From: <mma...@us...> - 2012-03-12 14:39:24
|
Revision: 9820 http://octave.svn.sourceforge.net/octave/?rev=9820&view=rev Author: mmarzolla Date: 2012-03-12 14:39:15 +0000 (Mon, 12 Mar 2012) Log Message: ----------- Enhancements to dtmc_mtta() Modified Paths: -------------- trunk/octave-forge/main/queueing/doc/queueing.html trunk/octave-forge/main/queueing/doc/queueing.pdf trunk/octave-forge/main/queueing/doc/summary.txi trunk/octave-forge/main/queueing/inst/dtmc_mtta.m Modified: trunk/octave-forge/main/queueing/doc/queueing.html =================================================================== --- trunk/octave-forge/main/queueing/doc/queueing.html 2012-03-12 12:10:43 UTC (rev 9819) +++ trunk/octave-forge/main/queueing/doc/queueing.html 2012-03-12 14:39:15 UTC (rev 9820) @@ -218,11 +218,11 @@ chains (DTMC) or continuous-time chains (CTMC): <ul> -<li>Birth-death process (DTMC and CTMC); -<li>Transient and steady-state occupancy probabilities (DTMC and CTMC); -<li>Mean time to absorption (CTMC); -<li>Time-averaged sojourn times (CTMC); -<li>First passage times (DTMC and CTMC). +<li>Birth-death process; +<li>Transient and steady-state occupancy probabilities; +<li>Mean times to absorption; +<li>Expected sojourn times and time-averaged sojourn times (CTMC only); +<li>Mean first passage times; </ul> @@ -1007,28 +1007,39 @@ <div class="defun"> — Function File: [<var>t</var> <var>B</var>] = <b>dtmc_mtta</b> (<var>P</var>)<var><a name="index-dtmc_005fmtta-16"></a></var><br> +— Function File: [<var>t</var> <var>B</var>] = <b>dtmc_mtta</b> (<var>P, p0</var>)<var><a name="index-dtmc_005fmtta-17"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-disctete-time-17"></a><a name="index-Mean-time-to-absorption-18"></a> -Compute the expected number of steps before absorption for the DTMC -described by the transition probability matrix <var>P</var>, + <p><a name="index-Markov-chain_002c-disctete-time-18"></a><a name="index-Mean-time-to-absorption-19"></a> +Compute the expected number of steps before absorption for the +DTMC with N \times N transition probability matrix <var>P</var>. <p><strong>INPUTS</strong> <dl> -<dt><var>P</var><dd>Transition probability matrix . +<dt><var>P</var><dd>Transition probability matrix. + <br><dt><var>p0</var><dd>Initial state occupancy probabilities. + </dl> <p><strong>OUTPUTS</strong> <dl> -<dt><var>t</var><dd><var>t</var><code>(i)</code> is the expected number of steps before being absorbed, -starting from state i. +<dt><var>t</var><dd>When called with a single argument, <var>t</var> is a vector such that +<var>t</var><code>(i)</code> is the expected number of steps before being +absorbed, starting from state i. When called with two +arguments, <var>t</var> is a scalar and represents the average number of +steps before absorption, given initial state occupancy probabilities +<var>p0</var>. - <br><dt><var>B</var><dd><var>B</var><code>(i,j)</code> is the probability of being absorbed in state -j, starting from state i. If j is not absorbing, -<var>B</var><code>(i,j) = 0</code>; if i is absorbing, then -<var>B</var><code>(i,i) = 1</code>.. + <br><dt><var>B</var><dd>When called with a single argument, <var>B</var> is a N \times N +matrix where <var>B</var><code>(i,j)</code> is the probability of being absorbed +in state j, starting from state i; if j is not +absorbing, <var>B</var><code>(i,j) = 0</code>; if i is absorbing, then +<var>B</var><code>(i,i) = 1</code>. When called with two arguments, <var>B</var> is a +vector with N elements where <var>B</var><code>(j)</code> is the +probability of being absorbed in state <var>j</var>, given initial state +occupancy probabilities <var>p0</var>. </dl> @@ -1062,9 +1073,9 @@ <p><a name="doc_002dctmc_005fcheck_005fQ"></a> <div class="defun"> -— Function File: [<var>result</var> <var>err</var>] = <b>ctmc_check_Q</b> (<var>Q</var>)<var><a name="index-ctmc_005fcheck_005fQ-19"></a></var><br> +— Function File: [<var>result</var> <var>err</var>] = <b>ctmc_check_Q</b> (<var>Q</var>)<var><a name="index-ctmc_005fcheck_005fQ-20"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-20"></a> + <p><a name="index-Markov-chain_002c-continuous-time-21"></a> If <var>Q</var> is a valid infinitesimal generator matrix, return the size (number of rows or columns) of <var>Q</var>. If <var>Q</var> is not an infinitesimal generator matrix, set <var>result</var> to zero, and @@ -1114,10 +1125,10 @@ <p><a name="doc_002dctmc"></a> <div class="defun"> -— Function File: <var>p</var> = <b>ctmc</b> (<var>Q</var>)<var><a name="index-ctmc-21"></a></var><br> -— Function File: <var>p</var> = <b>ctmc</b> (<var>Q, t. p0</var>)<var><a name="index-ctmc-22"></a></var><br> +— Function File: <var>p</var> = <b>ctmc</b> (<var>Q</var>)<var><a name="index-ctmc-22"></a></var><br> +— Function File: <var>p</var> = <b>ctmc</b> (<var>Q, t. p0</var>)<var><a name="index-ctmc-23"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-23"></a><a name="index-Continuous-time-Markov-chain-24"></a><a name="index-Markov-chain_002c-state-occupancy-probabilities-25"></a><a name="index-Stationary-probabilities-26"></a> + <p><a name="index-Markov-chain_002c-continuous-time-24"></a><a name="index-Continuous-time-Markov-chain-25"></a><a name="index-Markov-chain_002c-state-occupancy-probabilities-26"></a><a name="index-Stationary-probabilities-27"></a> With a single argument, compute the stationary state occupancy probability vector <var>p</var>(1), <small class="dots">...</small>, <var>p</var>(N) for a Continuous-Time Markov Chain with infinitesimal generator matrix @@ -1180,9 +1191,9 @@ <p><a name="doc_002dctmc_005fbd"></a> <div class="defun"> -— Function File: <var>Q</var> = <b>ctmc_bd</b> (<var>birth, death</var>)<var><a name="index-ctmc_005fbd-27"></a></var><br> +— Function File: <var>Q</var> = <b>ctmc_bd</b> (<var>birth, death</var>)<var><a name="index-ctmc_005fbd-28"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-28"></a><a name="index-Birth_002ddeath-process-29"></a> + <p><a name="index-Markov-chain_002c-continuous-time-29"></a><a name="index-Birth_002ddeath-process-30"></a> Returns the N \times N infinitesimal generator matrix Q for a birth-death process with given rates. @@ -1242,10 +1253,10 @@ <p><a name="doc_002dctmc_005fexps"></a> <div class="defun"> -— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, t, p </var>)<var><a name="index-ctmc_005fexps-30"></a></var><br> -— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fexps-31"></a></var><br> +— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, t, p </var>)<var><a name="index-ctmc_005fexps-31"></a></var><br> +— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fexps-32"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-32"></a><a name="index-Expected-sojourn-time-33"></a> + <p><a name="index-Markov-chain_002c-continuous-time-33"></a><a name="index-Expected-sojourn-time-34"></a> With three arguments, compute the expected times <var>L</var><code>(i)</code> spent in each state i during the time interval [0,t], assuming that the state occupancy probabilities @@ -1325,9 +1336,9 @@ <p><a name="doc_002dctmc_005ftaexps"></a> <div class="defun"> -— Function File: <var>M</var> = <b>ctmc_taexps</b> (<var>Q, t, p</var>)<var><a name="index-ctmc_005ftaexps-34"></a></var><br> +— Function File: <var>M</var> = <b>ctmc_taexps</b> (<var>Q, t, p</var>)<var><a name="index-ctmc_005ftaexps-35"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-35"></a><a name="index-Time_002dalveraged-sojourn-time-36"></a> + <p><a name="index-Markov-chain_002c-continuous-time-36"></a><a name="index-Time_002dalveraged-sojourn-time-37"></a> Compute the <em>time-averaged sojourn time</em> <var>M</var><code>(i)</code>, defined as the fraction of the time interval [0,t] spent in state i, assuming that the state occupancy probabilities at @@ -1410,9 +1421,9 @@ <p><a name="doc_002dctmc_005fmtta"></a> <div class="defun"> -— Function File: <var>t</var> = <b>ctmc_mtta</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fmtta-37"></a></var><br> +— Function File: <var>t</var> = <b>ctmc_mtta</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fmtta-38"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-38"></a><a name="index-Mean-time-to-absorption-39"></a> + <p><a name="index-Markov-chain_002c-continuous-time-39"></a><a name="index-Mean-time-to-absorption-40"></a> Compute the Mean-Time to Absorption (MTTA) of the CTMC described by the infinitesimal generator matrix <var>Q</var>, starting from initial occupancy probabilities <var>p</var>. If there are no absorbing states, this @@ -1473,7 +1484,7 @@ Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998. - <p><a name="index-Bolch_002c-G_002e-40"></a><a name="index-Greiner_002c-S_002e-41"></a><a name="index-de-Meer_002c-H_002e-42"></a><a name="index-Trivedi_002c-K_002e-43"></a> + <p><a name="index-Bolch_002c-G_002e-41"></a><a name="index-Greiner_002c-S_002e-42"></a><a name="index-de-Meer_002c-H_002e-43"></a><a name="index-Trivedi_002c-K_002e-44"></a> <div class="node"> <a name="First-Passage-Times"></a> <p><hr> @@ -1487,10 +1498,10 @@ <p><a name="doc_002dctmc_005ffpt"></a> <div class="defun"> -— Function File: <var>M</var> = <b>ctmc_fpt</b> (<var>Q</var>)<var><a name="index-ctmc_005ffpt-44"></a></var><br> -— Function File: <var>m</var> = <b>ctmc_fpt</b> (<var>Q, i, j</var>)<var><a name="index-ctmc_005ffpt-45"></a></var><br> +— Function File: <var>M</var> = <b>ctmc_fpt</b> (<var>Q</var>)<var><a name="index-ctmc_005ffpt-45"></a></var><br> +— Function File: <var>m</var> = <b>ctmc_fpt</b> (<var>Q, i, j</var>)<var><a name="index-ctmc_005ffpt-46"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-46"></a><a name="index-First-passage-times-47"></a> + <p><a name="index-Markov-chain_002c-continuous-time-47"></a><a name="index-First-passage-times-48"></a> If called with a single argument, computes the mean first passage times <var>M</var><code>(i,j)</code>, the average times before state <var>j</var> is reached, starting from state <var>i</var>, for all 1 \leq i, j \leq @@ -1596,9 +1607,9 @@ <p><a name="doc_002dqnmm1"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmm1</b> (<var>lambda, mu</var>)<var><a name="index-qnmm1-48"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmm1</b> (<var>lambda, mu</var>)<var><a name="index-qnmm1-49"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002f1_007d-system-49"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002f1_007d-system-50"></a> Compute utilization, response time, average number of requests and throughput for a M/M/1 queue. @@ -1643,7 +1654,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.3. - <p><a name="index-Bolch_002c-G_002e-50"></a><a name="index-Greiner_002c-S_002e-51"></a><a name="index-de-Meer_002c-H_002e-52"></a><a name="index-Trivedi_002c-K_002e-53"></a> + <p><a name="index-Bolch_002c-G_002e-51"></a><a name="index-Greiner_002c-S_002e-52"></a><a name="index-de-Meer_002c-H_002e-53"></a><a name="index-Trivedi_002c-K_002e-54"></a> <!-- M/M/m --> <div class="node"> <a name="The-M%2fM%2fm-System"></a> @@ -1669,10 +1680,10 @@ <p><a name="doc_002dqnmmm"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu</var>)<var><a name="index-qnmmm-54"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu, m</var>)<var><a name="index-qnmmm-55"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu</var>)<var><a name="index-qnmmm-55"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu, m</var>)<var><a name="index-qnmmm-56"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002fm_007d-system-56"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002fm_007d-system-57"></a> Compute utilization, response time, average number of requests in service and throughput for a M/M/m queue, a queueing system with m identical service centers connected to a single queue. @@ -1724,7 +1735,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.5. - <p><a name="index-Bolch_002c-G_002e-57"></a><a name="index-Greiner_002c-S_002e-58"></a><a name="index-de-Meer_002c-H_002e-59"></a><a name="index-Trivedi_002c-K_002e-60"></a> + <p><a name="index-Bolch_002c-G_002e-58"></a><a name="index-Greiner_002c-S_002e-59"></a><a name="index-de-Meer_002c-H_002e-60"></a><a name="index-Trivedi_002c-K_002e-61"></a> <!-- M/M/inf --> <div class="node"> <a name="The-M%2fM%2finf-System"></a> @@ -1747,7 +1758,7 @@ <p><a name="doc_002dqnmminf"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmminf</b> (<var>lambda, mu</var>)<var><a name="index-qnmminf-61"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmminf</b> (<var>lambda, mu</var>)<var><a name="index-qnmminf-62"></a></var><br> <blockquote> <p>Compute utilization, response time, average number of requests and throughput for a M/M/\infty queue. This is a system with an @@ -1755,7 +1766,7 @@ system is always stable, regardless the values of the arrival and service rates. - <p><a name="index-g_t_0040math_007bM_002fM_002f_007dinf-system-62"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002f_007dinf-system-63"></a> <p><strong>INPUTS</strong> @@ -1773,7 +1784,7 @@ different from the utilization, which in the case of M/M/\infty centers is always zero. - <p><a name="index-traffic-intensity-63"></a> + <p><a name="index-traffic-intensity-64"></a> <br><dt><var>R</var><dd>Service center response time. <br><dt><var>Q</var><dd>Average number of requests in the system (which is equal to the @@ -1801,7 +1812,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.4. - <p><a name="index-Bolch_002c-G_002e-64"></a><a name="index-Greiner_002c-S_002e-65"></a><a name="index-de-Meer_002c-H_002e-66"></a><a name="index-Trivedi_002c-K_002e-67"></a> + <p><a name="index-Bolch_002c-G_002e-65"></a><a name="index-Greiner_002c-S_002e-66"></a><a name="index-de-Meer_002c-H_002e-67"></a><a name="index-Trivedi_002c-K_002e-68"></a> <!-- M/M/1/k --> <div class="node"> <a name="The-M%2fM%2f1%2fK-System"></a> @@ -1825,9 +1836,9 @@ <p><a name="doc_002dqnmm1k"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmm1k</b> (<var>lambda, mu, K</var>)<var><a name="index-qnmm1k-68"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmm1k</b> (<var>lambda, mu, K</var>)<var><a name="index-qnmm1k-69"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002f1_002fK_007d-system-69"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002f1_002fK_007d-system-70"></a> Compute utilization, response time, average number of requests and throughput for a M/M/1/K finite capacity system. In a M/M/1/K queue there is a single server; the maximum number of @@ -1894,9 +1905,9 @@ <p><a name="doc_002dqnmmmk"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmmmk</b> (<var>lambda, mu, m, K</var>)<var><a name="index-qnmmmk-70"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmmmk</b> (<var>lambda, mu, m, K</var>)<var><a name="index-qnmmmk-71"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002fm_002fK_007d-system-71"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002fm_002fK_007d-system-72"></a> Compute utilization, response time, average number of requests and throughput for a M/M/m/K finite capacity system. In a M/M/m/K system there are m \geq 1 identical service @@ -1954,7 +1965,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.6. - <p><a name="index-Bolch_002c-G_002e-72"></a><a name="index-Greiner_002c-S_002e-73"></a><a name="index-de-Meer_002c-H_002e-74"></a><a name="index-Trivedi_002c-K_002e-75"></a> + <p><a name="index-Bolch_002c-G_002e-73"></a><a name="index-Greiner_002c-S_002e-74"></a><a name="index-de-Meer_002c-H_002e-75"></a><a name="index-Trivedi_002c-K_002e-76"></a> <!-- Approximate M/M/m --> <div class="node"> @@ -1976,9 +1987,9 @@ <p><a name="doc_002dqnammm"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnammm</b> (<var>lambda, mu</var>)<var><a name="index-qnammm-76"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnammm</b> (<var>lambda, mu</var>)<var><a name="index-qnammm-77"></a></var><br> <blockquote> - <p><a name="index-Asymmetric-_0040math_007bM_002fM_002fm_007d-system-77"></a> + <p><a name="index-Asymmetric-_0040math_007bM_002fM_002fm_007d-system-78"></a> Compute <em>approximate</em> utilization, response time, average number of requests in service and throughput for an asymmetric M/M/m queue. In this system there are m different service centers @@ -2025,7 +2036,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998 - <p><a name="index-Bolch_002c-G_002e-78"></a><a name="index-Greiner_002c-S_002e-79"></a><a name="index-de-Meer_002c-H_002e-80"></a><a name="index-Trivedi_002c-K_002e-81"></a> + <p><a name="index-Bolch_002c-G_002e-79"></a><a name="index-Greiner_002c-S_002e-80"></a><a name="index-de-Meer_002c-H_002e-81"></a><a name="index-Trivedi_002c-K_002e-82"></a> <div class="node"> <a name="The-M%2fG%2f1-System"></a> <a name="The-M_002fG_002f1-System"></a> @@ -2041,9 +2052,9 @@ <p><a name="doc_002dqnmg1"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmg1</b> (<var>lambda, xavg, x2nd</var>)<var><a name="index-qnmg1-82"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmg1</b> (<var>lambda, xavg, x2nd</var>)<var><a name="index-qnmg1-83"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fG_002f1_007d-system-83"></a> + <p><a name="index-g_t_0040math_007bM_002fG_002f1_007d-system-84"></a> Compute utilization, response time, average number of requests and throughput for a M/G/1 system. The service time distribution is described by its mean <var>xavg</var>, and by its second moment @@ -2100,9 +2111,9 @@ <p><a name="doc_002dqnmh1"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmh1</b> (<var>lambda, mu, alpha</var>)<var><a name="index-qnmh1-84"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmh1</b> (<var>lambda, mu, alpha</var>)<var><a name="index-qnmh1-85"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fH_005fm_002f1_007d-system-85"></a> + <p><a name="index-g_t_0040math_007bM_002fH_005fm_002f1_007d-system-86"></a> Compute utilization, response time, average number of requests and throughput for a M/H_m/1 system. In this system, the customer service times have hyper-exponential distribution: @@ -2184,7 +2195,7 @@ <li><a accesskey="6" href="#Utility-functions">Utility functions</a>: Utility functions to compute miscellaneous quantities </ul> -<p><a name="index-queueing-networks-86"></a> +<p><a name="index-queueing-networks-87"></a> <!-- INTRODUCTION --> <div class="node"> <a name="Introduction-to-QNs"></a> @@ -2445,13 +2456,13 @@ <p><a name="doc_002dqnmknode"></a> <div class="defun"> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S</var>)<var><a name="index-qnmknode-87"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S, m</var>)<var><a name="index-qnmknode-88"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/1-lcfs-pr", S</var>)<var><a name="index-qnmknode-89"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S</var>)<var><a name="index-qnmknode-90"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S, s2</var>)<var><a name="index-qnmknode-91"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S</var>)<var><a name="index-qnmknode-92"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S, s2</var>)<var><a name="index-qnmknode-93"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S</var>)<var><a name="index-qnmknode-88"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S, m</var>)<var><a name="index-qnmknode-89"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/1-lcfs-pr", S</var>)<var><a name="index-qnmknode-90"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S</var>)<var><a name="index-qnmknode-91"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S, s2</var>)<var><a name="index-qnmknode-92"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S</var>)<var><a name="index-qnmknode-93"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S, s2</var>)<var><a name="index-qnmknode-94"></a></var><br> <blockquote> <p>Creates a node; this function can be used together with <code>qnsolve</code>. It is possible to create either single-class nodes @@ -2520,10 +2531,10 @@ <p><a name="doc_002dqnsolve"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V</var>)<var><a name="index-qnsolve-94"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V, Z</var>)<var><a name="index-qnsolve-95"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"open", lambda, QQ, V</var>)<var><a name="index-qnsolve-96"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"mixed", lambda, N, QQ, V</var>)<var><a name="index-qnsolve-97"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V</var>)<var><a name="index-qnsolve-95"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V, Z</var>)<var><a name="index-qnsolve-96"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"open", lambda, QQ, V</var>)<var><a name="index-qnsolve-97"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"mixed", lambda, N, QQ, V</var>)<var><a name="index-qnsolve-98"></a></var><br> <blockquote> <p>General evaluator of QN models. Networks can be open, closed or mixed; single as well as multiclass networks are supported. @@ -2701,11 +2712,11 @@ <p><a name="doc_002dqnjackson"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P </var>)<var><a name="index-qnjackson-98"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P, m </var>)<var><a name="index-qnjackson-99"></a></var><br> -— Function File: <var>pr</var> = <b>qnjackson</b> (<var>lambda, S, P, m, k</var>)<var><a name="index-qnjackson-100"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P </var>)<var><a name="index-qnjackson-99"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P, m </var>)<var><a name="index-qnjackson-100"></a></var><br> +— Function File: <var>pr</var> = <b>qnjackson</b> (<var>lambda, S, P, m, k</var>)<var><a name="index-qnjackson-101"></a></var><br> <blockquote> - <p><a name="index-open-network_002c-single-class-101"></a><a name="index-Jackson-network-102"></a> + <p><a name="index-open-network_002c-single-class-102"></a><a name="index-Jackson-network-103"></a> With three or four input parameters, this function computes the steady-state occupancy probabilities for a Jackson network. With five input parameters, this function computes the steady-state probability @@ -2787,7 +2798,7 @@ Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, pp. 284–287. - <p><a name="index-Bolch_002c-G_002e-103"></a><a name="index-Greiner_002c-S_002e-104"></a><a name="index-de-Meer_002c-H_002e-105"></a><a name="index-Trivedi_002c-K_002e-106"></a> + <p><a name="index-Bolch_002c-G_002e-104"></a><a name="index-Greiner_002c-S_002e-105"></a><a name="index-de-Meer_002c-H_002e-106"></a><a name="index-Trivedi_002c-K_002e-107"></a> <h4 class="subsection">6.3.2 The Convolution Algorithm</h4> @@ -2821,10 +2832,10 @@ <p><a name="doc_002dqnconvolution"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V</var>)<var><a name="index-qnconvolution-107"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V, m</var>)<var><a name="index-qnconvolution-108"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V</var>)<var><a name="index-qnconvolution-108"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V, m</var>)<var><a name="index-qnconvolution-109"></a></var><br> <blockquote> - <p><a name="index-closed-network-109"></a><a name="index-normalization-constant-110"></a><a name="index-convolution-algorithm-111"></a> + <p><a name="index-closed-network-110"></a><a name="index-normalization-constant-111"></a><a name="index-convolution-algorithm-112"></a> This function implements the <em>convolution algorithm</em> for computing steady-state performance measures of product-form, single-class closed queueing networks. Load-independent service @@ -2915,20 +2926,20 @@ 16, number 9, september 1973, pp. 527–531. <a href="http://doi.acm.org/10.1145/362342.362345">http://doi.acm.org/10.1145/362342.362345</a> - <p><a name="index-Buzen_002c-J_002e-P_002e-112"></a> + <p><a name="index-Buzen_002c-J_002e-P_002e-113"></a> This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, pp. 313–317. - <p><a name="index-Bolch_002c-G_002e-113"></a><a name="index-Greiner_002c-S_002e-114"></a><a name="index-de-Meer_002c-H_002e-115"></a><a name="index-Trivedi_002c-K_002e-116"></a> + <p><a name="index-Bolch_002c-G_002e-114"></a><a name="index-Greiner_002c-S_002e-115"></a><a name="index-de-Meer_002c-H_002e-116"></a><a name="index-Trivedi_002c-K_002e-117"></a> <!-- Convolution for load-dependent service centers --> <a name="doc_002dqnconvolutionld"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolutionld</b> (<var>N, S, V</var>)<var><a name="index-qnconvolutionld-117"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolutionld</b> (<var>N, S, V</var>)<var><a name="index-qnconvolutionld-118"></a></var><br> <blockquote> - <p><a name="index-closed-network-118"></a><a name="index-normalization-constant-119"></a><a name="index-convolution-algorithm-120"></a><a name="index-load_002ddependent-service-center-121"></a> + <p><a name="index-closed-network-119"></a><a name="index-normalization-constant-120"></a><a name="index-convolution-algorithm-121"></a><a name="index-load_002ddependent-service-center-122"></a> This function implements the <em>convolution algorithm</em> for product-form, single-class closed queueing networks with general load-dependent service centers. @@ -2988,7 +2999,7 @@ Purdue University, feb, 1981 (revised). <a href="http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-354.pdf">http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-354.pdf</a> - <p><a name="index-Schwetman_002c-H_002e-122"></a> + <p><a name="index-Schwetman_002c-H_002e-123"></a> M. Reiser, H. Kobayashi, <cite>On The Convolution Algorithm for Separable Queueing Networks</cite>, In Proceedings of the 1976 ACM SIGMETRICS Conference on Computer Performance Modeling Measurement and @@ -2996,7 +3007,7 @@ 1976). SIGMETRICS '76. ACM, New York, NY, pp. 109–117. <a href="http://doi.acm.org/10.1145/800200.806187">http://doi.acm.org/10.1145/800200.806187</a> - <p><a name="index-Reiser_002c-M_002e-123"></a><a name="index-Kobayashi_002c-H_002e-124"></a> + <p><a name="index-Reiser_002c-M_002e-124"></a><a name="index-Kobayashi_002c-H_002e-125"></a> This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, @@ -3008,7 +3019,7 @@ function f_i defined in Schwetman, <code>Some Computational Aspects of Queueing Network Models</code>. - <p><a name="index-Bolch_002c-G_002e-125"></a><a name="index-Greiner_002c-S_002e-126"></a><a name="index-de-Meer_002c-H_002e-127"></a><a name="index-Trivedi_002c-K_002e-128"></a> + <p><a name="index-Bolch_002c-G_002e-126"></a><a name="index-Greiner_002c-S_002e-127"></a><a name="index-de-Meer_002c-H_002e-128"></a><a name="index-Trivedi_002c-K_002e-129"></a> <h4 class="subsection">6.3.3 Open networks</h4> @@ -3016,10 +3027,10 @@ <p><a name="doc_002dqnopensingle"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V</var>)<var><a name="index-qnopensingle-129"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopensingle-130"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V</var>)<var><a name="index-qnopensingle-130"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopensingle-131"></a></var><br> <blockquote> - <p><a name="index-open-network_002c-single-class-131"></a><a name="index-BCMP-network-132"></a> + <p><a name="index-open-network_002c-single-class-132"></a><a name="index-BCMP-network-133"></a> Analyze open, single class BCMP queueing networks. <p>This function works for a subset of BCMP single-class open networks @@ -3112,16 +3123,16 @@ Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998. - <p><a name="index-Bolch_002c-G_002e-133"></a><a name="index-Greiner_002c-S_002e-134"></a><a name="index-de-Meer_002c-H_002e-135"></a><a name="index-Trivedi_002c-K_002e-136"></a> + <p><a name="index-Bolch_002c-G_002e-134"></a><a name="index-Greiner_002c-S_002e-135"></a><a name="index-de-Meer_002c-H_002e-136"></a><a name="index-Trivedi_002c-K_002e-137"></a> <!-- Open network with multiple classes --> <p><a name="doc_002dqnopenmulti"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V</var>)<var><a name="index-qnopenmulti-137"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopenmulti-138"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V</var>)<var><a name="index-qnopenmulti-138"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopenmulti-139"></a></var><br> <blockquote> - <p><a name="index-open-network_002c-multiple-classes-139"></a> + <p><a name="index-open-network_002c-multiple-classes-140"></a> Exact analysis of open, multiple-class BCMP networks. The network can be made of <em>single-server</em> queueing centers (FCFS, LCFS-PR or PS) or delay centers (IS). This function assumes a network with @@ -3186,7 +3197,7 @@ 1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In particular, see section 7.4.1 ("Open Model Solution Techniques"). - <p><a name="index-Lazowska_002c-E_002e-D_002e-140"></a><a name="index-Zahorjan_002c-J_002e-141"></a><a name="index-Graham_002c-G_002e-S_002e-142"></a><a name="index-Sevcik_002c-K_002e-C_002e-143"></a> + <p><a name="index-Lazowska_002c-E_002e-D_002e-141"></a><a name="index-Zahorjan_002c-J_002e-142"></a><a name="index-Graham_002c-G_002e-S_002e-143"></a><a