Menu

Tree [f8af1f] master /
 History

HTTPS access


File Date Author Commit
 web 2011-05-05 José Sabater Montes José Sabater Montes [79df43] Web and changes in README
 .gitignore 2014-03-05 José Sabater Montes José Sabater Montes [f8af1f] gitignore updated and MANIFEST added
 LICENSE-GPL 2011-05-05 José Sabater Montes José Sabater Montes [eee35d] Initial code
 LICENSE-LGPL 2011-05-05 José Sabater Montes José Sabater Montes [eee35d] Initial code
 MANIFEST 2014-03-05 José Sabater Montes José Sabater Montes [f8af1f] gitignore updated and MANIFEST added
 README 2011-05-05 José Sabater Montes José Sabater Montes [79df43] Web and changes in README
 asurv.py 2011-05-05 José Sabater Montes José Sabater Montes [eee35d] Initial code
 runtests.py 2011-11-07 José Sabater Montes José Sabater Montes [9e2e58] Changes and tests.
 setup.py 2014-03-05 José Sabater Montes José Sabater Montes [84cf40] Uncomment line with sources
 twokm.f 2011-05-05 José Sabater Montes José Sabater Montes [eee35d] Initial code
 twokm.pyf 2011-05-05 José Sabater Montes José Sabater Montes [eee35d] Initial code

Read Me

===================
python-asurv README
===================

Implementation in Python of some of the statistical methods provided by 
"asurv", the survival analysis software.

The original asurv software can be found at: 
http://www.astrostatistics.psu.edu/statcodes/

python-asurv can be found at: https://sourceforge.net/projects/python-asurv/

At the moment the only method implemented is the Schmitt binning method 
(Schmitt, J. H. M. M. 1985; http://adsabs.harvard.edu/abs/1985ApJ...293..178S) 
and probably, this method will be the only one implemented. If you are 
interested in a regression method that can handle censored data in both axis 
without the problems of the Schmitt method (arbitrary binning, statistical 
properties not known, problems with small samples) you should have a look to 
the Akritas-Thiel-Sen method. It is explained in the book "Nondetects And Data 
Analysis: Statistics for Censored Environmental Data" (Wiley-Interscience, 
2005, ISBN: 9780471671732). There is an implemetation of the method in R 
(http://www.r-project.org) in a package called NADA 
(http://cran.r-project.org/web/packages/NADA/index.html). The method can be 
interfaced from Python using RPy (http://rpy.sourceforge.net/).

DEPENDENCIES

Python-asurv depends on numpy (http://numpy.scipy.org/).

INSTALL

To install python-asurv enter:
python setup.py install

ACKNOWLEDGEMENTS

If you use this software for your work you should cite one of the following 
articles explaining the method used and the software (ASURV) in which this 
software is based:
 * Feigelson, E. D. and Nelson, P. I. "Statistical Methods for
    Astronomical Data with Upper Limits: I. Univariate Distributions",
    Astrophyscal Journal 293, 192-206, 1985.
 * Isobe, T., Feigelson, E. D., and Nelson, P. I. "Statistical Methods
    for Astronomical Data with Upper Limits: II. Correlation and Regression",
    Astrophysical Journal, 306, 490-507, 1986.
 * LaValley, M., Isobe, T. and Feigelson, E.D. "ASURV", Bulletin
    Amercan Astronomical Society (Software Reports),  22, 917-918, 1990.
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.