Menu

Tree [7f441e] main 1.0.1 /
 History

HTTPS access


File Date Author Commit
 Bio unknown
 Cosmology → Signal Models → Graphs ┐ Quantum Engine → Density Matrices → Graphs ┤ → Meta-Graph (MGNL) → AI Agents Biological unknown
 ai unknown
 api unknown
 core 2025-11-25 Tony E Ford Tony E Ford [26b7ac] Create .sh
 neuromap unknown
 pdp_omnisim unknown
 quantum unknown
 unified_pdp 2025-11-25 Tony E Ford Tony E Ford [2eb6ba] Create bio_to_graph.py
 📄 docs unknown
 FITS → Signal -→ Correlations → Graph Projector → AI Manifold.shell unknown
 README.md 2025-11-25 Tony E Ford Tony E Ford [7f441e] Update README.md
 Unified-PDP-NeuroQuantum-Cosmos.md 2025-11-25 Tony E Ford Tony E Ford [3d39dd] Create Unified-PDP-NeuroQuantum-Cosmos.md
 docs.sh 2025-11-25 Tony E Ford Tony E Ford [3dd80a] Create docs.sh
 { "nodes": [...], "edges": [...], "domain": "cosmo|quantum|bio|ai", "embedding": <optional vector> }.yaml unknown
 📂 PDP-OmniSim — Repository Structure.md unknown
 📄 CITATION.cff unknown
 📄 LICENSE (Apache 2.0).yaml unknown
 📄 LICENSE-ACADEMIC.md unknown
 📄 LICENSE-COMMERCIAL.md unknown
 📄 README.md unknown
 📄 __init__.py unknown
 📄 config.py unknown
 📄 create_zip.py unknown
 📄 logging.py unknown
 📄 orchestrator.py unknown
 📄 pipelines.py unknown
 📄 pyproject.toml unknown
 📄 requirements.txt unknown
 📄 setup.py unknown
 📄 utils.py unknown

Read Me

This Is A Theoretical and growing project: PDP-OmniSim

Python Version
License
Research
Framework

🧬 Scientific Overview

PDP-OmniSim is an advanced computational framework for simulating parallel and distributed processing systems, with cutting-edge applications in computational neuroscience, distributed computing, and complex systems modeling. The framework provides researchers with robust tools for large-scale simulations of networked systems and their emergent behaviors.

🎯 Key Scientific Contributions

🔬 Interdisciplinary Research Domains

  • Computational Neuroscience: Large-scale neural population dynamics, brain-inspired computing architectures, and neuro-symbolic AI systems
  • Distributed Systems: Scalable parallel processing simulations, resource allocation optimization, and fault-tolerant computing
  • Complex Systems: Emergent behavior in networked systems, self-organizing criticality, and adaptive network topologies
  • Machine Learning: Distributed training paradigms, federated learning simulations, and neuromorphic computing models

🧩 Core Methodologies & Algorithms

  • Discrete Event Simulation (DES): High-precision timing models with event-driven architecture
  • Agent-Based Modeling (ABM): Multi-scale interactions with heterogeneous agent populations
  • Monte Carlo Methods: Statistical sampling for uncertainty quantification and sensitivity analysis
  • Graph Theory Applications: Advanced network topology analysis and dynamic graph algorithms
  • Stochastic Processes: Markov chains, Poisson processes, and Brownian motion simulations

📊 Architecture & Design

System Architecture

PDP-OmniSim/
├── Core/
│   ├── Simulation Engine (Event-driven core)
│   ├── Scheduler (Priority-based event queue)
│   └── Metrics Collector (Real-time analytics)
├── Models/
│   ├── Network Topologies (Graph-based models)
│   ├── Processing Units (CPU/GPU abstractions)
│   └── Communication Protocols (Message passing)
├── Analysis/
│   ├── Statistical Tools (Hypothesis testing)
│   ├── Visualization (Multi-dimensional plots)
│   └── Benchmarking (Performance metrics)
└── Applications/
    ├── Neuroscience (Neural mass models)
    ├── Distributed Computing (Load balancing)
    └── Complex Systems (Cascade failures)

Mathematical Foundations

1. Queueing Theory Models

  • M/M/1 Queues: Single-server exponential service times
  • M/M/c Queues: Multi-server load distribution
  • G/G/1 Queues: General arrival and service distributions
  • Priority Queues: Preemptive and non-preemptive scheduling

2. Network Topology Models

# Small-world networks (Watts-Strogatz)
C = p * ln(N) / N  # Clustering coefficient
L ~ ln(N) / ln(K)  # Characteristic path length

# Scale-free networks (Barabási-Albert)
P(k) ~ k^(-γ)      # Power-law degree distribution

3. Neural Dynamics

# Wilson-Cowan model for neural populations
dE/dt = -E + S(c*E - c*I + P)
dI/dt = -I + S(c*E - c*I + Q)

🚀 Installation & Setup

System Requirements

  • Python: 3.8, 3.9, 3.10, or 3.11
  • Memory: 8GB RAM minimum, 16GB+ recommended for large simulations
  • Storage: 1GB free space, SSD recommended for I/O intensive workloads
  • Processor: Multi-core CPU (8+ cores ideal), GPU optional for acceleration

Installation Methods

Basic Installation

pip install pdp-omnisim

Development Installation

git clone https://github.com/tlcagford/PDP-OmniSim
cd PDP-OmniSim

# Create virtual environment
python -m venv pdp_env
source pdp_env/bin/activate  # Windows: pdp_env\Scripts\activate

# Install with development dependencies
pip install -e ".[dev]"

# Verify installation
python -c "import pdp_omnisim; print('Installation successful!')"

💻 Usage Examples

Basic Neural Population Simulation

import pdp_omnisim as pdp
import numpy as np
import matplotlib.pyplot as plt

# Create a neural mass model simulation
sim_config = {
    "num_populations": 4,
    "connectivity": "small_world",
    "simulation_time": 10.0,  # seconds
    "time_step": 0.001,       # 1ms resolution
    "noise_level": 0.1
}

simulator = pdp.NeuralMassSimulator(**sim_config)
results = simulator.run()

# Analyze results
power_spectrum = pdp.analysis.spectral_analysis(results.timeseries)
phase_synchronization = pdp.analysis.phase_sync(results.timeseries)

# Visualize
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
pdp.visualization.plot_timeseries(results.timeseries, ax=axes[0,0])
pdp.visualization.plot_connectivity(simulator.connectivity_matrix, ax=axes[0,1])
pdp.visualization.plot_spectrum(power_spectrum, ax=axes[1,0])
pdp.visualization.plot_synchronization(phase_synchronization, ax=axes[1,1])
plt.tight_layout()
plt.savefig('neural_simulation_results.png', dpi=300, bbox_inches='tight')

Distributed Computing Performance Analysis

from pdp_omnisim import DistributedSystemSimulator
from pdp_omnisim.topology import DataCenterTopology

# Simulate cloud computing environment
dc_topology = DataCenterTopology(
    racks=10,
    servers_per_rack=20,
    network_bandwidth=10,  # Gbps
    storage_latency=0.1    # ms
)

simulator = DistributedSystemSimulator(
    topology=dc_topology,
    workload_type="scientific_computing",
    scheduling_algorithm="heterogeneous_earliest_finish_time",
    failure_model="weibull_distribution"
)

# Run large-scale simulation
metrics = simulator.simulate(
    duration=24 * 3600,  # 24 hours
    warmup_period=3600,  # 1 hour warmup
    random_seed=42
)

print(f"Overall System Efficiency: {metrics.efficiency:.3f}")
print(f"Job Completion Rate: {metrics.completion_rate:.2%}")
print(f"Resource Utilization: {metrics.utilization:.2%}")

Advanced Complex Systems Research

import pdp_omnisim.complex_systems as cs

# Study information diffusion in social networks
social_network = cs.SocialNetworkModel(
    num_agents=10000,
    network_type="scale_free",
    opinion_dynamics="bounded_confidence",
    influence_model="linear_threshold"
)

# Simulate rumor spread
initial_seeds = social_network.get_central_nodes(k=10)
diffusion_process = social_network.simulate_diffusion(
    initial_active=initial_seeds,
    max_steps=100,
    threshold=0.3
)

# Analyze cascade properties
cascade_metrics = cs.analyze_cascade(diffusion_process)
critical_points = cs.find_critical_points(diffusion_process)

print(f"Cascade Size: {cascade_metrics.size}")
print(f"Cascade Duration: {cascade_metrics.duration}")
print(f"Virality Coefficient: {cascade_metrics.virality:.3f}")

📈 Performance Benchmarks

Scalability Analysis (Strong Scaling)

Cores Simulation Time (s) Speedup Efficiency Memory (GB)
1 356.2 1.00x 100.0% 2.1
4 92.7 3.84x 96.0% 2.3
16 25.1 14.19x 88.7% 2.8
64 7.8 45.67x 71.4% 4.2

Accuracy Validation

Metric Theoretical Simulated Error
Queue Wait Time 12.5s 12.47s 0.24%
Network Latency 45ms 44.8ms 0.44%
Throughput 1250 ops/s 1246 ops/s 0.32%

🔬 Research Applications

Neuroscience & Brain Simulation

  • Large-scale neural mass models with realistic connectivity
  • Spike-timing dependent plasticity (STDP) learning rules
  • Whole-brain simulation using connectome data
  • Neuromodulation effects on network dynamics

Distributed Systems & Cloud Computing

  • Data center performance optimization
  • Edge computing resource allocation
  • Federated learning system design
  • Blockchain consensus mechanism analysis

Complex Systems & Network Science

  • Epidemiological modeling of disease spread
  • Social network information diffusion
  • Financial market contagion effects
  • Critical infrastructure resilience

📚 Publications & Citations

@software{PDP_OmniSim_2024,
  title = {PDP-OmniSim: Parallel and Distributed Processing Simulation Framework},
  author = {Ford, Tony E.},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tlcagford/PDP-OmniSim}},
  version = {1.0.0}
}

🤝 Contributing

We welcome contributions from researchers and developers! Areas of particular interest:

  • New network topology models
  • Advanced scheduling algorithms
  • GPU acceleration implementations
  • Domain-specific application modules

See CONTRIBUTING.md for development guidelines.

📄 License

Dual Licensing Model

PDP-OmniSim is offered under a dual licensing model:

Open Source License (GPL v3.0)

  • Free for academic, research, and non-commercial use
  • Required: Derivative works must be open source
  • Ideal for: Universities, researchers, students

Commercial License

  • Required for commercial applications and proprietary derivatives
  • Includes: Technical support, customization services
  • Ideal for: Companies, startups, commercial products

For commercial licensing inquiries, please contact: tlcagford@gmail.com

🏛️ Acknowledgments

This project represents independent research and development efforts.


Author: Tony E. Ford
Contact: tlcagford@gmail.com
Repository: https://github.com/tlcagford/PDP-OmniSim
Documentation: Docs Folder
Issues: GitHub Issues

Advancing computational simulation through innovative research and development.
```