[R-gregmisc-users] SF.net SVN: r-gregmisc: [946] trunk/PathwayModeling/thesispaper
Brought to you by:
warnes
From: <r_b...@us...> - 2006-03-20 17:29:25
|
Revision: 946 Author: r_burrows Date: 2006-03-20 09:29:20 -0800 (Mon, 20 Mar 2006) ViewCVS: http://svn.sourceforge.net/r-gregmisc/?rev=946&view=rev Log Message: ----------- set eval=T for code chunks Modified Paths: -------------- trunk/PathwayModeling/thesispaper/methods.Snw trunk/PathwayModeling/thesispaper/results.Snw Modified: trunk/PathwayModeling/thesispaper/methods.Snw =================================================================== --- trunk/PathwayModeling/thesispaper/methods.Snw 2006-03-20 17:10:18 UTC (rev 945) +++ trunk/PathwayModeling/thesispaper/methods.Snw 2006-03-20 17:29:20 UTC (rev 946) @@ -11,7 +11,7 @@ \cite{Gillespie77}. In this paper we present the results for a 5-reaction sequence that is sampled at 12, 16, or 25 time points with 3 replicates at each time point. -<<data, echo=F, eval=F>>=1 +<<data, echo=F, eval=T>>=1 # gillespie.out - output from the Gillespie simulation source('R/getPaperData.R') source('R/getPaperRates.R') @@ -59,7 +59,7 @@ the perturbation of $R1$ at $time = 20$ results in the time courses plotted in Figure~\ref{pulse}. -<<echo=F,eval=F>>=2 +<<echo=F,eval=T>>=2 source("R/pulse.R") rawdata <- read.table("data/rawdata.dat",header=T) attach(rawdata) Modified: trunk/PathwayModeling/thesispaper/results.Snw =================================================================== --- trunk/PathwayModeling/thesispaper/results.Snw 2006-03-20 17:10:18 UTC (rev 945) +++ trunk/PathwayModeling/thesispaper/results.Snw 2006-03-20 17:29:20 UTC (rev 946) @@ -20,7 +20,7 @@ (e.g., $d_1$ --$d_2$ and $d_3$ --$d_4$, Figure~\ref{scatter}) were similar relative distances from their modes. The significance of all this is not clear at this point.} -<<fig4,echo=F,eval=F>>=3 +<<fig4,echo=F,eval=T>>=3 source("R/paperSSQ.R") source("R/getModes.R") source("R/do.optim.R") @@ -63,7 +63,7 @@ The effect of the number of data points on the parameter distributions can be seen in Figure~\ref{converged}. -<<fig5,echo=F,eval=F>>=4 +<<fig5,echo=F,eval=T>>=4 source("R/plotDensity.R") source("R/plotConverged.R") output12 <- read.table("data/output12.AllComp.thinned") @@ -94,7 +94,7 @@ distributions. There is correlation between some pairs of parameters, e.g., $d_1$ -- $d_2$, but no evidence of multi-modality. -<<fig6, echo=F,eval=F>>=5 +<<fig6, echo=F,eval=T>>=5 source("R/paperPairs.R") mcmcML <-scan("figures/tempDir/mcmcML.dat") output16 <- read.table("data/output16.AllComp.thinned") @@ -127,7 +127,7 @@ is shown in Figure~\ref{fits}. Quantitative measures of the fits for all the algorithms are given in Table~\ref{MSq}. -<<fig7, echo=F, eval=F>>=6 +<<fig7, echo=F, eval=T>>=6 source("R/paperSSQ.R") source("R/getModes.R") source("R/do.optim.R") @@ -186,7 +186,7 @@ This is not a problem with the all-component Metropolis and NKC algorithms since they update all the parameters at each iteration}. -<<fig8, echo=F,eval=F>>=7 +<<fig8, echo=F,eval=T>>=7 source("R/getMSDvsEvals.R") source("R/plotMSD16.R") source('R/paperSSQ.R') This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |