDITIONAL(CONFIG_RTNET_DRV_FEC,[test "$CONFIG_RTNET_DRV_FEC" = "y"])
+
+
AC_MSG_CHECKING([whether to build SMSC LAN91C111 driver])
AC_ARG_ENABLE(smc91111,
AS_HELP_STRING([--enable-smc91111], [build SMSC LAN91C111 driver]),
diff --git a/drivers/GNUmakefile.am b/drivers/GNUmakefile.am
index 9ebb290..5f66e68 100644
--- a/drivers/GNUmakefile.am
+++ b/drivers/GNUmakefile.am
@@ -34,6 +34,7 @@ EXTRA_LIBRARIES = \
libkernel_mpc8260_fcc_enet.a \
libkernel_mpc8xx_enet.a \
libkernel_mpc8xx_fec.a \
+ libkernel_fec.a \
libkernel_natsemi.a \
libkernel_pcnet32.a \
libkernel_smc91111.a \
@@ -108,6 +109,14 @@ libkernel_mpc8xx_fec_a_CPPFLAGS = \
libkernel_mpc8xx_fec_a_SOURCES = \
rt_mpc8xx_fec.c
+libkernel_fec_a_CPPFLAGS = \
+ $(RTEXT_KMOD_CFLAGS) \
+ -I$(top_srcdir)/stack/include \
+ -I$(top_builddir)/stack/include
+
+libkernel_fec_a_SOURCES = \
+ rt_fec.c
+
libkernel_natsemi_a_CPPFLAGS = \
$(RTEXT_KMOD_CFLAGS) \
-I$(top_srcdir)/stack/include \
@@ -185,6 +194,10 @@ if CONFIG_RTNET_DRV_FEC_ENET
OBJS += rt_mpc8xx_fec$(modext)
endif
+if CONFIG_RTNET_DRV_FEC
+OBJS += rt_fec$(modext)
+endif
+
if CONFIG_RTNET_DRV_NATSEMI
OBJS += rt_natsemi$(modext)
endif
@@ -229,6 +242,9 @@ rt_mpc8xx_enet.o: libkernel_mpc8xx_enet.a
rt_mpc8xx_fec.o: libkernel_mpc8xx_fec.a
$(LD) --whole-archive $< -r -o $@
+rt_fec.o: libkernel_fec.a
+ $(LD) --whole-archive $< -r -o $@
+
rt_natsemi.o: libkernel_natsemi.a
$(LD) --whole-archive $< -r -o $@
@@ -258,6 +274,7 @@ all-local.ko: $(libkernel_8139too_a_SOURCES) \
$(libkernel_mpc8260_fcc_enet_a_SOURCES) \
$(libkernel_mpc8xx_enet_a_SOURCES) \
$(libkernel_mpc8xx_fec_a_SOURCES) \
+ $(libkernel_fec_a_SOURCES) \
$(libkernel_natsemi_a_SOURCES) \
$(libkernel_pcnet32_a_SOURCES) \
$(libkernel_smc91111_a_SOURCES) \
@@ -280,6 +297,7 @@ clean-local: $(libkernel_8139too_a_SOURCES) \
$(libkernel_mpc8260_fcc_enet_a_SOURCES) \
$(libkernel_mpc8xx_enet_a_SOURCES) \
$(libkernel_mpc8xx_fec_a_SOURCES) \
+ $(libkernel_fec_a_SOURCES) \
$(libkernel_natsemi_a_SOURCES) \
$(libkernel_pcnet32_a_SOURCES) \
$(libkernel_smc91111_a_SOURCES) \
diff --git a/drivers/rt_fec.c b/drivers/rt_fec.c
new file mode 100644
index 0000000..a5a1022
--- /dev/null
+++ b/drivers/rt_fec.c
@@ -0,0 +1,1940 @@
+/*
+ * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
+ * Copyright (c) 1997 Dan Malek (dm...@jl...)
+ *
+ * Right now, I am very wasteful with the buffers. I allocate memory
+ * pages and then divide them into 2K frame buffers. This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ * Much better multiple PHY support by Magnus Damm.
+ * Copyright (c) 2000 Ericsson Radio Systems AB.
+ *
+ * Support for FEC controller of ColdFire processors.
+ * Copyright (c) 2001-2005 Greg Ungerer (ge...@sn...)
+ *
+ * Bug fixes and cleanup by Philippe De Muyter (ph...@ma...)
+ * Copyright (c) 2004-2006 Macq Electronique SA.
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ *
+ * Ported from v3.5 Linux drivers/net/ethernet/freescale/fec.[ch]
+ * (git tag v3.5-709-ga6be1fc)
+ *
+ * Copyright (c) 2012 Wolfgang Grandegger <wg...@de...>
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/version.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/spinlock.h>
+#include <linux/workqueue.h>
+#include <linux/bitops.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/clk.h>
+#include <linux/platform_device.h>
+#include <linux/phy.h>
+#include <linux/fec.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/of_gpio.h>
+#include <linux/of_net.h>
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+#include <linux/pinctrl/consumer.h>
+#endif
+
+#include <asm/cacheflush.h>
+
+#ifndef CONFIG_ARM
+#include <asm/coldfire.h>
+#include <asm/mcfsim.h>
+#endif
+
+/* RTnet */
+#include <rtnet_port.h>
+#include <rtskb.h>
+
+/* RTnet */
+#include "rt_fec.h"
+
+MODULE_AUTHOR("Maintainer: Wolfgang Grandegger <wg...@de...>");
+MODULE_DESCRIPTION("RTnet driver for the FEC Ethernet");
+MODULE_LICENSE("GPL");
+
+#if LINUX_VERSION_CODE < KERNEL_VERSION(3,3,0)
+#define clk_prepare_enable(clk) do { clk_enable(clk); } while(0)
+#define clk_disable_unprepare(clk) do { clk_disable(clk); } while(0)
+#endif
+
+#if defined(CONFIG_ARM)
+#define FEC_ALIGNMENT 0xf
+#else
+#define FEC_ALIGNMENT 0x3
+#endif
+
+#define DRIVER_NAME "rt_fec"
+
+/* Controller is ENET-MAC */
+#define FEC_QUIRK_ENET_MAC (1 << 0)
+/* Controller needs driver to swap frame */
+#define FEC_QUIRK_SWAP_FRAME (1 << 1)
+/* Controller uses gasket */
+#define FEC_QUIRK_USE_GASKET (1 << 2)
+/* Controller has GBIT support */
+#define FEC_QUIRK_HAS_GBIT (1 << 3)
+
+static struct platform_device_id fec_devtype[] = {
+ {
+ .name = "fec",
+/* For legacy not devicetree based support */
+#if defined(CONFIG_SOC_IMX6Q)
+ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
+#elif defined(CONFIG_SOC_IMX28)
+ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
+#elif defined(CONFIG_SOC_IMX25)
+ .driver_data = FEC_QUIRK_USE_GASKET,
+#else
+ /* keep it for coldfire */
+ .driver_data = 0,
+#endif
+ }, {
+ .name = "imx25-fec",
+ .driver_data = FEC_QUIRK_USE_GASKET,
+ }, {
+ .name = "imx27-fec",
+ .driver_data = 0,
+ }, {
+ .name = "imx28-fec",
+ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
+ }, {
+ .name = "imx6q-fec",
+ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
+ }, {
+ /* sentinel */
+ }
+};
+MODULE_DEVICE_TABLE(platform, fec_devtype);
+
+enum imx_fec_type {
+ IMX25_FEC = 1, /* runs on i.mx25/50/53 */
+ IMX27_FEC, /* runs on i.mx27/35/51 */
+ IMX28_FEC,
+ IMX6Q_FEC,
+};
+
+static const struct of_device_id fec_dt_ids[] = {
+ { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
+ { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
+ { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
+ { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, fec_dt_ids);
+
+static unsigned char macaddr[ETH_ALEN];
+module_param_array(macaddr, byte, NULL, 0);
+MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
+
+#if defined(CONFIG_M5272)
+/*
+ * Some hardware gets it MAC address out of local flash memory.
+ * if this is non-zero then assume it is the address to get MAC from.
+ */
+#if defined(CONFIG_NETtel)
+#define FEC_FLASHMAC 0xf0006006
+#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
+#define FEC_FLASHMAC 0xf0006000
+#elif defined(CONFIG_CANCam)
+#define FEC_FLASHMAC 0xf0020000
+#elif defined (CONFIG_M5272C3)
+#define FEC_FLASHMAC (0xffe04000 + 4)
+#elif defined(CONFIG_MOD5272)
+#define FEC_FLASHMAC 0xffc0406b
+#else
+#define FEC_FLASHMAC 0
+#endif
+#endif /* CONFIG_M5272 */
+
+/* The number of Tx and Rx buffers. These are allocated from the page
+ * pool. The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter. We just use
+ * the skbuffer directly.
+ */
+#define FEC_ENET_RX_PAGES 8
+#define FEC_ENET_RX_FRSIZE RTSKB_SIZE /* Maximum size for RTnet */
+#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define FEC_ENET_TX_FRSIZE 2048
+#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
+#define TX_RING_SIZE 16 /* Must be power of two */
+#define TX_RING_MOD_MASK 15 /* for this to work */
+
+#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
+#error "FEC: descriptor ring size constants too large"
+#endif
+
+/* Interrupt events/masks. */
+#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
+#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
+#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
+#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
+#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
+#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
+#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
+#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
+#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
+#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
+
+#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
+
+/* The FEC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE 1518
+#define PKT_MINBUF_SIZE 64
+#define PKT_MAXBLR_SIZE 1520
+
+/* This device has up to three irqs on some platforms */
+#define FEC_IRQ_NUM 3
+
+/*
+ * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
+ * size bits. Other FEC hardware does not, so we need to take that into
+ * account when setting it.
+ */
+#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
+ defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
+#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
+#else
+#define OPT_FRAME_SIZE 0
+#endif
+
+static unsigned int rx_pool_size = 2 * RX_RING_SIZE;
+module_param(rx_pool_size, int, 0444);
+MODULE_PARM_DESC(rx_pool_size, "Receive buffer pool size");
+
+#ifndef rtnetdev_priv
+#define rtnetdev_priv(ndev) (ndev)->priv
+#endif
+
+/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors. The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller. The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions. The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fec_enet_private {
+ /* Hardware registers of the FEC device */
+ void __iomem *hwp;
+
+ struct net_device *netdev; /* linux netdev needed for phy handling */
+
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ struct clk *clk_ipg;
+ struct clk *clk_ahb;
+#else
+ struct clk *clk;
+#endif
+
+ /* The saved address of a sent-in-place packet/buffer, for skfree(). */
+ unsigned char *tx_bounce[TX_RING_SIZE];
+ struct rtskb *tx_skbuff[TX_RING_SIZE];
+ struct rtskb *rx_skbuff[RX_RING_SIZE];
+ ushort skb_cur;
+ ushort skb_dirty;
+
+ /* CPM dual port RAM relative addresses */
+ dma_addr_t bd_dma;
+ /* Address of Rx and Tx buffers */
+ struct bufdesc *rx_bd_base;
+ struct bufdesc *tx_bd_base;
+ /* The next free ring entry */
+ struct bufdesc *cur_rx, *cur_tx;
+ /* The ring entries to be free()ed */
+ struct bufdesc *dirty_tx;
+
+ uint tx_full;
+ /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
+ rtdm_lock_t hw_lock;
+
+ struct platform_device *pdev;
+
+ int opened;
+ int dev_id;
+
+ /* Phylib and MDIO interface */
+ struct mii_bus *mii_bus;
+ struct phy_device *phy_dev;
+ int mii_timeout;
+ uint phy_speed;
+ phy_interface_t phy_interface;
+ int link;
+ int full_duplex;
+ struct completion mdio_done;
+ int irq[FEC_IRQ_NUM];
+
+ /* RTnet */
+ struct device *dev;
+ rtdm_irq_t irq_handle[3];
+ rtdm_nrtsig_t mdio_done_sig;
+ struct rtskb_queue skb_pool;
+ struct net_device_stats stats;
+};
+
+/* For phy handling */
+struct fec_enet_netdev_priv {
+ struct rtnet_device *rtdev;
+};
+
+/* FEC MII MMFR bits definition */
+#define FEC_MMFR_ST (1 << 30)
+#define FEC_MMFR_OP_READ (2 << 28)
+#define FEC_MMFR_OP_WRITE (1 << 28)
+#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
+#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
+#define FEC_MMFR_TA (2 << 16)
+#define FEC_MMFR_DATA(v) (v & 0xffff)
+
+#define FEC_MII_TIMEOUT 30000 /* us */
+
+/* Transmitter timeout */
+#define TX_TIMEOUT (2 * HZ)
+
+static int mii_cnt;
+
+static void *swap_buffer(void *bufaddr, int len)
+{
+ int i;
+ unsigned int *buf = bufaddr;
+
+ for (i = 0; i < (len + 3) / 4; i++, buf++)
+ *buf = cpu_to_be32(*buf);
+
+ return bufaddr;
+}
+
+static int
+fec_enet_start_xmit(struct rtskb *skb, struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ struct bufdesc *bdp;
+ void *bufaddr;
+ unsigned short status;
+ unsigned long context;
+
+ if (!fep->link) {
+ /* Link is down or autonegotiation is in progress. */
+ printk("%s: tx link down!.\n", ndev->name);
+ rtnetif_stop_queue(ndev);
+ return 1; /* RTnet: will call kfree_rtskb() */
+ }
+
+ rtdm_lock_get_irqsave(&fep->hw_lock, context);
+
+ /* RTnet */
+ if (skb->xmit_stamp)
+ *skb->xmit_stamp = cpu_to_be64(rtdm_clock_read() +
+ *skb->xmit_stamp);
+
+ /* Fill in a Tx ring entry */
+ bdp = fep->cur_tx;
+
+ status = bdp->cbd_sc;
+
+ if (status & BD_ENET_TX_READY) {
+ /* Ooops. All transmit buffers are full. Bail out.
+ * This should not happen, since ndev->tbusy should be set.
+ */
+ printk("%s: tx queue full!.\n", ndev->name);
+ rtdm_lock_put_irqrestore(&fep->hw_lock, context);
+ return 1; /* RTnet: will call kfree_rtskb() */
+ }
+
+ /* Clear all of the status flags */
+ status &= ~BD_ENET_TX_STATS;
+
+ /* Set buffer length and buffer pointer */
+ bufaddr = skb->data;
+ bdp->cbd_datlen = skb->len;
+
+ /*
+ * On some FEC implementations data must be aligned on
+ * 4-byte boundaries. Use bounce buffers to copy data
+ * and get it aligned. Ugh.
+ */
+ if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
+ unsigned int index;
+ index = bdp - fep->tx_bd_base;
+ memcpy(fep->tx_bounce[index], skb->data, skb->len);
+ bufaddr = fep->tx_bounce[index];
+ }
+
+ /*
+ * Some design made an incorrect assumption on endian mode of
+ * the system that it's running on. As the result, driver has to
+ * swap every frame going to and coming from the controller.
+ */
+ if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
+ swap_buffer(bufaddr, skb->len);
+
+ /* Save skb pointer */
+ fep->tx_skbuff[fep->skb_cur] = skb;
+
+ fep->stats.tx_bytes += skb->len;
+ fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
+
+ /* Push the data cache so the CPM does not get stale memory
+ * data.
+ */
+ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
+ FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
+
+ /* Send it on its way. Tell FEC it's ready, interrupt when done,
+ * it's the last BD of the frame, and to put the CRC on the end.
+ */
+ status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
+ | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+ bdp->cbd_sc = status;
+
+ /* Trigger transmission start */
+ writel(0, fep->hwp + FEC_X_DES_ACTIVE);
+
+ /* If this was the last BD in the ring, start at the beginning again. */
+ if (status & BD_ENET_TX_WRAP)
+ bdp = fep->tx_bd_base;
+ else
+ bdp++;
+
+ if (bdp == fep->dirty_tx) {
+ fep->tx_full = 1;
+ rtnetif_stop_queue(ndev);
+ }
+
+ fep->cur_tx = bdp;
+
+ rtdm_lock_put_irqrestore(&fep->hw_lock, context);
+
+ return NETDEV_TX_OK;
+}
+
+/* This function is called to start or restart the FEC during a link
+ * change. This only happens when switching between half and full
+ * duplex.
+ */
+static void
+fec_restart(struct rtnet_device *ndev, int duplex)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ int i;
+ u32 temp_mac[2];
+ u32 rcntl = OPT_FRAME_SIZE | 0x04;
+ u32 ecntl = 0x2; /* ETHEREN */
+
+ /* Whack a reset. We should wait for this. */
+ writel(1, fep->hwp + FEC_ECNTRL);
+ udelay(10);
+
+ /*
+ * enet-mac reset will reset mac address registers too,
+ * so need to reconfigure it.
+ */
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
+ memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
+ writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
+ writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
+ }
+
+ /* Clear any outstanding interrupt. */
+ writel(0xffc00000, fep->hwp + FEC_IEVENT);
+
+ /* Reset all multicast. */
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+#ifndef CONFIG_M5272
+ writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
+ writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
+#endif
+
+ /* Set maximum receive buffer size. */
+ writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
+
+ /* Set receive and transmit descriptor base. */
+ writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
+ writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
+ fep->hwp + FEC_X_DES_START);
+
+ fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+ fep->cur_rx = fep->rx_bd_base;
+
+ /* Reset SKB transmit buffers. */
+ fep->skb_cur = fep->skb_dirty = 0;
+ for (i = 0; i <= TX_RING_MOD_MASK; i++) {
+ if (fep->tx_skbuff[i]) {
+ dev_kfree_rtskb(fep->tx_skbuff[i]);
+ fep->tx_skbuff[i] = NULL;
+ }
+ }
+
+ /* Enable MII mode */
+ if (duplex) {
+ /* FD enable */
+ writel(0x04, fep->hwp + FEC_X_CNTRL);
+ } else {
+ /* No Rcv on Xmit */
+ rcntl |= 0x02;
+ writel(0x0, fep->hwp + FEC_X_CNTRL);
+ }
+
+ fep->full_duplex = duplex;
+
+ /* Set MII speed */
+ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+
+ /*
+ * The phy interface and speed need to get configured
+ * differently on enet-mac.
+ */
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
+ /* Enable flow control and length check */
+ rcntl |= 0x40000000 | 0x00000020;
+
+ /* RGMII, RMII or MII */
+ if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
+ rcntl |= (1 << 6);
+ else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
+ rcntl |= (1 << 8);
+ else
+ rcntl &= ~(1 << 8);
+
+ /* 1G, 100M or 10M */
+ if (fep->phy_dev) {
+ if (fep->phy_dev->speed == SPEED_1000)
+ ecntl |= (1 << 5);
+ else if (fep->phy_dev->speed == SPEED_100)
+ rcntl &= ~(1 << 9);
+ else
+ rcntl |= (1 << 9);
+ }
+ } else {
+#ifdef FEC_MIIGSK_ENR
+ if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
+ u32 cfgr;
+ /* disable the gasket and wait */
+ writel(0, fep->hwp + FEC_MIIGSK_ENR);
+ while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
+ udelay(1);
+
+ /*
+ * configure the gasket:
+ * RMII, 50 MHz, no loopback, no echo
+ * MII, 25 MHz, no loopback, no echo
+ */
+ cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
+ ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
+ if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
+ cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
+ writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
+
+ /* re-enable the gasket */
+ writel(2, fep->hwp + FEC_MIIGSK_ENR);
+ }
+#endif
+ }
+ writel(rcntl, fep->hwp + FEC_R_CNTRL);
+
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
+ /* enable ENET endian swap */
+ ecntl |= (1 << 8);
+ /* enable ENET store and forward mode */
+ writel(1 << 8, fep->hwp + FEC_X_WMRK);
+ }
+
+ /* And last, enable the transmit and receive processing */
+ writel(ecntl, fep->hwp + FEC_ECNTRL);
+ writel(0, fep->hwp + FEC_R_DES_ACTIVE);
+
+ /* Enable interrupts we wish to service */
+ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
+}
+
+static void
+fec_stop(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
+
+ /* We cannot expect a graceful transmit stop without link !!! */
+ if (fep->link) {
+ writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
+ udelay(10);
+ if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
+ printk("fec_stop : Graceful transmit stop did not complete !\n");
+ }
+
+ /* Whack a reset. We should wait for this. */
+ writel(1, fep->hwp + FEC_ECNTRL);
+ udelay(10);
+ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
+
+ /* We have to keep ENET enabled to have MII interrupt stay working */
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
+ writel(2, fep->hwp + FEC_ECNTRL);
+ writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
+ }
+}
+
+static void
+fec_enet_tx(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep;
+ struct bufdesc *bdp;
+ unsigned short status;
+ struct rtskb *skb;
+
+ fep = rtnetdev_priv(ndev);
+ rtdm_lock_get(&fep->hw_lock);
+ bdp = fep->dirty_tx;
+
+ while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
+ if (bdp == fep->cur_tx && fep->tx_full == 0)
+ break;
+
+ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
+ FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
+ bdp->cbd_bufaddr = 0;
+
+ skb = fep->tx_skbuff[fep->skb_dirty];
+ /* Check for errors. */
+ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
+ BD_ENET_TX_RL | BD_ENET_TX_UN |
+ BD_ENET_TX_CSL)) {
+ fep->stats.tx_errors++;
+ if (status & BD_ENET_TX_HB) /* No heartbeat */
+ fep->stats.tx_heartbeat_errors++;
+ if (status & BD_ENET_TX_LC) /* Late collision */
+ fep->stats.tx_window_errors++;
+ if (status & BD_ENET_TX_RL) /* Retrans limit */
+ fep->stats.tx_aborted_errors++;
+ if (status & BD_ENET_TX_UN) /* Underrun */
+ fep->stats.tx_fifo_errors++;
+ if (status & BD_ENET_TX_CSL) /* Carrier lost */
+ fep->stats.tx_carrier_errors++;
+ } else {
+ fep->stats.tx_packets++;
+ }
+
+ if (status & BD_ENET_TX_READY)
+ printk("HEY! Enet xmit interrupt and TX_READY.\n");
+
+ /* Deferred means some collisions occurred during transmit,
+ * but we eventually sent the packet OK.
+ */
+ if (status & BD_ENET_TX_DEF)
+ fep->stats.collisions++;
+
+ /* Free the sk buffer associated with this last transmit */
+ dev_kfree_rtskb(skb); /* RTnet */
+ fep->tx_skbuff[fep->skb_dirty] = NULL;
+ fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
+
+ /* Update pointer to next buffer descriptor to be transmitted */
+ if (status & BD_ENET_TX_WRAP)
+ bdp = fep->tx_bd_base;
+ else
+ bdp++;
+
+ /* Since we have freed up a buffer, the ring is no longer full
+ */
+ if (fep->tx_full) {
+ fep->tx_full = 0;
+ if (rtnetif_queue_stopped(ndev))
+ rtnetif_wake_queue(ndev);
+ }
+ }
+ fep->dirty_tx = bdp;
+ rtdm_lock_put(&fep->hw_lock);
+}
+
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static void
+fec_enet_rx(struct rtnet_device *ndev, int *packets, nanosecs_abs_t *time_stamp)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ struct bufdesc *bdp;
+ unsigned short status;
+ struct rtskb *skb;
+ ushort pkt_len;
+ __u8 *data;
+
+#ifdef CONFIG_M532x
+ flush_cache_all();
+#endif
+ rtdm_lock_get(&fep->hw_lock);
+
+ /* First, grab all of the stats for the incoming packet.
+ * These get messed up if we get called due to a busy condition.
+ */
+ bdp = fep->cur_rx;
+
+ while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
+
+ /* Since we have allocated space to hold a complete frame,
+ * the last indicator should be set.
+ */
+ if ((status & BD_ENET_RX_LAST) == 0)
+ printk("FEC ENET: rcv is not +last\n");
+
+ if (!fep->opened)
+ goto rx_processing_done;
+
+ /* Check for errors. */
+ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
+ BD_ENET_RX_CR | BD_ENET_RX_OV)) {
+ fep->stats.rx_errors++;
+ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
+ /* Frame too long or too short. */
+ fep->stats.rx_length_errors++;
+ }
+ if (status & BD_ENET_RX_NO) /* Frame alignment */
+ fep->stats.rx_frame_errors++;
+ if (status & BD_ENET_RX_CR) /* CRC Error */
+ fep->stats.rx_crc_errors++;
+ if (status & BD_ENET_RX_OV) /* FIFO overrun */
+ fep->stats.rx_fifo_errors++;
+ }
+
+ /* Report late collisions as a frame error.
+ * On this error, the BD is closed, but we don't know what we
+ * have in the buffer. So, just drop this frame on the floor.
+ */
+ if (status & BD_ENET_RX_CL) {
+ fep->stats.rx_errors++;
+ fep->stats.rx_frame_errors++;
+ goto rx_processing_done;
+ }
+
+ /* Process the incoming frame. */
+ fep->stats.rx_packets++;
+ pkt_len = bdp->cbd_datlen;
+ fep->stats.rx_bytes += pkt_len;
+ data = (__u8*)__va(bdp->cbd_bufaddr);
+
+ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
+ FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
+
+ if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
+ swap_buffer(data, pkt_len);
+
+ /* This does 16 byte alignment, exactly what we need.
+ * The packet length includes FCS, but we don't want to
+ * include that when passing upstream as it messes up
+ * bridging applications.
+ */
+ skb = dev_alloc_rtskb(pkt_len - 4 + NET_IP_ALIGN,
+ &fep->skb_pool); /* RTnet */
+
+ if (unlikely(!skb)) {
+ printk("%s: Memory squeeze, dropping packet.\n",
+ ndev->name);
+ fep->stats.rx_dropped++;
+ } else {
+ rtskb_reserve(skb, NET_IP_ALIGN);
+ rtskb_put(skb, pkt_len - 4); /* Make room */
+ memcpy(skb->data, data, pkt_len - 4);
+ skb->protocol = rt_eth_type_trans(skb, ndev);
+ skb->rtdev = ndev;
+ skb->time_stamp = *time_stamp;
+ rtnetif_rx(skb);
+ (*packets)++; /* RTnet */
+ }
+
+ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
+ FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
+rx_processing_done:
+ /* Clear the status flags for this buffer */
+ status &= ~BD_ENET_RX_STATS;
+
+ /* Mark the buffer empty */
+ status |= BD_ENET_RX_EMPTY;
+ bdp->cbd_sc = status;
+
+ /* Update BD pointer to next entry */
+ if (status & BD_ENET_RX_WRAP)
+ bdp = fep->rx_bd_base;
+ else
+ bdp++;
+ /* Doing this here will keep the FEC running while we process
+ * incoming frames. On a heavily loaded network, we should be
+ * able to keep up at the expense of system resources.
+ */
+ writel(0, fep->hwp + FEC_R_DES_ACTIVE);
+ }
+ fep->cur_rx = bdp;
+
+ rtdm_lock_put(&fep->hw_lock);
+}
+
+static int
+fec_enet_interrupt(rtdm_irq_t *irq_handle)
+{
+ struct rtnet_device *ndev =
+ rtdm_irq_get_arg(irq_handle, struct rtnet_device); /* RTnet */
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ uint int_events;
+ irqreturn_t ret = RTDM_IRQ_NONE;
+ /* RTnet */
+ nanosecs_abs_t time_stamp = rtdm_clock_read();
+ int packets = 0;
+
+ do {
+ int_events = readl(fep->hwp + FEC_IEVENT);
+ writel(int_events, fep->hwp + FEC_IEVENT);
+
+ if (int_events & FEC_ENET_RXF) {
+ ret = RTDM_IRQ_HANDLED;
+ fec_enet_rx(ndev, &packets, &time_stamp);
+ }
+
+ /* Transmit OK, or non-fatal error. Update the buffer
+ * descriptors. FEC handles all errors, we just discover
+ * them as part of the transmit process.
+ */
+ if (int_events & FEC_ENET_TXF) {
+ ret = RTDM_IRQ_HANDLED;
+ fec_enet_tx(ndev);
+ }
+
+ if (int_events & FEC_ENET_MII) {
+ ret = RTDM_IRQ_HANDLED;
+ rtdm_nrtsig_pend(&fep->mdio_done_sig);
+ }
+ } while (int_events);
+
+ if (packets > 0)
+ rt_mark_stack_mgr(ndev);
+
+ return ret;
+}
+
+
+
+/* ------------------------------------------------------------------------- */
+static void __inline__ fec_get_mac(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
+ unsigned char *iap, tmpaddr[ETH_ALEN];
+
+ /*
+ * try to get mac address in following order:
+ *
+ * 1) module parameter via kernel command line in form
+ * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
+ */
+ iap = macaddr;
+
+#ifdef CONFIG_OF
+ /*
+ * 2) from device tree data
+ */
+ if (!is_valid_ether_addr(iap)) {
+ struct device_node *np = fep->pdev->dev.of_node;
+ if (np) {
+ const char *mac = of_get_mac_address(np);
+ if (mac)
+ iap = (unsigned char *) mac;
+ }
+ }
+#endif
+
+ /*
+ * 3) from flash or fuse (via platform data)
+ */
+ if (!is_valid_ether_addr(iap)) {
+#ifdef CONFIG_M5272
+ if (FEC_FLASHMAC)
+ iap = (unsigned char *)FEC_FLASHMAC;
+#else
+ if (pdata)
+ iap = (unsigned char *)&pdata->mac;
+#endif
+ }
+
+ /*
+ * 4) FEC mac registers set by bootloader
+ */
+ if (!is_valid_ether_addr(iap)) {
+ *((unsigned long *) &tmpaddr[0]) =
+ be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
+ *((unsigned short *) &tmpaddr[4]) =
+ be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
+ iap = &tmpaddr[0];
+ }
+
+ memcpy(ndev->dev_addr, iap, ETH_ALEN);
+
+ /* Adjust MAC if using macaddr */
+ if (iap == macaddr)
+ ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
+}
+
+/* ------------------------------------------------------------------------- */
+
+/*
+ * Phy section
+ */
+static void fec_enet_mdio_done(rtdm_nrtsig_t nrt_sig, void* data)
+{
+ struct fec_enet_private *fep = data;
+
+ complete(&fep->mdio_done);
+}
+
+static void fec_enet_adjust_link(struct net_device *netdev)
+{
+ struct fec_enet_netdev_priv *npriv = netdev_priv(netdev);
+ struct rtnet_device *ndev = npriv->rtdev;
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ struct phy_device *phy_dev = fep->phy_dev;
+ unsigned long context;
+
+ int status_change = 0;
+
+ rtdm_lock_get_irqsave(&fep->hw_lock, context);
+
+ /* Prevent a state halted on mii error */
+ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
+ phy_dev->state = PHY_RESUMING;
+ goto spin_unlock;
+ }
+
+ /* Duplex link change */
+ if (phy_dev->link) {
+ if (fep->full_duplex != phy_dev->duplex) {
+ fec_restart(ndev, phy_dev->duplex);
+ /* prevent unnecessary second fec_restart() below */
+ fep->link = phy_dev->link;
+ status_change = 1;
+ }
+ }
+
+ /* Link on or off change */
+ if (phy_dev->link != fep->link) {
+ fep->link = phy_dev->link;
+ if (phy_dev->link)
+ fec_restart(ndev, phy_dev->duplex);
+ else
+ fec_stop(ndev);
+ status_change = 1;
+ }
+
+spin_unlock:
+ rtdm_lock_put_irqrestore(&fep->hw_lock, context);
+
+ if (status_change)
+ phy_print_status(phy_dev);
+}
+
+static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
+{
+ struct fec_enet_private *fep = bus->priv;
+ unsigned long time_left;
+
+ fep->mii_timeout = 0;
+ init_completion(&fep->mdio_done);
+
+ /* start a read op */
+ writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
+ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
+ FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
+
+ /* wait for end of transfer */
+ time_left = wait_for_completion_timeout(&fep->mdio_done,
+ usecs_to_jiffies(FEC_MII_TIMEOUT));
+ if (time_left == 0) {
+ fep->mii_timeout = 1;
+ printk(KERN_ERR "FEC: MDIO read timeout\n");
+ return -ETIMEDOUT;
+ }
+
+ /* return value */
+ return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
+}
+
+static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
+ u16 value)
+{
+ struct fec_enet_private *fep = bus->priv;
+ unsigned long time_left;
+
+ fep->mii_timeout = 0;
+ init_completion(&fep->mdio_done);
+
+ /* start a write op */
+ writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
+ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
+ FEC_MMFR_TA | FEC_MMFR_DATA(value),
+ fep->hwp + FEC_MII_DATA);
+
+ /* wait for end of transfer */
+ time_left = wait_for_completion_timeout(&fep->mdio_done,
+ usecs_to_jiffies(FEC_MII_TIMEOUT));
+ if (time_left == 0) {
+ fep->mii_timeout = 1;
+ printk(KERN_ERR "FEC: MDIO write timeout\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static int fec_enet_mdio_reset(struct mii_bus *bus)
+{
+ return 0;
+}
+
+static int fec_enet_mii_probe(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ struct phy_device *phy_dev = NULL;
+ char mdio_bus_id[MII_BUS_ID_SIZE];
+ char phy_name[MII_BUS_ID_SIZE + 3];
+ int phy_id;
+ int dev_id = fep->dev_id;
+
+ fep->phy_dev = NULL;
+
+ /* check for attached phy */
+ for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
+ if ((fep->mii_bus->phy_mask & (1 << phy_id)))
+ continue;
+ if (fep->mii_bus->phy_map[phy_id] == NULL)
+ continue;
+ if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
+ continue;
+ if (dev_id--)
+ continue;
+ strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
+ break;
+ }
+
+ if (phy_id >= PHY_MAX_ADDR) {
+ printk(KERN_INFO
+ "%s: no PHY, assuming direct connection to switch\n",
+ ndev->name);
+ strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
+ phy_id = 0;
+ }
+
+ snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
+ /* attach the mac to the phy using the dummy linux netdev */
+ phy_dev = phy_connect(fep->netdev, phy_name, &fec_enet_adjust_link, 0,
+ fep->phy_interface);
+ if (IS_ERR(phy_dev)) {
+ printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
+ return PTR_ERR(phy_dev);
+ }
+
+ /* mask with MAC supported features */
+ if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
+ phy_dev->supported &= PHY_GBIT_FEATURES;
+ else
+ phy_dev->supported &= PHY_BASIC_FEATURES;
+
+ phy_dev->advertising = phy_dev->supported;
+
+ fep->phy_dev = phy_dev;
+ fep->link = 0;
+ fep->full_duplex = 0;
+
+ printk(KERN_INFO
+ "%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
+ ndev->name,
+ fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
+ fep->phy_dev->irq);
+
+ return 0;
+}
+
+static int fec_enet_mii_init(struct platform_device *pdev)
+{
+ static struct mii_bus *fec0_mii_bus;
+ struct rtnet_device *ndev = platform_get_drvdata(pdev);
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ int err = -ENXIO, i;
+
+ /*
+ * The dual fec interfaces are not equivalent with enet-mac.
+ * Here are the differences:
+ *
+ * - fec0 supports MII & RMII modes while fec1 only supports RMII
+ * - fec0 acts as the 1588 time master while fec1 is slave
+ * - external phys can only be configured by fec0
+ *
+ * That is to say fec1 can not work independently. It only works
+ * when fec0 is working. The reason behind this design is that the
+ * second interface is added primarily for Switch mode.
+ *
+ * Because of the last point above, both phys are attached on fec0
+ * mdio interface in board design, and need to be configured by
+ * fec0 mii_bus.
+ */
+ if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
+ /* fec1 uses fec0 mii_bus */
+ if (mii_cnt && fec0_mii_bus) {
+ fep->mii_bus = fec0_mii_bus;
+ mii_cnt++;
+ return 0;
+ }
+ return -ENOENT;
+ }
+
+ fep->mii_timeout = 0;
+
+ /*
+ * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
+ *
+ * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
+ * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
+ * Reference Manual has an error on this, and gets fixed on i.MX6Q
+ * document.
+ */
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
+#else
+ fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
+#endif
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
+ fep->phy_speed--;
+ fep->phy_speed <<= 1;
+ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+
+ fep->mii_bus = mdiobus_alloc();
+ if (fep->mii_bus == NULL) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+
+ fep->mii_bus->name = "fec_enet_mii_bus";
+ fep->mii_bus->read = fec_enet_mdio_read;
+ fep->mii_bus->write = fec_enet_mdio_write;
+ fep->mii_bus->reset = fec_enet_mdio_reset;
+ snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
+ pdev->name, fep->dev_id + 1);
+ fep->mii_bus->priv = fep;
+ fep->mii_bus->parent = &pdev->dev;
+
+ fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
+ if (!fep->mii_bus->irq) {
+ err = -ENOMEM;
+ goto err_out_free_mdiobus;
+ }
+
+ for (i = 0; i < PHY_MAX_ADDR; i++)
+ fep->mii_bus->irq[i] = PHY_POLL;
+
+ if (rtdm_nrtsig_init(&fep->mdio_done_sig, fec_enet_mdio_done, fep)) {
+ printk("%s: rtdm_nrtsig_init failed\n", __func__);
+ goto err_out_free_mdio_irq;
+ }
+
+ if (mdiobus_register(fep->mii_bus))
+ goto err_out_destroy_nrt;
+
+ mii_cnt++;
+
+ /* save fec0 mii_bus */
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
+ fec0_mii_bus = fep->mii_bus;
+
+ return 0;
+
+err_out_destroy_nrt:
+ rtdm_nrtsig_destroy(&fep->mdio_done_sig);
+err_out_free_mdio_irq:
+ kfree(fep->mii_bus->irq);
+err_out_free_mdiobus:
+ mdiobus_free(fep->mii_bus);
+err_out:
+ return err;
+}
+
+static void fec_enet_mii_remove(struct fec_enet_private *fep)
+{
+ if (--mii_cnt == 0) {
+ mdiobus_unregister(fep->mii_bus);
+ kfree(fep->mii_bus->irq);
+ mdiobus_free(fep->mii_bus);
+ }
+ rtdm_nrtsig_destroy(&fep->mdio_done_sig);
+}
+
+static int
+fec_enet_ioctl(struct rtnet_device *ndev, unsigned int request, void *arg)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ struct phy_device *phydev = fep->phy_dev;
+ struct ifreq *ifr = arg;
+ struct ethtool_value *value;
+ struct ethtool_cmd cmd;
+ int err = 0;
+
+ if (!rtnetif_running(ndev))
+ return -EINVAL;
+
+ if (!phydev)
+ return -ENODEV;
+
+ switch (request) {
+ case SIOCETHTOOL:
+ value = (struct ethtool_value *)ifr->ifr_data;
+ switch (value->cmd) {
+ case ETHTOOL_GLINK:
+ value->data = fep->link;
+ if (copy_to_user(&value->data, &fep->link,
+ sizeof(value->data)))
+ err = -EFAULT;
+ break;
+ case ETHTOOL_GSET:
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.cmd = ETHTOOL_GSET;
+ err = phy_ethtool_gset(phydev, &cmd);
+ if (err)
+ break;
+ if (copy_to_user(ifr->ifr_data, &cmd, sizeof(cmd)))
+ err = -EFAULT;
+ break;
+ case ETHTOOL_SSET:
+ if (copy_from_user(&cmd, ifr->ifr_data, sizeof(cmd)))
+ err = -EFAULT;
+ else
+ err = phy_ethtool_sset(phydev, &cmd);
+ break;
+ }
+ break;
+ default:
+ err = -EOPNOTSUPP;
+ break;
+ }
+
+ return err;
+}
+
+static void fec_enet_free_buffers(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ int i;
+ struct rtskb *skb;
+ struct bufdesc *bdp;
+
+ bdp = fep->rx_bd_base;
+ for (i = 0; i < RX_RING_SIZE; i++) {
+ skb = fep->rx_skbuff[i];
+
+ if (bdp->cbd_bufaddr)
+ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
+ FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
+ if (skb)
+ dev_kfree_rtskb(skb); /* RTnet */
+ bdp++;
+ }
+
+ bdp = fep->tx_bd_base;
+ for (i = 0; i < TX_RING_SIZE; i++)
+ kfree(fep->tx_bounce[i]);
+}
+
+static int fec_enet_alloc_buffers(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ int i;
+ struct rtskb *skb;
+ struct bufdesc *bdp;
+
+ bdp = fep->rx_bd_base;
+ for (i = 0; i < RX_RING_SIZE; i++) {
+ skb = dev_alloc_rtskb(FEC_ENET_RX_FRSIZE,
+ &fep->skb_pool); /* RTnet */
+ if (!skb) {
+ fec_enet_free_buffers(ndev);
+ return -ENOMEM;
+ }
+ fep->rx_skbuff[i] = skb;
+
+ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
+ FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
+ bdp->cbd_sc = BD_ENET_RX_EMPTY;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap. */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ bdp = fep->tx_bd_base;
+ for (i = 0; i < TX_RING_SIZE; i++) {
+ fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
+
+ bdp->cbd_sc = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap. */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ return 0;
+}
+
+static int
+fec_enet_open(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ int ret;
+
+ /* I should reset the ring buffers here, but I don't yet know
+ * a simple way to do that.
+ */
+
+ ret = fec_enet_alloc_buffers(ndev);
+ if (ret)
+ return ret;
+
+ /* RTnet */
+ rt_stack_connect(ndev, &STACK_manager);
+
+ /* Probe and connect to PHY when open the interface */
+ ret = fec_enet_mii_probe(ndev);
+ if (ret) {
+ fec_enet_free_buffers(ndev);
+ return ret;
+ }
+ phy_start(fep->phy_dev);
+ rtnetif_start_queue(ndev);
+ fep->opened = 1;
+ return 0;
+}
+
+static int
+fec_enet_close(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+
+ /* Don't know what to do yet. */
+ fep->opened = 0;
+ rtnetif_stop_queue(ndev);
+ fec_stop(ndev);
+
+ if (fep->phy_dev) {
+ phy_stop(fep->phy_dev);
+ phy_disconnect(fep->phy_dev);
+ }
+
+ fec_enet_free_buffers(ndev);
+
+ /* RTnet */
+ rt_stack_disconnect(ndev);
+
+ return 0;
+}
+
+#ifdef CONFIG_RTNET_MULTICAST
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering. Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not. I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+
+#define HASH_BITS 6 /* #bits in hash */
+#define CRC32_POLY 0xEDB88320
+
+static void set_multicast_list(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ struct netdev_hw_addr *ha;
+ unsigned int i, bit, data, crc, tmp;
+ unsigned char hash;
+
+ if (ndev->flags & IFF_PROMISC) {
+ tmp = readl(fep->hwp + FEC_R_CNTRL);
+ tmp |= 0x8;
+ writel(tmp, fep->hwp + FEC_R_CNTRL);
+ return;
+ }
+
+ tmp = readl(fep->hwp + FEC_R_CNTRL);
+ tmp &= ~0x8;
+ writel(tmp, fep->hwp + FEC_R_CNTRL);
+
+ if (ndev->flags & IFF_ALLMULTI) {
+ /* Catch all multicast addresses, so set the
+ * filter to all 1's
+ */
+ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+
+ return;
+ }
+
+ /* Clear filter and add the addresses in hash register
+ */
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+
+ rtnetdev_for_each_mc_addr(ha, ndev) {
+ /* calculate crc32 value of mac address */
+ crc = 0xffffffff;
+
+ for (i = 0; i < ndev->addr_len; i++) {
+ data = ha->addr[i];
+ for (bit = 0; bit < 8; bit++, data >>= 1) {
+ crc = (crc >> 1) ^
+ (((crc ^ data) & 1) ? CRC32_POLY : 0);
+ }
+ }
+
+ /* only upper 6 bits (HASH_BITS) are used
+ * which point to specific bit in he hash registers
+ */
+ hash = (crc >> (32 - HASH_BITS)) & 0x3f;
+
+ if (hash > 31) {
+ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ tmp |= 1 << (hash - 32);
+ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ } else {
+ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+ tmp |= 1 << hash;
+ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+ }
+ }
+}
+#endif /* CONFIG_RTNET_MULTICAST */
+
+#ifdef ORIGINAL_CODE
+/* Set a MAC change in hardware. */
+static int
+fec_set_mac_address(struct rtnet_device *ndev, void *p)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ struct sockaddr *addr = p;
+
+ if (!is_valid_ether_addr(addr->sa_data))
+ return -EADDRNOTAVAIL;
+
+ memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
+
+ writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
+ (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
+ fep->hwp + FEC_ADDR_LOW);
+ writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
+ fep->hwp + FEC_ADDR_HIGH);
+ return 0;
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * fec_poll_controller: FEC Poll controller function
+ * @dev: The FEC network adapter
+ *
+ * Polled functionality used by netconsole and others in non interrupt mode
+ *
+ */
+void fec_poll_controller(struct rtnet_device *dev)
+{
+ int i;
+ struct fec_enet_private *fep = rtnetdev_priv(dev);
+
+ for (i = 0; i < FEC_IRQ_NUM; i++) {
+ if (fep->irq[i] > 0) {
+ disable_irq(fep->irq[i]);
+ fec_enet_interrupt(fep->irq[i], dev);
+ enable_irq(fep->irq[i]);
+ }
+ }
+}
+#endif /* ORIGINAL_CODE */
+
+static const struct rtnet_device_ops fec_netdev_ops = {
+ .ndo_open = fec_enet_open,
+ .ndo_stop = fec_enet_close,
+ .ndo_start_xmit = fec_enet_start_xmit,
+ .ndo_set_rx_mode = set_multicast_list,
+ .ndo_change_mtu = eth_change_mtu,
+ .ndo_validate_addr = eth_validate_addr,
+ .ndo_tx_timeout = fec_timeout,
+ .ndo_set_mac_address = fec_set_mac_address,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+ .ndo_poll_controller = fec_poll_controller,
+#endif
+};
+#endif
+
+/* RTnet: get statistics */
+static struct net_device_stats *fec_get_stats(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ return &fep->stats;
+}
+
+ /*
+ * XXX: We need to clean up on failure exits here.
+ *
+ */
+static int fec_enet_init(struct rtnet_device *ndev)
+{
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ struct bufdesc *cbd_base;
+ struct bufdesc *bdp;
+ int i;
+
+ /* Allocate memory for buffer descriptors. */
+ cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
+ GFP_KERNEL);
+ if (!cbd_base) {
+ printk("FEC: allocate descriptor memory failed?\n");
+ return -ENOMEM;
+ }
+
+ rtdm_lock_init(&fep->hw_lock);
+
+ /* Get the Ethernet address */
+ fec_get_mac(ndev);
+
+ /* Set receive and transmit descriptor base. */
+ fep->rx_bd_base = cbd_base;
+ fep->tx_bd_base = cbd_base + RX_RING_SIZE;
+
+ /* RTnet: specific entries in the device structure */
+ ndev->open = fec_enet_open;
+ ndev->stop = fec_enet_close;
+ ndev->hard_start_xmit = fec_enet_start_xmit;
+ ndev->get_stats = fec_get_stats;
+ ndev->do_ioctl = fec_enet_ioctl;
+#ifdef CONFIG_RTNET_MULTICAST
+ ndev->set_multicast_list = &set_multicast_list;
+#endif
+
+ /* Initialize the receive buffer descriptors. */
+ bdp = fep->rx_bd_base;
+ for (i = 0; i < RX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page. */
+ bdp->cbd_sc = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* ...and the same for transmit */
+ bdp = fep->tx_bd_base;
+ for (i = 0; i < TX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page. */
+ bdp->cbd_sc = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ fec_restart(ndev, 0);
+
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
+{
+ struct device_node *np = pdev->dev.of_node;
+
+ if (np)
+ return of_get_phy_mode(np);
+
+ return -ENODEV;
+}
+
+static void __devinit fec_reset_phy(struct platform_device *pdev)
+{
+ int err, phy_reset;
+ struct device_node *np = pdev->dev.of_node;
+
+ if (!np)
+ return;
+
+ phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
+ err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
+ if (err) {
+ pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
+ return;
+ }
+ msleep(1);
+ gpio_set_value(phy_reset, 1);
+}
+#else /* CONFIG_OF */
+static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
+{
+ return -ENODEV;
+}
+
+static inline void fec_reset_phy(struct platform_device *pdev)
+{
+ /*
+ * In case of platform probe, the reset has been done
+ * by machine code.
+ */
+}
+#endif /* CONFIG_OF */
+
+static int __devinit
+fec_probe(struct platform_device *pdev)
+{
+ struct fec_enet_netdev_priv *npriv;
+ struct fec_enet_private *fep;
+ struct fec_platform_data *pdata;
+ struct rtnet_device *ndev;
+ int i, irq, ret = 0;
+ struct resource *r;
+ const struct of_device_id *of_id;
+ static int dev_id;
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ struct pinctrl *pinctrl;
+#endif
+
+ of_id = of_match_device(fec_dt_ids, &pdev->dev);
+ if (of_id)
+ pdev->id_entry = of_id->data;
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!r)
+ return -ENXIO;
+
+ r = request_mem_region(r->start, resource_size(r), pdev->name);
+ if (!r)
+ return -EBUSY;
+
+ /* Init network device */
+ ndev = rt_alloc_etherdev(sizeof(struct fec_enet_private));
+ if (!ndev) {
+ ret = -ENOMEM;
+ goto failed_alloc_etherdev;
+ }
+
+ /* RTnet */
+ rtdev_alloc_name(ndev, "rteth%d");
+ rt_rtdev_connect(ndev, &RTDEV_manager);
+ RTNET_SET_MODULE_OWNER(ndev);
+ ndev->vers = RTDEV_VERS_2_0;
+
+ /* setup board info structure */
+ fep = rtnetdev_priv(ndev);
+ memset(fep, 0, sizeof(*fep));
+
+ /* RTnet: allocate dummy linux netdev structure for phy handling */
+ fep->netdev = alloc_etherdev(sizeof(struct fec_enet_netdev_priv));
+ if (!fep->netdev)
+ goto failed_alloc_netdev;
+ SET_NETDEV_DEV(fep->netdev, &pdev->dev);
+ npriv = netdev_priv(fep->netdev);
+ npriv->rtdev = ndev;
+
+ fep->hwp = ioremap(r->start, resource_size(r));
+ fep->pdev = pdev;
+ fep->dev_id = dev_id++;
+
+ if (!fep->hwp) {
+ ret = -ENOMEM;
+ goto failed_ioremap;
+ }
+
+ platform_set_drvdata(pdev, ndev);
+
+ ret = fec_get_phy_mode_dt(pdev);
+ if (ret < 0) {
+ pdata = pdev->dev.platform_data;
+ if (pdata)
+ fep->phy_interface = pdata->phy;
+ else
+ fep->phy_interface = PHY_INTERFACE_MODE_MII;
+ } else {
+ fep->phy_interface = ret;
+ }
+
+ fec_reset_phy(pdev);
+
+ for (i = 0; i < FEC_IRQ_NUM; i++) {
+ irq = platform_get_irq(pdev, i);
+ if (irq < 0) {
+ if (i)
+ break;
+ ret = irq;
+ goto failed_irq;
+ }
+ ret = rtdm_irq_request(&fep->irq_handle[i], irq,
+ fec_enet_interrupt, 0, ndev->name, ndev);
+ if (ret) {
+ while (--i >= 0) {
+ irq = platform_get_irq(pdev, i);
+ rtdm_irq_free(&fep->irq_handle[i]);
+ }
+ goto failed_irq;
+ }
+ }
+
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
+ if (IS_ERR(pinctrl)) {
+ ret = PTR_ERR(pinctrl);
+ goto failed_pin;
+ }
+
+ fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
+ if (IS_ERR(fep->clk_ipg)) {
+ ret = PTR_ERR(fep->clk_ipg);
+ goto failed_clk;
+ }
+
+ fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
+ if (IS_ERR(fep->clk_ahb)) {
+ ret = PTR_ERR(fep->clk_ahb);
+ goto failed_clk;
+ }
+
+ clk_prepare_enable(fep->clk_ahb);
+ clk_prepare_enable(fep->clk_ipg);
+#else
+ fep->clk = clk_get(&pdev->dev, "fec_clk");
+ if (IS_ERR(fep->clk)) {
+ ret = PTR_ERR(fep->clk);
+ goto failed_clk;
+ }
+
+ clk_prepare_enable(fep->clk);
+#endif
+
+ ret = fec_enet_init(ndev);
+ if (ret)
+ goto failed_init;
+
+ ret = fec_enet_mii_init(pdev);
+ if (ret)
+ goto failed_mii_init;
+
+ /* Carrier starts down, phylib will bring it up */
+ rtnetif_carrier_off(ndev);
+
+ /* RTnet: setup the RTnet socket buffer */
+ if (rtskb_pool_init(&fep->skb_pool, rx_pool_size) < rx_pool_size) {
+ printk("[RTNet] Not enough memory\n");
+ ret = -ENOMEM;
+ goto failed_init;
+ }
+
+ /* RTnet: register the network interface */
+ ret = rt_register_rtnetdev(ndev);
+ if (ret)
+ goto failed_register;
+
+ return 0;
+
+failed_register:
+ rtskb_pool_release(&fep->skb_pool);
+ fec_enet_mii_remove(fep);
+failed_mii_init:
+failed_init:
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ clk_disable_unprepare(fep->clk_ahb);
+ clk_disable_unprepare(fep->clk_ipg);
+#else
+ clk_disable_unprepare(fep->clk);
+#endif
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+failed_pin:
+#endif
+failed_clk:
+ for (i = 0; i < FEC_IRQ_NUM; i++) {
+ irq = platform_get_irq(pdev, i);
+ if (irq > 0)
+ rtdm_irq_free(&fep->irq_handle[i]);
+ }
+failed_irq:
+ iounmap(fep->hwp);
+failed_ioremap:
+ free_netdev(fep->netdev);
+failed_alloc_netdev:
+ rtdev_free(ndev); /* RTnet */
+failed_alloc_etherdev:
+ release_mem_region(r->start, resource_size(r));
+
+ return ret;
+}
+
+static int __devexit
+fec_drv_remove(struct platform_device *pdev)
+{
+ struct rtnet_device *ndev = platform_get_drvdata(pdev);
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+ struct resource *r;
+ int i;
+
+ /* RTnet */
+ rt_unregister_rtnetdev(ndev);
+ rt_rtdev_disconnect(ndev);
+
+ fec_enet_mii_remove(fep);
+ for (i = 0; i < FEC_IRQ_NUM; i++) {
+ int irq = platform_get_irq(pdev, i);
+ if (irq > 0)
+ rtdm_irq_free(&fep->irq_handle[i]);
+ }
+
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ clk_disable_unprepare(fep->clk_ahb);
+ clk_disable_unprepare(fep->clk_ipg);
+#else
+ clk_disable_unprepare(fep->clk);
+#endif
+ iounmap(fep->hwp);
+
+ /* RTnet */
+ free_netdev(fep->netdev);
+ rtskb_pool_release(&fep->skb_pool);
+ rtdev_free(ndev);
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ BUG_ON(!r);
+ release_mem_region(r->start, resource_size(r));
+
+ platform_set_drvdata(pdev, NULL);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int
+fec_suspend(struct device *dev)
+{
+ struct rtnet_device *ndev = dev_get_drvdata(dev);
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+
+ if (rtnetif_running(ndev)) {
+ fec_stop(ndev);
+ rtnetif_device_detach(ndev);
+ }
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ clk_disable_unprepare(fep->clk_ahb);
+ clk_disable_unprepare(fep->clk_ipg);
+#else
+ clk_disable_unprepare(fep->clk);
+#endif
+ return 0;
+}
+
+static int
+fec_resume(struct device *dev)
+{
+ struct rtnet_device *ndev = dev_get_drvdata(dev);
+ struct fec_enet_private *fep = rtnetdev_priv(ndev);
+
+#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,5,0)
+ clk_prepare_enable(fep->clk_ahb);
+ clk_prepare_enable(fep->clk_ipg);
+#else
+ clk_prepare_enable(fep->clk);
+#endif
+ if (rtnetif_running(ndev)) {
+ fec_restart(ndev, fep->full_duplex);
+ rtnetif_device_attach(ndev);
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops fec_pm_ops = {
+ .suspend = fec_suspend,
+ .resume = fec_resume,
+ .freeze = fec_suspend,
+ .thaw = fec_resume,
+ .poweroff = fec_suspend,
+ .restore = fec_resume,
+};
+#endif
+
+static struct platform_driver fec_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .owner = THIS_MODULE,
+#ifdef CONFIG_PM
+ .pm = &fec_pm_ops,
+#endif
+ .of_match_table = fec_dt_ids,
+ },
+ .id_table = fec_devtype,
+ .probe = fec_probe,
+ .remove = __devexit_p(fec_drv_remove),
+};
+
+#if LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0)
+static int __init
+fec_enet_module_init(void)
+{
+ printk(KERN_INFO "RT FEC Ethernet Driver\n");
+
+ return platform_driver_register(&fec_driver);
+}
+
+static void __exit
+fec_enet_cleanup(void)
+{
+ platform_driver_unregister(&fec_driver);
+}
+
+module_exit(fec_enet_cleanup);
+module_init(fec_enet_module_init);
+#else
+module_platform_driver(fec_driver);
+#endif
diff --git a/drivers/rt_fec.h b/drivers/rt_fec.h
new file mode 100644
index 0000000..2982777
--- /dev/null
+++ b/drivers/rt_fec.h
@@ -0,0 +1,153 @@
+/****************************************************************************/
+
+/*
+ * fec.h -- Fast Ethernet Controller for Motorola ColdFire SoC
+ * processors.
