C++ implementation of high-performance associative neural networks models based on pseudo-inverse learning rule, also known as projection rule or attractor-based rule
Features
- This project is based on the work and PhD thesis of Dmitry O. Gorodnichy and Oleksiy K. Dekhtyarenko
- Implementation of most known and efficient learning rules for associative Hopfield-like attractor-based neural network
Categories
Neural Network LibrariesFollow PINNLib
Other Useful Business Software
Enterprise-grade ITSM, for every business
Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
Rate This Project
Login To Rate This Project
User Reviews
-
Very useful library and sample codes to understand and implement associative neural networks, can be used to implement many associative recognition tasks, such as face recognition. The only available free codes for this type of neural networks. Great for students and researchers!