## reduce-algebra-developers — Discussion of development, administration and support for Reduce

You can subscribe to this list here.

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Jan (2) Feb (5) Mar Apr May (2) Jun (8) Jul (4) Aug Sep Oct (2) Nov (6) Dec Jan (1) Feb (1) Mar (3) Apr (2) May (2) Jun (2) Jul (18) Aug (13) Sep (7) Oct Nov Dec (2) Jan Feb (11) Mar Apr (4) May Jun (1) Jul (18) Aug (16) Sep (12) Oct (12) Nov (19) Dec (42) Jan (16) Feb (3) Mar (8) Apr (14) May (30) Jun (5) Jul (7) Aug (3) Sep (10) Oct (4) Nov (10) Dec (1) Jan (14) Feb (8) Mar (5) Apr (3) May (9) Jun (19) Jul Aug (27) Sep (5) Oct (18) Nov (12) Dec (8) Jan (5) Feb (8) Mar (20) Apr (22) May (28) Jun (9) Jul (6) Aug (46) Sep (40) Oct (15) Nov (8) Dec (34) Jan (20) Feb (15) Mar (18) Apr (20) May (3) Jun (13) Jul (10) Aug (19) Sep (8) Oct (31) Nov (26) Dec (13) Jan (13) Feb (4) Mar (14) Apr (28) May (19) Jun (7) Jul (1) Aug Sep (19) Oct (5) Nov (4) Dec (9) Jan (4) Feb (30) Mar Apr (5) May (1) Jun (1) Jul (3) Aug (2) Sep (11) Oct (3) Nov (1) Dec (6) Jan (2) Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
S M T W T F S

1

2

3

4

5

6

7

8

9

10

11
(1)
12
(3)
13

14

15
(2)
16
(2)
17

18

19
(3)
20

21
(2)
22
(2)
23

24

25

26
(1)
27
(2)
28

29

30

31

Showing 2 results of 2

 Re: [Reduce-algebra-developers] Real solutions of solve From: Arthur Norman - 2011-07-27 13:40:18 ```On Wed, 27 Jul 2011, Simon Weitzhofer wrote: > Hi there, > > is it possible to get only the real solutions of an equation from solve? (Such > that solve(x^4=1,x) returns only {x=1, x=-1}) > > Thank you, > Simon > You may wish to investigate realroots(x^2 + 1) {} realroots(x^2 - 1) {x = -1 , x = 1} for cases where you KNOW that you will be getting numeric roots...? In terms of an objection to "i", I note that at present the simplification of sqrt reads symbolic procedure simpsqrt u; if u=0 then nil ./ 1 else if null !*keepsqrts then simpexpt1(car u, simpexpon '(quotient 1 2), nil) else begin scalar x,y; x := xsimp car u; return if null numr x then nil ./ 1 else if denr x=1 and domainp numr x and !:minusp numr x then if numr x=-1 then simp 'i else multsq(simp 'i, simpsqrt list prepd !:minus numr x) else if y := domainvalchk('sqrt,list x) then y else simprad(x,2) end; so "sqrt(-1)" is turned into "i" at a fairly low level. Arthur ```
 [Reduce-algebra-developers] Real solutions of solve From: Simon Weitzhofer - 2011-07-27 12:46:54 ```Hi there, is it possible to get only the real solutions of an equation from solve? (Such that solve(x^4=1,x) returns only {x=1, x=-1}) Thank you, Simon ```

Showing 2 results of 2