+ *
+ * (C) Copyright 2000-2005, Greg Ungerer (ge...@sn...)
+ * (C) Copyright 2000-2001, Lineo (www.lineo.com)
+ */
+
+/****************************************************************************/
+#ifndef RT_FEC_H
+#define RT_FEC_H
+/****************************************************************************/
+
+#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
+ defined(CONFIG_M520x) || defined(CONFIG_M532x) || \
+ defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
+/*
+ * Just figures, Motorola would have to change the offsets for
+ * registers in the same peripheral device on different models
+ * of the ColdFire!
+ */
+#define FEC_IEVENT 0x004 /* Interrupt event reg */
+#define FEC_IMASK 0x008 /* Interrupt mask reg */
+#define FEC_R_DES_ACTIVE 0x010 /* Receive descriptor reg */
+#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */
+#define FEC_ECNTRL 0x024 /* Ethernet control reg */
+#define FEC_MII_DATA 0x040 /* MII manage frame reg */
+#define FEC_MII_SPEED 0x044 /* MII speed control reg */
+#define FEC_MIB_CTRLSTAT 0x064 /* MIB control/status reg */
+#define FEC_R_CNTRL 0x084 /* Receive control reg */
+#define FEC_X_CNTRL 0x0c4 /* Transmit Control reg */
+#define FEC_ADDR_LOW 0x0e4 /* Low 32bits MAC address */
+#define FEC_ADDR_HIGH 0x0e8 /* High 16bits MAC address */
+#define FEC_OPD 0x0ec /* Opcode + Pause duration */
+#define FEC_HASH_TABLE_HIGH 0x118 /* High 32bits hash table */
+#define FEC_HASH_TABLE_LOW 0x11c /* Low 32bits hash table */
+#define FEC_GRP_HASH_TABLE_HIGH 0x120 /* High 32bits hash table */
+#define FEC_GRP_HASH_TABLE_LOW 0x124 /* Low 32bits hash table */
+#define FEC_X_WMRK 0x144 /* FIFO transmit water mark */
+#define FEC_R_BOUND 0x14c /* FIFO receive bound reg */
+#define FEC_R_FSTART 0x150 /* FIFO receive start reg */
+#define FEC_R_DES_START 0x180 /* Receive descriptor ring */
+#define FEC_X_DES_START 0x184 /* Transmit descriptor ring */
+#define FEC_R_BUFF_SIZE 0x188 /* Maximum receive buff size */
+#define FEC_TACC 0x1c0 /* Transmit accelerator reg */
+#define FEC_MIIGSK_CFGR 0x300 /* MIIGSK Configuration reg */
+#define FEC_MIIGSK_ENR 0x308 /* MIIGSK Enable reg */
+
+#define BM_MIIGSK_CFGR_MII 0x00
+#define BM_MIIGSK_CFGR_RMII 0x01
+#define BM_MIIGSK_CFGR_FRCONT_10M 0x40
+
+#else
+
+#define FEC_ECNTRL 0x000 /* Ethernet control reg */
+#define FEC_IEVENT 0x004 /* Interrupt even reg */
+#define FEC_IMASK 0x008 /* Interrupt mask reg */
+#define FEC_IVEC 0x00c /* Interrupt vec status reg */
+#define FEC_R_DES_ACTIVE 0x010 /* Receive descriptor reg */
+#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */
+#define FEC_MII_DATA 0x040 /* MII manage frame reg */
+#define FEC_MII_SPEED 0x044 /* MII speed control reg */
+#define FEC_R_BOUND 0x08c /* FIFO receive bound reg */
+#define FEC_R_FSTART 0x090 /* FIFO receive start reg */
+#define FEC_X_WMRK 0x0a4 /* FIFO transmit water mark */
+#define FEC_X_FSTART 0x0ac /* FIFO transmit start reg */
+#define FEC_R_CNTRL 0x104 /* Receive control reg */
+#define FEC_MAX_FRM_LEN 0x108 /* Maximum frame length reg */
+#define FEC_X_CNTRL 0x144 /* Transmit Control reg */
+#define FEC_ADDR_LOW 0x3c0 /* Low 32bits MAC address */
+#define FEC_ADDR_HIGH 0x3c4 /* High 16bits MAC address */
+#define FEC_GRP_HASH_TABLE_HIGH 0x3c8 /* High 32bits hash table */
+#define FEC_GRP_HASH_TABLE_LOW 0x3cc /* Low 32bits hash table */
+#define FEC_R_DES_START 0x3d0 /* Receive descriptor ring */
+#define FEC_X_DES_START 0x3d4 /* Transmit descriptor ring */
+#define FEC_R_BUFF_SIZE 0x3d8 /* Maximum receive buff size */
+#define FEC_FIFO_RAM 0x400 /* FIFO RAM buffer */
+
+#endif /* CONFIG_M5272 */
+
+
+/*
+ * Define the buffer descriptor structure.
+ */
+#if defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
+struct bufdesc {
+ unsigned short cbd_datlen; /* Data length */
+ unsigned short cbd_sc; /* Control and status info */
+ unsigned long cbd_bufaddr; /* Buffer address */
+};
+#else
+struct bufdesc {
+ unsigned short cbd_sc; /* Control and status info */
+ unsigned short cbd_datlen; /* Data length */
+ unsigned long cbd_bufaddr; /* Buffer address */
+};
+#endif
+
+/*
+ * The following definitions courtesy of commproc.h, which where
+ * Copyright (c) 1997 Dan Malek (dm...@jl...).
+ */
+#define BD_SC_EMPTY ((ushort)0x8000) /* Receive is empty */
+#define BD_SC_READY ((ushort)0x8000) /* Transmit is ready */
+#define BD_SC_WRAP ((ushort)0x2000) ...
[truncated message content] |