[pure-lang-svn] SF.net SVN: pure-lang: [189] pure/trunk/examples/myutils.pure
Status: Beta
Brought to you by:
agraef
From: <ag...@us...> - 2008-06-06 20:04:19
|
Revision: 189 http://pure-lang.svn.sourceforge.net/pure-lang/?rev=189&view=rev Author: agraef Date: 2008-06-06 13:04:23 -0700 (Fri, 06 Jun 2008) Log Message: ----------- Added Libor Spacek's examples. Added Paths: ----------- pure/trunk/examples/myutils.pure Added: pure/trunk/examples/myutils.pure =================================================================== --- pure/trunk/examples/myutils.pure (rev 0) +++ pure/trunk/examples/myutils.pure 2008-06-06 20:04:23 UTC (rev 189) @@ -0,0 +1,88 @@ +// Dr Libor Spacek, 21th May 2008 + +//General mathematical iterators over one and two indices and examples of their use +MathIter1 op i1 i2 f = foldl1 op (map f (i1..i2)); +MathIter2 op i1 i2 j1 j2 f = foldl1 op (map (uncurry f) [x,y; x = i1..i2; y = j1..j2]); + +Sigma i1 i2 f = MathIter1 (+) i1 i2 f; +Pi i1 i2 f = MathIter1 (*) i1 i2 f; +Factorial n = Pi 1L n id; + +//Binomial using (k, n-k) symmetry and bignum division +Binomial n k = (Pi (k+1L) n id) div (Pi 2L (n-k) id) if n-k < k; + = (Pi (n-k+1L) n id) div (Pi 2L k id); + +// Euclid's recursive greatest common factor algorithm for ints and bignums +Gcf x 0 = x; +Gcf x 0L = x; +Gcf x y = Gcf y (x mod y); + +// take the head of a list and put it at the end +rotate (h:t) = reverse (h:(reverse t)); + +// protate = rotate n items from the front: use when n is positive: 0<=n<=#n +protate 0 l = l; +protate n::int l = cat [(drop n l),(take n l)]; + +// rotate n items, generalisation of "rotate the bits instruction" +// example: head (nrotate (-33) (0..23)); +// what time is 33 hrs before midnight? 15 hrs. The clock was moved -9 = -33 mod 24 +nrotate n::int l = protate nm l when ll = #l; nm = ll + (n mod ll) end if n<0; + = protate nm l when nm = n mod #l end; + +// interpret any nonzero result as true: prevents errors in conditions +nonzero 0 = 0; +nonzero x = 1; + +// The Queens problem: +// the solution is only the rows permutation, without the ordered columns (1..n). +// full 2D board coordinates can be produced with: zip (1..n) (queens n); +safe _ _ [] = 1; +safe id::int j::int (j2::int:l) = if (j==j2) || (id==j2-j) || (id==j-j2) then 0 + else safe (id+1) j l; + +queens n::int = list (search n n n []) + with + search _ 0 _ _ = (); // last i, solved + search _ _ 0 _ = 0; // fail, run out of alternative js + search n::int i::int j::int p = + if nonzero solution then j,solution // new i led to a solution + else search n i (j-1) p // or it failed, try another j + when solution = search n (i-1) n (j:p); end if safe 1 j p; + = search n i (j-1) p // also try another j when unsafe + end; + +// this concise backtracking tailqueens throw a single solution +tailqueens n::int = catch id (srch n n n []) + with srch _ 0 _ p = throw p; srch _ _ 0 _ = 0; + srch n::int i::int j::int p = () if safe 1 j p && nonzero (srch n (i-1) n (j:p)); + = srch n i (j-1) p end; + +// thequeens encodes my no search solution which is my original discovery, +// to my knowledge the simplest known algorithm for this kind of a problem. +// there always exists one fundamental centre-symmetrical solution of this form, +// representing an orbit of just four solutions, instead of the usual eight. +// these few lines of code are self-contained (not calling any square checking). +thequeens 1 = [0]; thequeens n::int = no solution if n<4; +thequeens n::int = map (\x-> newsquare n x) (0..(n-1)) + with newsquare n::int x::int = (start+2*x) mod n if x < halfn; + = (start2+2*(x-halfn)) mod n end //reflections + when halfn = n div 2; + start = if (n mod 3) then (halfn-1) else 1; // (n mod 3) == 0 is special + start2 = n-((start + 2*(halfn-1)) mod n)-1 end if (n mod 2)==0; // all even boards + = 0:(map (\x->1+x)(thequeens (n-1))); // corner start solves odd size boards + +// row numbering in thequeens was changed to the "C style" e.g. 0..7. +// full board coordinates, e.g. (1..8) x (1..8) can be reconstructed with: +fullboard simple = zip (1..(#simple)) (map (\x->1+x) simple); + +// checks one queens solution either in 0..7 encoding or in 1..8 encoding. +// returns 1 for a valid solution, 0 otherwise +checkqs [] = 1; +checkqs (s::int:l) = if safe 1 s l then checkqs l else 0; + +// conducts an exhaustive test of boards of all sizes from min to max, e.g. >queenstest (4..1000); +// test _ min::int max::int = second argument must be greater than the first if min>=max; +queenstest [] = 1; +queenstest (h:l) = if checkqs (thequeens h) then queenstest l else 0; + This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |