Hi

Happy new year every one!
I'm new to continuation and trying to get my head around things at the moment. I've got the following system of equation:

$$
\left(
\begin{array}{c}
    \dot{s}\\
    \dot{v}
\end{array}
\right)
=
\left(
\begin{array}{c}
    v\\
    -\mathbf{B}^{-1} \mathbf{A} s + V_{DC} \mathbf{B}^{-1} \mathbf{C} s
\end{array}
\right)
$$

where A B and C are square matrices of dimension (nxn), s and v are vectors of length n and V_DC is a scalar. I tried to enter this system of equations  and solve it with pyDSTool but got; 'TypeError: only length-1 arrays can be converted to Python scalars'.

Here's the code:
#!/usr/bin/python
# encoding=utf8

import PyDSTool as DS
import numpy as np

AA = np.matrix([[127.717469865, 2.05025780562],
[0.0521863096197, 2605.29996274]])
BB = np.matrix([[1.65676839951e-10, 6.76971107431e-14],
[6.76971107431e-14, 8.60513163289e-11]])
CC = np.matrix([[-5.91089367427436, 58.2428565496970],
[-9.30459729674465, 47.6048481884652]])


DSargs = DS.args(name='Hopf')

# parameters
DSargs.pars =   {
                'A': AA,
                'B': BB,
                'B_I': BB.I,
                'C': CC,
                'V_DC': 0
                }

# auxiliary helper function(s)
DSargs.fnspecs  =   {
                    'ss': (['s'], 'sum(s)'),
                    'vv': (['v'], 'sum(v)')
                    }

# rhs of the differential equation
DSargs.varspecs = {
                    's': 'v',
                    'v': '-B_I*A*s + V_DC*B_I*C*s'
                    }

# initial conditions
DSargs.ics      = {
                    's': np.matrix([0,0]),
                    'v': np.matrix([0,0])
                    }

DSargs.info()

ode = DS.Generator.Vode_ODEsystem(DSargs)

# Set up continuation class
PyCont = DS.ContClass(ode)

PCargs = DS.args(name='EQ1', type='EP-C')
PCargs.freepars = ['V_DC']
PCargs.MaxNumPoints = 400
PCargs.StepSize = 0.1
PCargs.LocBifPoints = ['all']
PCargs.SaveEigen = True

How can I deal with matrices in the system of equations? I need to work with such systems often in future as this is the form I get after applying the Galerking decomposition to continuum-mechanical dynamic systesm.

Thanks for your help!
Achim

ps: Thanks for another awesome open-source tool!