name="index-Sevcik_002c-K_002e-C_002e-144"></a> <h4 class="subsection">6.3.4 Closed Networks</h4> @@ -3194,11 +3205,11 @@ <p><a name="doc_002dqnclosedsinglemva"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemva-144"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemva-145"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemva-146"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemva-145"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemva-146"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemva-147"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-147"></a><a name="index-closed-network_002c-single-class-148"></a><a name="index-normalization-constant-149"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-148"></a><a name="index-closed-network_002c-single-class-149"></a><a name="index-normalization-constant-150"></a> Analyze closed, single class queueing networks using the exact Mean Value Analysis (MVA) algorithm. The following queueing disciplines are supported: FCFS, LCFS-PR, PS and IS (Infinite Server). This @@ -3299,7 +3310,7 @@ Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322. <a href="http://doi.acm.org/10.1145/322186.322195">http://doi.acm.org/10.1145/322186.322195</a> - <p><a name="index-Reiser_002c-M_002e-150"></a><a name="index-Lavenberg_002c-S_002e-S_002e-151"></a> + <p><a name="index-Reiser_002c-M_002e-151"></a><a name="index-Lavenberg_002c-S_002e-S_002e-152"></a> This implementation is described in R. Jain , <cite>The Art of Computer Systems Performance Analysis</cite>, Wiley, 1991, p. 577. Multi-server nodes <!-- and the computation of @math{G(N)}, --> @@ -3308,15 +3319,15 @@ Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 8.2.1, "Single Class Queueing Networks". - <p><a name="index-Jain_002c-R_002e-152"></a><a name="index-Bolch_002c-G_002e-153"></a><a name="index-Greiner_002c-S_002e-154"></a><a name="index-de-Meer_002c-H_002e-155"></a><a name="index-Trivedi_002c-K_002e-156"></a> + <p><a name="index-Jain_002c-R_002e-153"></a><a name="index-Bolch_002c-G_002e-154"></a><a name="index-Greiner_002c-S_002e-155"></a><a name="index-de-Meer_002c-H_002e-156"></a><a name="index-Trivedi_002c-K_002e-157"></a> <!-- MVA for single class, closed networks with load dependent servers --> <a name="doc_002dqnclosedsinglemvald"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvald-157"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V, Z</var>)<var><a name="index-qnclosedsinglemvald-158"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvald-158"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V, Z</var>)<var><a name="index-qnclosedsinglemvald-159"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-159"></a><a name="index-closed-network_002c-single-class-160"></a><a name="index-load_002ddependent-service-center-161"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-160"></a><a name="index-closed-network_002c-single-class-161"></a><a name="index-load_002ddependent-service-center-162"></a> Exact MVA algorithm for closed, single class queueing networks with load-dependent service centers. This function supports FCFS, LCFS-PR, PS and IS nodes. For networks with only fixed-rate @@ -3374,15 +3385,15 @@ 1998, Section 8.2.4.1, “Networks with Load-Deèpendent Service: Closed Networks”. - <p><a name="index-Bolch_002c-G_002e-162"></a><a name="index-Greiner_002c-S_002e-163"></a><a name="index-de-Meer_002c-H_002e-164"></a><a name="index-Trivedi_002c-K_002e-165"></a> + <p><a name="index-Bolch_002c-G_002e-163"></a><a name="index-Greiner_002c-S_002e-164"></a><a name="index-de-Meer_002c-H_002e-165"></a><a name="index-Trivedi_002c-K_002e-166"></a> <!-- CMVA for single class, closed networks with a single load dependent servers --> <a name="doc_002dqncmva"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V</var>)<var><a name="index-qncmva-166"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V, Z</var>)<var><a name="index-qncmva-167"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V</var>)<var><a name="index-qncmva-167"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V, Z</var>)<var><a name="index-qncmva-168"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-168"></a><a name="index-CMVA-169"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-169"></a><a name="index-CMVA-170"></a> Implementation of the Conditional MVA (CMVA) algorithm, a numerically stable variant of MVA for load-dependent servers. CMVA is described in G. Casale, <cite>A Note on Stable Flow-Equivalent Aggregation in @@ -3436,19 +3447,19 @@ closed networks</cite>. Queueing Syst. Theory Appl., 60:193–202, December 2008. - <p><a name="index-Casale_002c-G_002e-170"></a> + <p><a name="index-Casale_002c-G_002e-171"></a> <!-- Approximate MVA for single class, closed networks --> <p><a name="doc_002dqnclosedsinglemvaapprox"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvaapprox-171"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemvaapprox-172"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemvaapprox-173"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedsinglemvaapprox-174"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedsinglemvaapprox-175"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvaapprox-172"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemvaapprox-173"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemvaapprox-174"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedsinglemvaapprox-175"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedsinglemvaapprox-176"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-176"></a><a name="index-Approximate-MVA-177"></a><a name="index-Closed-network_002c-single-class-178"></a><a name="index-Closed-network_002c-approximate-analysis-179"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-177"></a><a name="index-Approximate-MVA-178"></a><a name="index-Closed-network_002c-single-class-179"></a><a name="index-Closed-network_002c-approximate-analysis-180"></a> Analyze closed, single class queueing networks using the Approximate Mean Value Analysis (MVA) algorithm. This function is based on approximating the number of customers seen at center k when a @@ -3527,20 +3538,20 @@ 1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In particular, see section 6.4.2.2 ("Approximate Solution Techniques"). - <p><a name="index-Lazowska_002c-E_002e-D_002e-180"></a><a name="index-Zahorjan_002c-J_002e-181"></a><a name="index-Graham_002c-G_002e-S_002e-182"></a><a name="index-Sevcik_002c-K_002e-C_002e-183"></a> + <p><a name="index-Lazowska_002c-E_002e-D_002e-181"></a><a name="index-Zahorjan_002c-J_002e-182"></a><a name="index-Graham_002c-G_002e-S_002e-183"></a><a name="index-Sevcik_002c-K_002e-C_002e-184"></a> <!-- MVA for multiple class, closed networks --> <p><a name="doc_002dqnclosedmultimva"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S </var>)<var><a name="index-qnclosedmultimva-184"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimva-185"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimva-186"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimva-187"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P</var>)<var><a name="index-qnclosedmultimva-188"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P, m</var>)<var><a name="index-qnclosedmultimva-189"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S </var>)<var><a name="index-qnclosedmultimva-185"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimva-186"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimva-187"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimva-188"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P</var>)<var><a name="index-qnclosedmultimva-189"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P, m</var>)<var><a name="index-qnclosedmultimva-190"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-190"></a><a name="index-closed-network_002c-multiple-classes-191"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-191"></a><a name="index-closed-network_002c-multiple-classes-192"></a> Analyze closed, multiclass queueing networks with K service centers and C independent customer classes (chains) using the Mean Value Analysys (MVA) algorithm. @@ -3670,7 +3681,7 @@ Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322. <a href="http://doi.acm.org/10.1145/322186.322195">http://doi.acm.org/10.1145/322186.322195</a> - <p><a name="index-Reiser_002c-M_002e-192"></a><a name="index-Lavenberg_002c-S_002e-S_002e-193"></a> + <p><a name="index-Reiser_002c-M_002e-193"></a><a name="index-Lavenberg_002c-S_002e-S_002e-194"></a> This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, @@ -3680,18 +3691,18 @@ 1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In particular, see section 7.4.2.1 ("Exact Solution Techniques"). - <p><a name="index-Bolch_002c-G_002e-194"></a><a name="index-Greiner_002c-S_002e-195"></a><a name="index-de-Meer_002c-H_002e-196"></a><a name="index-Trivedi_002c-K_002e-197"></a><a name="index-Lazowska_002c-E_002e-D_002e-198"></a><a name="index-Zahorjan_002c-J_002e-199"></a><a name="index-Graham_002c-G_002e-S_002e-200"></a><a name="index-Sevcik_002c-K_002e-C_002e-201"></a> + <p><a name="index-Bolch_002c-G_002e-195"></a><a name="index-Greiner_002c-S_002e-196"></a><a name="index-de-Meer_002c-H_002e-197"></a><a name="index-Trivedi_002c-K_002e-198"></a><a name="index-Lazowska_002c-E_002e-D_002e-199"></a><a name="index-Zahorjan_002c-J_002e-200"></a><a name="index-Graham_002c-G_002e-S_002e-201"></a><a name="index-Sevcik_002c-K_002e-C_002e-202"></a> <!-- Approximate MVA, with Bard-Schweitzer approximation --> <a name="doc_002dqnclosedmultimvaapprox"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimvaapprox-202"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimvaapprox-203"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimvaapprox-204"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedmultimvaapprox-205"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedmultimvaapprox-206"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimvaapprox-203"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimvaapprox-204"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimvaapprox-205"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedmultimvaapprox-206"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedmultimvaapprox-207"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-207"></a><a name="index-Approximate-MVA-208"></a><a name="index-Closed-network_002c-multiple-classes-209"></a><a name="index-Closed-network_002c-approximate-analysis-210"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-208"></a><a name="index-Approximate-MVA-209"></a><a name="index-Closed-network_002c-multiple-classes-210"></a><a name="index-Closed-network_002c-approximate-analysis-211"></a> Analyze closed, multiclass queueing networks with K service centers and C customer classes using the approximate Mean Value Analysys (MVA) algorithm. @@ -3776,12 +3787,12 @@ proc. 4th Int. Symp. on Modelling and Performance Evaluation of Computer Systems, feb. 1979, pp. 51–62. - <p><a name="index-Bard_002c-Y_002e-211"></a> + <p><a name="index-Bard_002c-Y_002e-212"></a> P. Schweitzer, <cite>Approximate Analysis of Multiclass Closed Networks of Queues</cite>, Proc. Int. Conf. on Stochastic Control and Optimization, jun 1979, pp. 25–29. - <p><a name="index-Schweitzer_002c-P_002e-212"></a> + <p><a name="index-Schweitzer_002c-P_002e-213"></a> This implementation is based on Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, <cite>Quantitative System Performance: Computer System Analysis Using Queueing Network Models</cite>, @@ -3792,7 +3803,7 @@ described above, as