[pgsqlclient-checkins] pgsqlclient_10/Mono.Security.Protocol.Tls/Mono.Security.Protocol.Tls/Mono.Mat
Status: Inactive
Brought to you by:
carlosga_fb
|
From: <car...@us...> - 2003-12-21 14:42:19
|
Update of /cvsroot/pgsqlclient/pgsqlclient_10/Mono.Security.Protocol.Tls/Mono.Security.Protocol.Tls/Mono.Math.Prime
In directory sc8-pr-cvs1:/tmp/cvs-serv2701
Added Files:
ConfidenceFactor.cs PrimalityTests.cs
Log Message:
2003-12-21 Carlos Guzmán Álvarez <car...@te...>
* Added files from mono:: project that are going to be needed
for client authentication:
Mono.Math/*
Mono.Math.Prime/*
Mono.Math.Prime.Generator/*
Mono.Security.Cryptography/RSAManaged.cs
--- NEW FILE: ConfidenceFactor.cs ---
//
// Mono.Math.Prime.ConfidenceFactor.cs - Confidence factor for prime generation
//
// Authors:
// Ben Maurer
//
// Copyright (c) 2003 Ben Maurer. All rights reserved
//
using System;
namespace Mono.Math.Prime {
/// <summary>
/// A factor of confidence.
/// </summary>
internal enum ConfidenceFactor {
/// <summary>
/// Only suitable for development use, probability of failure may be greater than 1/2^20.
/// </summary>
ExtraLow,
/// <summary>
/// Suitable only for transactions which do not require forward secrecy. Probability of failure about 1/2^40
/// </summary>
Low,
/// <summary>
/// Designed for production use. Probability of failure about 1/2^80.
/// </summary>
Medium,
/// <summary>
/// Suitable for sensitive data. Probability of failure about 1/2^160.
/// </summary>
High,
/// <summary>
/// Use only if you have lots of time! Probability of failure about 1/2^320.
/// </summary>
ExtraHigh,
/// <summary>
/// Only use methods which generate provable primes. Not yet implemented.
/// </summary>
Provable
}
}
--- NEW FILE: PrimalityTests.cs ---
//
// Mono.Math.Prime.PrimalityTests.cs - Test for primality
//
// Authors:
// Ben Maurer
//
// Copyright (c) 2003 Ben Maurer. All rights reserved
//
using System;
using System.Security.Cryptography;
namespace Mono.Math.Prime {
[CLSCompliant(false)]
internal delegate bool PrimalityTest (BigInteger bi, ConfidenceFactor confidence);
[CLSCompliant(false)]
internal sealed class PrimalityTests {
#region SPP Test
private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence)
{
int bc = bi.bitCount();
int Rounds;
// Data from HAC, 4.49
if (bc <= 100 ) Rounds = 27;
else if (bc <= 150 ) Rounds = 18;
else if (bc <= 200 ) Rounds = 15;
else if (bc <= 250 ) Rounds = 12;
else if (bc <= 300 ) Rounds = 9;
else if (bc <= 350 ) Rounds = 8;
else if (bc <= 400 ) Rounds = 7;
else if (bc <= 500 ) Rounds = 6;
else if (bc <= 600 ) Rounds = 5;
else if (bc <= 800 ) Rounds = 4;
else if (bc <= 1250) Rounds = 3;
else Rounds = 2;
switch (confidence) {
case ConfidenceFactor.ExtraLow:
Rounds >>= 2;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Low:
Rounds >>= 1;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Medium:
return Rounds;
case ConfidenceFactor.High:
return Rounds <<= 1;
case ConfidenceFactor.ExtraHigh:
return Rounds <<= 2;
case ConfidenceFactor.Provable:
throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable");
default:
throw new ArgumentOutOfRangeException ("confidence");
}
}
/// <summary>
/// Probabilistic prime test based on Rabin-Miller's test
/// </summary>
/// <param name="bi" type="BigInteger.BigInteger">
/// <para>
/// The number to test.
/// </para>
/// </param>
/// <param name="confidence" type="int">
/// <para>
/// The number of chosen bases. The test has at least a
/// 1/4^confidence chance of falsely returning True.
/// </para>
/// </param>
/// <returns>
/// <para>
/// True if "this" is a strong pseudoprime to randomly chosen bases.
/// </para>
/// <para>
/// False if "this" is definitely NOT prime.
/// </para>
/// </returns>
public static bool RabinMillerTest (BigInteger bi, ConfidenceFactor confidence)
{
int Rounds = GetSPPRounds (bi, confidence);
// calculate values of s and t
BigInteger p_sub1 = bi - 1;
int s = p_sub1.LowestSetBit ();
BigInteger t = p_sub1 >> s;
int bits = bi.bitCount ();
BigInteger a = null;
RandomNumberGenerator rng = RandomNumberGenerator.Create ();
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
for (int round = 0; round < Rounds; round++) {
while (true) { // generate a < n
a = BigInteger.genRandom (bits, rng);
// make sure "a" is not 0
if (a > 1 && a < bi)
break;
}
if (a.gcd (bi) != 1) return false;
BigInteger b = mr.Pow (a, t);
if (b == 1) continue; // a^t mod p = 1
bool result = false;
for (int j = 0; j < s; j++) {
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (result == false)
return false;
}
return true;
}
public static bool SmallPrimeSppTest (BigInteger bi, ConfidenceFactor confidence)
{
int Rounds = GetSPPRounds (bi, confidence);
// calculate values of s and t
BigInteger p_sub1 = bi - 1;
int s = p_sub1.LowestSetBit ();
BigInteger t = p_sub1 >> s;
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
for (int round = 0; round < Rounds; round++) {
BigInteger b = mr.Pow (BigInteger.smallPrimes [round], t);
if (b == 1) continue; // a^t mod p = 1
bool result = false;
for (int j = 0; j < s; j++) {
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (result == false)
return false;
}
return true;
}
#endregion
// TODO: Implement the Lucus test
// TODO: Implement other new primality tests
// TODO: Implement primality proving
}
}
|