[f1f585]: t / fftw.t  Maximize  Restore  History

Download this file

138 lines (106 with data), 3.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
use strict;
use PDL;
use PDL::FFT;
use Test::More;
eval "use PDL::FFTW;";
my $loaded = ($@ ? 0 : 1);
# this value is add-hoc and adjusted each time we find a problem with a
# given OS or library version of FFTW...
#
# We use the PDL::Core::approx() routine for comparing piddles
#
use constant ABSDIFF => 1.2e-4;
if ($loaded) {
plan tests => 9;
} else {
plan skip_all => "PDL::FFTW not available";
}
# get the type (double or float) used by the FFTW library and module
# The eval() is to avoid warning messages from Perl
#
my $datatype = eval('$PDL::FFTW::COMPILED_TYPE');
my $n = 30;
my $m = 40;
my ( $ir, $ii, $i, $fi, $fir, $fii, $ffi );
$ir = zeroes($n,$m)->$datatype();
$ii = zeroes($n,$m)->$datatype();
$ir = random $ir;
$ii = random $ii;
$i = cat $ir,$ii;
$i = $i->mv(2,0);
$fi = ifftw $i;
$fir = $ir->copy;
$fii = $ii->copy;
fftnd $fir,$fii;
$ffi = cat $fir,$fii;
$ffi = $ffi->mv(2,0);
my ( $t, $orig, $i2, $sffi );
$t = ($ffi-$fi)*($ffi-$fi);
# print diff fftnd and ifftw: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"fftnd() and ifftw()");
$orig = fftw $fi;
$orig /= $n*$m;
$t = ($orig-$i)*($orig-$i);
# print "diff ifftw fftw and orig: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"ifftw() fftw() and original");
# Inplace FFT
$i2 = $i->copy;
infftw($i2);
$t = ($i2-$ffi)*($i2-$ffi);
# print "diff fftnd and infftw: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"fftnd and infftw");
$i2 = nfftw $i2;
$i2 /= $n*$m;
$t = ($i-$i2)*($i-$i2);
# print "diff infftw nfftw and orig: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"infftw nfftw and original");
$ir = zeroes($n,$m)->$datatype();
$ii = zeroes($n,$m)->$datatype();
$ir = random $ir;
$fir = $ir->copy;
$fii = $ii->copy;
ifftnd $fir,$fii;
$ffi = cat $fir,$fii;
$ffi = $ffi->mv(2,0);
$ffi *= $n*$m;
$sffi = $ffi->mslice('X',[0,$n/2],'X');
$fi = rfftw $ir;
$t = ($sffi-$fi)*($sffi-$fi);
# print "diff rfftw and infft: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"rfftw() and infft()");
$orig = irfftw $fi;
$orig /= $n*$m;
$t = ($orig-$ir)*($orig-$ir);
# print "diff ifftw fftw and orig: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"ifftw() fftw() and original");
my ( $rin, $srin, $tmp );
$rin = zeroes(2*(int($n/2)+1),$m)->$datatype();
$tmp = $rin->mslice([0,$n-1],'X');
$tmp .= $ir;
$srin = $rin->copy;
$rin = nrfftw $rin;
$t = ($sffi-$rin)*($sffi-$rin);
# print "diff nrfftw and infft: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"nrfftw() and infft()");
$rin = inrfftw $rin;
$rin /= $n*$m;
$rin = $rin->mslice([0,$n-1],'X');
$srin = $srin->mslice([0,$n-1],'X');
$t = ($srin-$rin)*($srin-$rin);
# print "diff inrfftw nrfftw and orig: ",sqrt($t->sum),"\n";
ok(approx(sqrt($t->sum),pdl(0),ABSDIFF),
"inrfftw() nrfftw() and original");
# do the inplace routines work with slices?
my $a = ones(2,4)->$datatype();
my $fa = fftw $a;
nfftw $a->slice('');
ok(approx($fa,$a,ABSDIFF)->all,
"inplace routine (nfftw) works with slices");
#print "$a\n$fa\n";

Get latest updates about Open Source Projects, Conferences and News.

Sign up for the SourceForge newsletter:





No, thanks