it computes the average response times R instead of the residence times. - <p><a name="index-Lazowska_002c-E_002e-D_002e-213"></a><a name="index-Zahorjan_002c-J_002e-214"></a><a name="index-Graham_002c-G_002e-S_002e-215"></a><a name="index-Sevcik_002c-K_002e-C_002e-216"></a> + <p><a name="index-Lazowska_002c-E_002e-D_002e-214"></a><a name="index-Zahorjan_002c-J_002e-215"></a><a name="index-Graham_002c-G_002e-S_002e-216"></a><a name="index-Sevcik_002c-K_002e-C_002e-217"></a> <h4 class="subsection">6.3.5 Mixed Networks</h4> @@ -3800,9 +3811,9 @@ <p><a name="doc_002dqnmix"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmix</b> (<var>lambda, N, S, V, m</var>)<var><a name="index-qnmix-217"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmix</b> (<var>lambda, N, S, V, m</var>)<var><a name="index-qnmix-218"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-218"></a><a name="index-mixed-network-219"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-219"></a><a name="index-mixed-network-220"></a> Solution of mixed queueing networks through MVA. The network consists of K service centers (single-server or delay centers) and C independent customer chains. Both open and closed chains @@ -3893,14 +3904,14 @@ Note that in this function we compute the mean response time R instead of the mean residence time as in the reference. - <p><a name="index-Lazowska_002c-E_002e-D_002e-220"></a><a name="index-Zahorjan_002c-J_002e-221"></a><a name="index-Graham_002c-G_002e-S_002e-222"></a><a name="index-Sevcik_002c-K_002e-C_002e-223"></a> + <p><a name="index-Lazowska_002c-E_002e-D_002e-221"></a><a name="index-Zahorjan_002c-J_002e-222"></a><a name="index-Graham_002c-G_002e-S_002e-223"></a><a name="index-Sevcik_002c-K_002e-C_002e-224"></a> Herb Schwetman, <cite>Implementing the Mean Value Algorithm for the Solution of Queueing Network Models</cite>, Technical Report CSD-TR-355, Department of Computer Sciences, Purdue University, feb 15, 1982, available at <a href="http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-355.pdf">http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-355.pdf</a> - <p><a name="index-Schwetman_002c-H_002e-224"></a> + <p><a name="index-Schwetman_002c-H_002e-225"></a> <div class="node"> <a name="Algorithms-for-non-Product-form-QNs"></a> @@ -3919,9 +3930,9 @@ <p><a name="doc_002dqnmvablo"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmvablo</b> (<var>N, S, M, P</var>)<var><a name="index-qnmvablo-225"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmvablo</b> (<var>N, S, M, P</var>)<var><a name="index-qnmvablo-226"></a></var><br> <blockquote> - <p><a name="index-queueing-network-with-blocking-226"></a><a name="index-blocking-queueing-network-227"></a><a name="index-closed-network_002c-finite-capacity-228"></a> + <p><a name="index-queueing-network-with-blocking-227"></a><a name="index-blocking-queueing-network-228"></a><a name="index-closed-network_002c-finite-capacity-229"></a> MVA algorithm for closed queueing networks with blocking. <samp><span class="command">qnmvablo</span></samp> computes approximate utilization, response time and mean queue length for closed, single class queueing networks with blocking. @@ -3976,16 +3987,16 @@ Networks</cite>, IEEE Transactions on Software Engineering, vol. 14, n. 2, april 1988, pp. 418–428. <a href="http://dx.doi.org/10.1109/32.4663">http://dx.doi.org/10.1109/32.4663</a> - <p><a name="index-Akyildiz_002c-I_002e-F_002e-229"></a> + <p><a name="index-Akyildiz_002c-I_002e-F_002e-230"></a> <a name="doc_002dqnmarkov"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>lambda, S, C, P</var>)<var><a name="index-qnmarkov-230"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>lambda, S, C, P, m</var>)<var><a name="index-qnmarkov-231"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>N, S, C, P</var>)<var><a name="index-qnmarkov-232"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>N, S, C, P, m</var>)<var><a name="index-qnmarkov-233"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>lambda, S, C, P</var>)<var><a name="index-qnmarkov-231"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>lambda, S, C, P, m</var>)<var><a name="index-qnmarkov-232"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>N, S, C, P</var>)<var><a name="index-qnmarkov-233"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnmarkov</b> (<var>N, S, C, P, m</var>)<var><a name="index-qnmarkov-234"></a></var><br> <blockquote> - <p><a name="index-closed-network_002c-multiple-classes-234"></a><a name="index-closed-network_002c-finite-capacity-235"></a><a name="index-blocking-queueing-network-236"></a><a name="index-RS-blocking-237"></a> + <p><a name="index-closed-network_002c-multiple-classes-235"></a><a name="index-closed-network_002c-finite-capacity-236"></a><a name="index-blocking-queueing-network-237"></a><a name="index-RS-blocking-238"></a> Compute utilization, response time, average queue length and throughput for open or closed queueing networks with finite capacity. Blocking type is Repetitive-Service (RS). This function explicitly @@ -4095,9 +4106,9 @@ <p><a name="doc_002dqnopenab"></a> <div class="defun"> -— Function File: [<var>Xu</var>, <var>Rl</var>] = <b>qnopenab</b> (<var>lambda, D</var>)<var><a name="index-qnopenab-238"></a></var><br> +— Function File: [<var>Xu</var>, <var>Rl</var>] = <b>qnopenab</b> (<var>lambda, D</var>)<var><a name="index-qnopenab-239"></a></var><br> <blockquote> - <p><a name="index-bounds_002c-asymptotic-239"></a><a name="index-open-network-240"></a> + <p><a name="index-bounds_002c-asymptotic-240"></a><a name="index-open-network-241"></a> Compute Asymptotic Bounds for single-class, open Queueing Networks with K service centers. @@ -4137,14 +4148,14 @@ 1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In parti... [truncated message content] |