From: <mma...@us...> - 2012-06-16 15:40:40
|
Revision: 10633 http://octave.svn.sourceforge.net/octave/?rev=10633&view=rev Author: mmarzolla Date: 2012-06-16 15:40:34 +0000 (Sat, 16 Jun 2012) Log Message: ----------- Small fixed to the docstrings Modified Paths: -------------- trunk/octave-forge/main/queueing/inst/ctmc.m trunk/octave-forge/main/queueing/inst/dtmc.m trunk/octave-forge/main/queueing/inst/qnsolve.m Modified: trunk/octave-forge/main/queueing/inst/ctmc.m =================================================================== --- trunk/octave-forge/main/queueing/inst/ctmc.m 2012-06-16 09:34:54 UTC (rev 10632) +++ trunk/octave-forge/main/queueing/inst/ctmc.m 2012-06-16 15:40:34 UTC (rev 10633) @@ -28,13 +28,12 @@ ## Compute stationary or transient state occupancy probabilities ## for a continuous-time Markov chain. ## -## With a single argument, compute the stationary state occupancy -## probability vector @var{p}(1), @dots{}, @var{p}(N) for a -## continuous-time Markov chain with @math{N \times N} infinitesimal -## generator matrix @var{Q}. With three arguments, compute the state -## occupancy probabilities @var{p}(1), @dots{}, @var{p}(N) at time -## @var{t}, given initial state occupancy probabilities @var{p0} at time -## 0. +## With a single argument, compute the stationary probability vector +## @var{p}(1), @dots{}, @var{p}(N) for a continuous-time Markov chain +## with @math{N \times N} infinitesimal generator matrix @var{Q}. With +## three arguments, compute the state occupancy probabilities +## @var{p}(1), @dots{}, @var{p}(N) at time @var{t}, given initial state +## occupancy probabilities @var{p0}(1), @dots{}, @var{p0}(N) at time 0. ## ## @strong{INPUTS} ## @@ -44,10 +43,12 @@ ## Infinitesimal generator matrix. @var{Q} is a @math{N \times N} square ## matrix where @code{@var{Q}(i,j)} is the transition rate from state ## @math{i} to state @math{j}, for @math{1 @leq{} i \neq j @leq{} N}. -## Transition rates must be nonnegative, and @math{\sum_{j=1}^N Q_{i, j} = 0} +## #var{Q} must satisfy the property that @math{\sum_{j=1}^N Q_{i, j} = +## 0} ## ## @item t -## Time at which to compute the transient probability +## Time at which to compute the transient probability. If omitted, +## compute the steady state occupancy probability. ## ## @item p0 ## @code{@var{p0}(i)} is the probability that the system @@ -66,7 +67,7 @@ ## satisfies the equation @math{p{\bf Q} = 0} and @math{\sum_{i=1}^N p_i = 1}. ## If this function is invoked with three arguments, @code{@var{p}(i)} ## is the probability that the system is in state @math{i} at time @var{t}, -## given the initial occupancy probabilities @var{p0}. +## given the initial occupancy probabilities @var{p0}(1), @dots{}, @var{p0}(N). ## ## @end table ## Modified: trunk/octave-forge/main/queueing/inst/dtmc.m =================================================================== --- trunk/octave-forge/main/queueing/inst/dtmc.m 2012-06-16 09:34:54 UTC (rev 10632) +++ trunk/octave-forge/main/queueing/inst/dtmc.m 2012-06-16 15:40:34 UTC (rev 10633) @@ -27,13 +27,14 @@ ## @cindex Markov chain, transient probabilities ## @cindex Transient probabilities ## -## Compute steady-state or transient state occupancy probabilities for a -## Discrete-Time Markov Chain. With a single argument, compute the -## steady-state occupancy probability vector @code{@var{p}(1), @dots{}, -## @var{p}(N)} given the @math{N \times N} transition probability matrix -## @var{P}. With three arguments, compute the state occupancy -## probabilities @code{@var{p}(1), @dots{}, @var{p}(N)} after @var{n} -## steps, given initial occupancy probability vector @var{p0}. +## With a single argument, compute the steady-state occupancy +## probability vector @code{@var{p}(1), @dots{}, @var{p}(N)} for a +## discrete-time Markov chain described by the @math{N \times N} +## transition probability matrix @var{P}. With three arguments, compute +## the state occupancy probabilities @code{@var{p}(1), @dots{}, +## @var{p}(N)} that the system is in state @math{i} after @var{n} steps, +## given initial occupancy probability vector @var{p0}(1), @dots{}, +## @var{p0}(N). ## ## @strong{INPUTS} ## @@ -42,8 +43,9 @@ ## @item P ## @code{@var{P}(i,j)} is the transition probability from state @math{i} ## to state @math{j}. @var{P} must be an irreducible stochastic matrix, -## which means that the sum of each row must be 1 (@math{\sum_{j=1}^N P_{i, j} = 1}), and the rank of -## @var{P} must be equal to its dimension. +## which means that the sum of each row must be 1 (@math{\sum_{j=1}^N +## P_{i, j} = 1}), and the rank of @var{P} must be equal to its +## dimension. ## ## @item n ## Number of transitions after which compute the state occupancy probabilities Modified: trunk/octave-forge/main/queueing/inst/qnsolve.m =================================================================== --- trunk/octave-forge/main/queueing/inst/qnsolve.m 2012-06-16 09:34:54 UTC (rev 10632) +++ trunk/octave-forge/main/queueing/inst/qnsolve.m 2012-06-16 15:40:34 UTC (rev 10633) @@ -22,8 +22,7 @@ ## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"open"}, @var{lambda}, @var{QQ}, @var{V}) ## @deftypefnx {Function File} {[@var{U}, @var{R}, @var{Q}, @var{X}] =} qnsolve (@var{"mixed"}, @var{lambda}, @var{N}, @var{QQ}, @var{V}) ## -## General evaluator of QN models. Networks can be open, -## closed or mixed; single as well as multiclass networks are supported. +## High-level function for analyzing QN models. ## ## @itemize ## This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |