From: <mma...@us...> - 2012-03-11 15:45:22
|
Revision: 9814 http://octave.svn.sourceforge.net/octave/?rev=9814&view=rev Author: mmarzolla Date: 2012-03-11 15:45:11 +0000 (Sun, 11 Mar 2012) Log Message: ----------- added function ctmc_check_Q() Modified Paths: -------------- trunk/octave-forge/main/queueing/ChangeLog trunk/octave-forge/main/queueing/DESCRIPTION trunk/octave-forge/main/queueing/Makefile trunk/octave-forge/main/queueing/NEWS trunk/octave-forge/main/queueing/doc/markovchains.txi trunk/octave-forge/main/queueing/doc/queueing.html trunk/octave-forge/main/queueing/doc/queueing.pdf trunk/octave-forge/main/queueing/inst/ctmc.m trunk/octave-forge/main/queueing/inst/ctmc_exps.m trunk/octave-forge/main/queueing/inst/ctmc_fpt.m trunk/octave-forge/main/queueing/inst/ctmc_mtta.m trunk/octave-forge/main/queueing/inst/ctmc_taexps.m trunk/octave-forge/main/queueing/inst/dtmc.m trunk/octave-forge/main/queueing/inst/dtmc_check_P.m trunk/octave-forge/main/queueing/inst/dtmc_fpt.m trunk/octave-forge/main/queueing/inst/qnmvablo.m trunk/octave-forge/main/queueing/inst/qnvisits.m Added Paths: ----------- trunk/octave-forge/main/queueing/inst/ctmc_check_Q.m trunk/octave-forge/main/queueing/inst/dtmc_is_irreducible.m Modified: trunk/octave-forge/main/queueing/ChangeLog =================================================================== --- trunk/octave-forge/main/queueing/ChangeLog 2012-03-11 11:20:31 UTC (rev 9813) +++ trunk/octave-forge/main/queueing/ChangeLog 2012-03-11 15:45:11 UTC (rev 9814) @@ -1,18 +1,19 @@ -2012-02-XX Moreno Marzolla <mar...@cs...> +2012-03-XX Moreno Marzolla <mar...@cs...> * Version 1.X.0 released * Fixed bug in qnvisits() which made the function behave incorrectly under particular degenerate cases. * Fixed bug in ctmc_exps() (wrong initial value in call to lsode) - * Function ctmc_exps() can now also compute the expected sojourn time + * ctmc_exps() can now also compute the expected sojourn time until absorption for absorbing CTMCs. - * Function ctmc_exps() and ctmc_taexps() accept a scalar as second + * ctmc_exps() and ctmc_taexps() accept a scalar as second argument; the old syntax is still supported, but may be deprecated in future releases. - * Function ctmc_bd() now returns the infinitesimal generator matrix + * ctmc_bd() now returns the infinitesimal generator matrix of the birth-death process, not the steady-state solution. - * Function ctmc_bd_solve() has been removed - * New function dtmc_bd() + * ctmc_bd_solve() has been removed + * dtmc_bd() has been added + * ctmc_check_Q() has been added * Miscellaneous fixes/improvements to the documentation 2012-02-04 Moreno Marzolla <mar...@cs...> Modified: trunk/octave-forge/main/queueing/DESCRIPTION =================================================================== --- trunk/octave-forge/main/queueing/DESCRIPTION 2012-03-11 11:20:31 UTC (rev 9813) +++ trunk/octave-forge/main/queueing/DESCRIPTION 2012-03-11 15:45:11 UTC (rev 9814) @@ -1,6 +1,6 @@ Name: queueing Version: 1.X.0 -Date: 2012-02-XX +Date: 2012-03-XX Author: Moreno Marzolla <mar...@cs...> Maintainer: Moreno Marzolla <mar...@cs...> Title: Queueing networks and Markov chains analysis package for GNU Octave Modified: trunk/octave-forge/main/queueing/Makefile =================================================================== --- trunk/octave-forge/main/queueing/Makefile 2012-03-11 11:20:31 UTC (rev 9813) +++ trunk/octave-forge/main/queueing/Makefile 2012-03-11 15:45:11 UTC (rev 9814) @@ -1,5 +1,5 @@ VERSIONNUM=1.X.0 -VERSIONDATE="2012-02-XX" +VERSIONDATE="2012-03-XX" PROGNAME=queueing DISTNAME=$(PROGNAME)-$(VERSIONNUM) Modified: trunk/octave-forge/main/queueing/NEWS =================================================================== --- trunk/octave-forge/main/queueing/NEWS 2012-03-11 11:20:31 UTC (rev 9813) +++ trunk/octave-forge/main/queueing/NEWS 2012-03-11 15:45:11 UTC (rev 9814) @@ -15,6 +15,8 @@ ** Function ctmc_bd_solve() has been removed +** New function ctmc_check_Q() added + Summary of important user-visible changes for queueing-1.0.0 ------------------------------------------------------------------------------ Modified: trunk/octave-forge/main/queueing/doc/markovchains.txi =================================================================== --- trunk/octave-forge/main/queueing/doc/markovchains.txi 2012-03-11 11:20:31 UTC (rev 9813) +++ trunk/octave-forge/main/queueing/doc/markovchains.txi 2012-03-11 15:45:11 UTC (rev 9814) @@ -67,6 +67,11 @@ in state @math{i} at step @math{n}. @c +@DOCSTRING(dtmc_check_P) + +@c +@c +@c @subsection State occupancy probabilities Given the transition probability matrix @math{\bf P} and the initial @@ -143,6 +148,8 @@ @node Continuous-Time Markov Chains @section Continuous-Time Markov Chains +@DOCSTRING(ctmc_check_Q) + @menu * State occupancy probabilities:: * Birth-Death process:: @@ -319,5 +326,6 @@ @c @node First Passage Times @subsection First Passage Times + @DOCSTRING(ctmc_fpt) Modified: trunk/octave-forge/main/queueing/doc/queueing.html =================================================================== --- trunk/octave-forge/main/queueing/doc/queueing.html 2012-03-11 11:20:31 UTC (rev 9813) +++ trunk/octave-forge/main/queueing/doc/queueing.html 2012-03-11 15:45:11 UTC (rev 9814) @@ -817,6 +817,19 @@ n. \pi_i(n) denotes the probability that the system is in state i at step n. + <p><a name="doc_002ddtmc_005fcheck_005fP"></a> + +<div class="defun"> +— Function File: [<var>result</var> <var>err</var>] = <b>dtmc_check_P</b> (<var>P</var>)<var><a name="index-dtmc_005fcheck_005fP-1"></a></var><br> +<blockquote> + <p><a name="index-Markov-chain_002c-discrete-time-2"></a> +If <var>P</var> is a valid transition probability matrix, return +the size (number of rows or columns) of <var>P</var>. If <var>P</var> is not +a transition probability matrix, set <var>result</var> to zero, and +<var>err</var> to an appropriate error string. + + </blockquote></div> + <h4 class="subsection">4.1.1 State occupancy probabilities</h4> <p>Given the transition probability matrix \bf P and the initial @@ -836,10 +849,10 @@ <p><a name="doc_002ddtmc"></a> <div class="defun"> -— Function File: <var>p</var> = <b>dtmc</b> (<var>P</var>)<var><a name="index-dtmc-1"></a></var><br> -— Function File: <var>p</var> = <b>dtmc</b> (<var>P, n, p0</var>)<var><a name="index-dtmc-2"></a></var><br> +— Function File: <var>p</var> = <b>dtmc</b> (<var>P</var>)<var><a name="index-dtmc-3"></a></var><br> +— Function File: <var>p</var> = <b>dtmc</b> (<var>P, n, p0</var>)<var><a name="index-dtmc-4"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-discrete-time-3"></a><a name="index-Discrete-time-Markov-chain-4"></a><a name="index-Markov-chain_002c-stationary-probabilities-5"></a><a name="index-Stationary-probabilities-6"></a> + <p><a name="index-Markov-chain_002c-discrete-time-5"></a><a name="index-Discrete-time-Markov-chain-6"></a><a name="index-Markov-chain_002c-stationary-probabilities-7"></a><a name="index-Stationary-probabilities-8"></a> With a single argument, compute the steady-state probability vector <var>p</var><code>(1), ..., </code><var>p</var><code>(N)</code> for a Discrete-Time Markov Chain given the N \times N transition @@ -900,9 +913,9 @@ <p><a name="doc_002ddtmc_005fbd"></a> <div class="defun"> -— Function File: <var>P</var> = <b>dtmc_bd</b> (<var>birth, death</var>)<var><a name="index-dtmc_005fbd-7"></a></var><br> +— Function File: <var>P</var> = <b>dtmc_bd</b> (<var>birth, death</var>)<var><a name="index-dtmc_005fbd-9"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-discrete-time-8"></a><a name="index-Birth_002ddeath-process-9"></a> + <p><a name="index-Markov-chain_002c-discrete-time-10"></a><a name="index-Birth_002ddeath-process-11"></a> Returns the N \times N transition probability matrix P for a birth-death process with given rates. @@ -942,10 +955,10 @@ <p><a name="doc_002ddtmc_005ffpt"></a> <div class="defun"> -— Function File: <var>M</var> = <b>dtmc_fpt</b> (<var>P</var>)<var><a name="index-dtmc_005ffpt-10"></a></var><br> -— Function File: <var>m</var> = <b>dtmc_fpt</b> (<var>P, i, j</var>)<var><a name="index-dtmc_005ffpt-11"></a></var><br> +— Function File: <var>M</var> = <b>dtmc_fpt</b> (<var>P</var>)<var><a name="index-dtmc_005ffpt-12"></a></var><br> +— Function File: <var>m</var> = <b>dtmc_fpt</b> (<var>P, i, j</var>)<var><a name="index-dtmc_005ffpt-13"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-discrete-time-12"></a><a name="index-First-passage-times-13"></a> + <p><a name="index-Markov-chain_002c-discrete-time-14"></a><a name="index-First-passage-times-15"></a> If called with a single argument, computes the mean first passage times <var>M</var><code>(i,j)</code>, that are the average number of transitions before state <var>j</var> is reached, starting from state <var>i</var>, for all @@ -971,9 +984,11 @@ <p><strong>OUTPUTS</strong> <dl> -<dt><var>M</var><dd>If this function is called with a single argument, the result +<dt><var>M</var><dd>If this function is called with a single argument, <var>M</var><code>(i,j)</code> is the average number of transitions before state -<var>j</var> is reached for the first time, starting from state <var>i</var>. +<var>j</var> is reached for the first time, starting from state <var>i</var>. +<var>M</var><code>(i,i)</code> is the <em>mean recurrence time</em>, and +represents the average time needed to return to state <var>i</var>. <br><dt><var>m</var><dd>If this function is called with three arguments, the result <var>m</var> is the average number of transitions before state <var>j</var> is visited @@ -994,6 +1009,19 @@ <h3 class="section">4.2 Continuous-Time Markov Chains</h3> +<p><a name="doc_002dctmc_005fcheck_005fQ"></a> + +<div class="defun"> +— Function File: [<var>result</var> <var>err</var>] = <b>ctmc_check_Q</b> (<var>Q</var>)<var><a name="index-ctmc_005fcheck_005fQ-16"></a></var><br> +<blockquote> + <p><a name="index-Markov-chain_002c-continuous-time-17"></a> +If <var>Q</var> is a valid infinitesimal generator matrix, return +the size (number of rows or columns) of <var>Q</var>. If <var>Q</var> is not +an infinitesimal generator matrix, set <var>result</var> to zero, and +<var>err</var> to an appropriate error string. + + </blockquote></div> + <ul class="menu"> <li><a accesskey="1" href="#State-occupancy-probabilities">State occupancy probabilities</a> <li><a accesskey="2" href="#Birth_002dDeath-process">Birth-Death process</a> @@ -1016,10 +1044,10 @@ <p><a name="doc_002dctmc"></a> <div class="defun"> -— Function File: <var>p</var> = <b>ctmc</b> (<var>Q</var>)<var><a name="index-ctmc-14"></a></var><br> -— Function