[R-gregmisc-users] SF.net SVN: r-gregmisc: [1243] trunk/PathwayModeling/thesispaper
Brought to you by:
warnes
From: <wa...@us...> - 2008-02-07 17:10:33
|
Revision: 1243 http://r-gregmisc.svn.sourceforge.net/r-gregmisc/?rev=1243&view=rev Author: warnes Date: 2008-02-07 09:10:27 -0800 (Thu, 07 Feb 2008) Log Message: ----------- Slides for Myriad visit Modified Paths: -------------- trunk/PathwayModeling/thesispaper/slides.tex Added Paths: ----------- trunk/PathwayModeling/thesispaper/figures/MSR16.pdf Added: trunk/PathwayModeling/thesispaper/figures/MSR16.pdf =================================================================== (Binary files differ) Property changes on: trunk/PathwayModeling/thesispaper/figures/MSR16.pdf ___________________________________________________________________ Name: svn:mime-type + application/octet-stream Modified: trunk/PathwayModeling/thesispaper/slides.tex =================================================================== --- trunk/PathwayModeling/thesispaper/slides.tex 2008-02-05 21:38:08 UTC (rev 1242) +++ trunk/PathwayModeling/thesispaper/slides.tex 2008-02-07 17:10:27 UTC (rev 1243) @@ -3,10 +3,7 @@ \mode<presentation> { \usetheme{Warsaw} - % or ... - \setbeamercovered{transparent} - % or whatever (possibly just delete it) } %\setbeameroption{show notes} @@ -20,7 +17,6 @@ % \documentclass[doublespacing]{elsart} \usepackage{graphicx} \usepackage[nogin]{Sweave} -\usepackage[numbers]{natbib} \bibliographystyle{plainnat} \usepackage{amsmath} \usepackage{amssymb} \usepackage{yfonts} @@ -32,18 +28,20 @@ \usepackage{makeidx} \usepackage{dchem} \usepackage{color} +\usepackage[numbers]{natbib} +\bibliographystyle{plainnat} \newcommand{\deriv}[2]{\ensuremath{\frac{\mathrm{d} #1}{\mathrm{d} #2}}} \title{Statistical Modeling of Biochemical Pathways} -\author{Robert B. Burrows\inst{1} \and Gregory R. Warnes\inst{2,3} } +\author{Gregory R. Warnes\inst{1,2,3} } \institute{ \inst{1}% - New England Biometrics\\ - North Scituate, RI + Biostatistics and Computational Biology \\ + University of Rochester \and \inst{2}% - Biostatistics and Computational Biology \\ + Center for Biodefense Immune Modeling \\ University of Rochester \and \inst{3}% @@ -56,37 +54,56 @@ $ $Id$ $ } -%\begin{abstract} -%The usefulness of Markov chain Monte Carlo methods for the modeling -%of biochemical reactions is examined. With simulated data, it is -%shown that mechanistic models can be fit to sequences of enzymatic -%reactions. These methods have the advantages of being relatively easy -%to use and producing probability distributions for the model -%parameters rather than point estimates. -%Three Markov chain Monte Carlo algorithms are used to fit models to -%data from a -%sequence of 4 enzymatic reactions. The algorithms -%are evaluated with respect to -%the goodness-of-fit of the fitted models and the time to completion. -%It is shown that the algorithms produce essentially the same -%parameter distributions but the time to completion varies. -%\end{abstract} - \frame{ \maketitle } +%%\section[Abstract]{} +%%\begin{abstract} +%\frame{ +% \frametitle{Abstract} +% \small +% We examine the usefulness of Bayesian statistical methods for +% the modeling of biochemical reactions. With simulated data, it is +% shown that these methods can effectively fit mechanistic models of +% sequences of enzymatic reactions to experimental data. This +% approach has the advantages of being flexible, relatively easy to use, +% and producing full probability distributions for the model parameters +% rather than point estimates, thus allowing more informative inferences +% (including relationships between parameters) to be drawn. Further, +% these methods perform well even when the mechanistic model leads +% to multiple solution regions, high parameter correlations, and other +% 'unfriendly' behavior. + +% The presentation will include a brief overview of Bayesian statistical +% methods for those unfamiliar with these techniques, as well as a brief +% discussion of the computational methods utilized. +%} +%%\end{abstract} + \section[Outline]{} \frame{ \frametitle{Outline} - \tableofcontents + +% \tableofcontents + + \begin{columns} + \begin{column}{0.5\textwidth} + \tableofcontents[sections={1-4}] + \end{column} + \begin{column}{0.5\textwidth} + \tableofcontents[sections={5-8}] + \end{column} + \end{columns} + } \section{Overview} +\subsection{Goal} \frame{ \frametitle{Overview} - \begin{block}{Goal:} + \begin{block}{Goal: Model Biochemical Pathways} Estimate key rate parameters of biological pathways, e.g \includegraphics[width=0.75\textwidth]{figures/glycolysis} @@ -95,16 +112,87 @@ changes, and understand the system. \end{block} } + +\subsection{Components} \frame{ \frametitle{Overview} - \begin{block}{Method:} - ``Wrap'' standard deterministic mathematical model - within a Bayesian statistical model + \begin{block}{Combine 3 components:} + \begin{tabular}{ll} + Biochemistry & Biochemical components \& relationships \\ + Mathematical Model & Strucure of relationships between components \\ + Bayesian Statistics & Relationship between previous information, \\ + & model and measured data \\ + \end{tabular} + +% \begin{block}{Method:} +% \begin{center} +% ``Wrap'' standard deterministic mathematical model describing a +% biochemical pathway within a Bayesian statistical model +% \end{center} \end{block} + } +\subsection{Intro to Bayesian Statistics} +\frame{ + \frametitle{Intro to Bayesian Statistics (1/2)} + \begin{enumerate} + \item Based on Decision Theory + \item Modeling Process: + \begin{enumerate} + \item Costruct a model for observed data: {\color{blue} ``Likelihood'': + $L(\mathit{Data}|\theta)$ } + \item Describe current information about model parameters: + { \color{green} ``Prior distribution'' $\pi(\theta)$ } + \item Run experiment \& collect data + \item Apply Bayes Rule $\to$ {\color{red}``Posterior distribution''} + +\begin{equation}\label{BayesRule} +{\color{red}\pi(\theta|\mathit{Data})} = \frac{{\color{blue}L(\mathit{Data}|\theta)} {\color{green}\pi(\theta)}}{\int {L(\mathit{Data}|\theta) \pi(\theta)}d\theta} +\end{equation} + + \item Draw conclusions using Posterior + \end{enumerate} + \end{enumerate} +} + +\frame{ + \frametitle{Intro to Bayesian Statistics (2/2)} + \begin{itemize} + \item Strengths + \begin{itemize} + \item Very flexible + \item Consistent with human thinking + \item Allows inclusion of existing domain knowledge + \end{itemize} + \item Weaknesses + \begin{itemize} + \item Characterization of ``current information'' can be + controversial + \item Computationaly expensive + \item Less popular than Frequentist statistics + \end{itemize} + \end{itemize} +} + + + \section{Evaluation Approach} + \frame{ + \frametitle{Overview} + \begin{block}{Goal: Model Biochemical Pathways} + Estimate key rate parameters of biological pathways, e.g + + \includegraphics[width=0.75\textwidth]{figures/glycolysis} + + in order to estimate rate parameters, predict responses to + changes, and understand the system. + \end{block} +} + + +\frame{ \frametitle{Evaluation Approach} \begin{enumerate} \item{Create artificial model} @@ -124,7 +212,7 @@ R3 \yields R4 \yields R5 \yields sink \end{reaction} Chemical Equations: - \begin{chemarray*} \small + \begin{chemarray*} source &\yields^{k_1}& R1\\ R1 + E1 &\eqbm^{k_2}_{k_3}& R1E1 \yields^{k_4} R2 + E1\\ R2 + E2 &\eqbm^{k_5}_{k_6}& R2E2 \yields^{k_7} R3 + E2\\ @@ -324,7 +412,43 @@ } \frame{ - \frametitle{Convergence Rates} +\begin{block}{What is Markov Chain Monte Carlo?} + +\textcolor{blue}{Markov Chain Monte Carlo (MCMC)} is a technique for +generating \textcolor{red}{dependent} samples (a Markov Chain) from a +distribution without needing the \textcolor{blue}{normalizing constant}. + +\end{block} +\begin{block}{When is MCMC useful?} + +\textcolor{blue}{MCMC} is useful when it is \textcolor{red}{difficult} to +\textcolor{blue}{simulate} from the target distribution, such as when the +\textcolor{blue}{normalizing constant} is difficult or impossible to +compute and \textcolor{blue}{rejection sampling} is not possible. + +Examples: +\begin{itemize} + \item Sampling from \textcolor{blue}{Bayesian Posterior Distributions} + \item Computing \textcolor{blue}{Maximum-Likelihood tests for intractable + likelihoods} +\end{itemize} + +\end{block} + +} + +\frame{ +\frametitle{MCMC In pictures} +\begin{center} +\includegraphics[height=0.75\textheight]{MCMC-Picture} +\hfill +\includegraphics[height=0.75\textheight]{MCMC-Histogram} +\end{center} +} + + +\frame{ + \frametitle{Convergence Rates (1/2)} \begin{center} Mean Squared Residuals \\ ~ @@ -343,6 +467,16 @@ \end{center} } +\frame{ + \frametitle{Convergence Rates (2/2)} + \begin{center} + \includegraphics[scale=0.5]{figures/MSR16} + \end{center} + + +} + + \section{Results} \frame{ \frametitle{Results} @@ -377,22 +511,77 @@ \end{center} } -\section[]{References} +\section{Acknowledgments} \frame{ - \frametitle{For More Information} - \begin{itemize} - \item Greg Warnes \ + \frametitle{Acknowledgments} + + Robert "Bing" Burrows, Ph.D., who was primarily responsible for work + described here passed away unexpectedly on December 27, 2006. + +\begin{quote} +\tiny + BURROWS, ROBERT BERNARD, II, 63, of North Scituate [Rhode Island], + died Wednesday, December 27, 2006. He was a long time resident of + Lexington, MA before moving to Rhode Island in 2001. After + graduating from Lexington High School, Dr. Burrows earned his + Bachelor of Arts from Northeastern University, a Ph.D. in + Biochemistry from the Massachusetts Institute of Technology, and a + Master of Science in Statistics from the University of Rhode Island. + He was a self-employed Research Biochemist and previously worked for + the Boston Biomedical Research Institute. He leaves his sister Ellen + Conner and her husband Donald of Coventry, his dearest friend Sally + Glanz of North Scituate and many cousins. (\emph{The Providence Journal/Evening + Bulletin} 2006 Dec. 31; Sec. B5) +\end{quote} +} + +\section[]{Reference \& Contact Information} +\frame{ + \frametitle{Reference \& Contact Information} + \begin{block}{Manuscript} + Burrows~RB, Warnes~GR, Hanumara~RC, ``Statistical Modeling of Biochemical Pathways'', + \emph{IET Systems Biology}, IET Syst. Biol. 1, 353 (2007) + \end{block} + \begin{block}{Contact Information} \begin{itemize} - \item Email: \texttt{wa...@bs...} - \item Personal Web Page: \texttt{http://www.warnes.net} - \item Research Web Page: \texttt{http://research.warnes.net} + \item Email: \texttt{gr...@wa...} + \item Personal Web Page: \texttt{http://www.warnes.net} + \item CBIM Web Page: \texttt{https://cbim.urmc.rochester.edu} + \item UR Biostat Web Page \texttt{http://www.urmc.rochester.edu/smd/biostat} \end{itemize} - \item Robert Burrows - \begin{itemize} - \item Email: \texttt{rb...@ne...} - \item Web Page: \texttt{http://www.nebiometrics.com} - \end{itemize} - \end{itemize} + \end{block} } +%%\bibliography{./refs} +%\begin{thebibliography}{99} +% \bibitem{Oates02}%1 +% Oates,~P.J., 2002, Polyol pathway and diabetic peripheral +% neuropathy, \emph{Int. Rev. Neurobiol.}, +% \textbf{50}, 325--392. +% \bibitem{Gilks95} %5 +% Gilkes,~W.R., Richardson,~S., and Spiegelhalter,~D.J. (Ed.), +% \emph{Markov Chain Monte Carlo in Practice} (Boca Raton, FL: +% Chapman \& Hall/CRC) +% \bibitem{R}%9 +% R Development Team, \emph{R: A Language and Environment for +% Statistical Computing}, http://www.r-project.org (accessed 7 Nov 06) +% \bibitem{Michaelis13} %10 +% Michaelis, L. and Menten, M.L., 1913, Die kinetic der +% invertinwirkung, \emph{Biochem. Zeit.}, \textbf{49}, +% 333--369. +% \bibitem{Hydra}%13 +% Warnes, G.R., Hydra {MCMC} {L}ibrary, +% http://www.sourceforge.net/projects/hydra-mcmc +% \bibitem{Warnes00} %14 +% Warnes, G.R., 2000, The {N}ormal {K}ernel {C}oupler: {A}n adaptive +% {M}arkov chain {M}onte {C}arlo method for efficiently sampling +% from multi-modal distributions, thesis, University of Washington. +% \bibitem{projo}%16 +% OBITUARIES-SCITUATE-BURROWS. \emph{The Providence Journal/Evening +% Bulletin} 2006 Dec. 31; Sec. B5 +%\end{thebibliography} + + + + \end{document} This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |