From: William P. Y. H. <wil...@gm...> - 2006-02-21 13:42:27
|
On 2/20/06, Paul Kienzle <pki...@us...> wrote: > > Okay, I added a test of the Longley data set from the NIST Statistical > Reference Database. > > The performance is pretty bad (norm of answer-certified value is about > 10^-7), but that's a bit better than the competition. > > Someone with more R experience than me will have to see if it performs > any better. > > Also, if you can convert bint to standard error values that would be > convenient. > > - Paul > > ---- > > % Longley data from the NIST Statistical Reference Dataset > Z =3D [ 60323 83.0 234289 2356 1590 107608 1947 > 61122 88.5 259426 2325 1456 108632 1948 > 60171 88.2 258054 3682 1616 109773 1949 > 61187 89.5 284599 3351 1650 110929 1950 > 63221 96.2 328975 2099 3099 112075 1951 > 63639 98.1 346999 1932 3594 113270 1952 > 64989 99.0 365385 1870 3547 115094 1953 > 63761 100.0 363112 3578 3350 116219 1954 > 66019 101.2 397469 2904 3048 117388 1955 > 67857 104.6 419180 2822 2857 118734 1956 > 68169 108.4 442769 2936 2798 120445 1957 > 66513 110.8 444546 4681 2637 121950 1958 > 68655 112.6 482704 3813 2552 123366 1959 > 69564 114.2 502601 3931 2514 125368 1960 > 69331 115.7 518173 4806 2572 127852 1961 > 70551 116.9 554894 4007 2827 130081 1962 ]; > % Results certified by NIST using 100 digit arithmetic > % b and standard error in b > V =3D [ -3482258.63459582 890420.383607373 > 15.0618722713733 84.9149257747669 > -0.358191792925910E-01 0.334910077722432E-01 > -2.02022980381683 0.488399681651699 > -1.03322686717359 0.214274163161675 > -0.511041056535807E-01 0.226073200069370 > 1829.15146461355 455.478499142212 ]; > Rsq =3D 0.995479004577296; > F =3D 330.285339234588; > y =3D Z(:,1); X =3D [ones(rows(Z),1), Z(:,2:end)]; > [b, bint, r, rint, stats] =3D regress (y, X, 0.05); > assert(b, V(:,1), 6e-7) > assert(stats(1), Rsq, 7e-14) > assert(stats(2), F, 5e-9) > > Yes, you can convert bint to the standard error values with (0.05 is alpha, 9 is the degree of freedom): ((bint(:, 1) - bint(:, 2)) / 2) / tinv (0.05 / 2, 9) but the accuracy will be affected. (It's not so accurate anyway...) -- William Poetra Yoga Hadisoeseno |