File: <var>p</var> = <b>ctmc</b> (<var>Q, t. q0</var>)<var><a name="index-ctmc-15"></a></var><br> +— Function File: <var>p</var> = <b>ctmc</b> (<var>Q</var>)<var><a name="index-ctmc-18"></a></var><br> +— Function File: <var>p</var> = <b>ctmc</b> (<var>Q, t. q0</var>)<var><a name="index-ctmc-19"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-16"></a><a name="index-Continuous-time-Markov-chain-17"></a><a name="index-Markov-chain_002c-state-occupancy-probabilities-18"></a><a name="index-Stationary-probabilities-19"></a> + <p><a name="index-Markov-chain_002c-continuous-time-20"></a><a name="index-Continuous-time-Markov-chain-21"></a><a name="index-Markov-chain_002c-state-occupancy-probabilities-22"></a><a name="index-Stationary-probabilities-23"></a> With a single argument, compute the stationary state occupancy probability vector <var>p</var>(1), <small class="dots">...</small>, <var>p</var>(N) for a Continuous-Time Markov Chain with infinitesimal generator matrix @@ -1082,9 +1110,9 @@ <p><a name="doc_002dctmc_005fbd"></a> <div class="defun"> -— Function File: <var>Q</var> = <b>ctmc_bd</b> (<var>birth, death</var>)<var><a name="index-ctmc_005fbd-20"></a></var><br> +— Function File: <var>Q</var> = <b>ctmc_bd</b> (<var>birth, death</var>)<var><a name="index-ctmc_005fbd-24"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-21"></a><a name="index-Birth_002ddeath-process-22"></a> + <p><a name="index-Markov-chain_002c-continuous-time-25"></a><a name="index-Birth_002ddeath-process-26"></a> Returns the N \times N infinitesimal generator matrix Q for a birth-death process with given rates. @@ -1138,10 +1166,10 @@ <p><a name="doc_002dctmc_005fexps"></a> <div class="defun"> -— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, t, p </var>)<var><a name="index-ctmc_005fexps-23"></a></var><br> -— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fexps-24"></a></var><br> +— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, t, p </var>)<var><a name="index-ctmc_005fexps-27"></a></var><br> +— Function File: <var>L</var> = <b>ctmc_exps</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fexps-28"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-25"></a><a name="index-Expected-sojourn-time-26"></a> + <p><a name="index-Markov-chain_002c-continuous-time-29"></a><a name="index-Expected-sojourn-time-30"></a> With three arguments, compute the expected times <var>L</var><code>(i)</code> spent in each state i during the time interval [0,t], assuming that the state occupancy probabilities @@ -1221,9 +1249,9 @@ <p><a name="doc_002dctmc_005ftaexps"></a> <div class="defun"> -— Function File: <var>M</var> = <b>ctmc_taexps</b> (<var>Q, t, p</var>)<var><a name="index-ctmc_005ftaexps-27"></a></var><br> +— Function File: <var>M</var> = <b>ctmc_taexps</b> (<var>Q, t, p</var>)<var><a name="index-ctmc_005ftaexps-31"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-28"></a><a name="index-Time_002dalveraged-sojourn-time-29"></a> + <p><a name="index-Markov-chain_002c-continuous-time-32"></a><a name="index-Time_002dalveraged-sojourn-time-33"></a> Compute the <em>time-averaged sojourn time</em> <var>M</var><code>(i)</code>, defined as the fraction of the time interval [0,t] spent in state i, assuming that the state occupancy probabilities at @@ -1306,9 +1334,9 @@ <p><a name="doc_002dctmc_005fmtta"></a> <div class="defun"> -— Function File: <var>t</var> = <b>ctmc_mtta</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fmtta-30"></a></var><br> +— Function File: <var>t</var> = <b>ctmc_mtta</b> (<var>Q, p</var>)<var><a name="index-ctmc_005fmtta-34"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-31"></a><a name="index-Mean-time-to-absorption-32"></a> + <p><a name="index-Markov-chain_002c-continuous-time-35"></a><a name="index-Mean-time-to-absorption-36"></a> Compute the Mean-Time to Absorption (MTTA) of the CTMC described by the infinitesimal generator matrix <var>Q</var>, starting from initial occupancy probabilities <var>p</var>. If there are no absorbing states, this @@ -1369,7 +1397,7 @@ Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998. - <p><a name="index-Bolch_002c-G_002e-33"></a><a name="index-Greiner_002c-S_002e-34"></a><a name="index-de-Meer_002c-H_002e-35"></a><a name="index-Trivedi_002c-K_002e-36"></a> + <p><a name="index-Bolch_002c-G_002e-37"></a><a name="index-Greiner_002c-S_002e-38"></a><a name="index-de-Meer_002c-H_002e-39"></a><a name="index-Trivedi_002c-K_002e-40"></a> <div class="node"> <a name="First-Passage-Times"></a> <p><hr> @@ -1383,10 +1411,10 @@ <p><a name="doc_002dctmc_005ffpt"></a> <div class="defun"> -— Function File: <var>M</var> = <b>ctmc_fpt</b> (<var>Q</var>)<var><a name="index-ctmc_005ffpt-37"></a></var><br> -— Function File: <var>m</var> = <b>ctmc_fpt</b> (<var>Q, i, j</var>)<var><a name="index-ctmc_005ffpt-38"></a></var><br> +— Function File: <var>M</var> = <b>ctmc_fpt</b> (<var>Q</var>)<var><a name="index-ctmc_005ffpt-41"></a></var><br> +— Function File: <var>m</var> = <b>ctmc_fpt</b> (<var>Q, i, j</var>)<var><a name="index-ctmc_005ffpt-42"></a></var><br> <blockquote> - <p><a name="index-Markov-chain_002c-continuous-time-39"></a><a name="index-First-passage-times-40"></a> + <p><a name="index-Markov-chain_002c-continuous-time-43"></a><a name="index-First-passage-times-44"></a> If called with a single argument, computes the mean first passage times <var>M</var><code>(i,j)</code>, the average times before state <var>j</var> is reached, starting from state <var>i</var>, for all 1 \leq i, j \leq @@ -1492,9 +1520,9 @@ <p><a name="doc_002dqnmm1"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmm1</b> (<var>lambda, mu</var>)<var><a name="index-qnmm1-41"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmm1</b> (<var>lambda, mu</var>)<var><a name="index-qnmm1-45"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002f1_007d-system-42"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002f1_007d-system-46"></a> Compute utilization, response time, average number of requests and throughput for a M/M/1 queue. @@ -1539,7 +1567,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.3. - <p><a name="index-Bolch_002c-G_002e-43"></a><a name="index-Greiner_002c-S_002e-44"></a><a name="index-de-Meer_002c-H_002e-45"></a><a name="index-Trivedi_002c-K_002e-46"></a> + <p><a name="index-Bolch_002c-G_002e-47"></a><a name="index-Greiner_002c-S_002e-48"></a><a name="index-de-Meer_002c-H_002e-49"></a><a name="index-Trivedi_002c-K_002e-50"></a> <!-- M/M/m --> <div class="node"> <a name="The-M%2fM%2fm-System"></a> @@ -1565,10 +1593,10 @@ <p><a name="doc_002dqnmmm"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu</var>)<var><a name="index-qnmmm-47"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu, m</var>)<var><a name="index-qnmmm-48"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu</var>)<var><a name="index-qnmmm-51"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pm</var>] = <b>qnmmm</b> (<var>lambda, mu, m</var>)<var><a name="index-qnmmm-52"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002fm_007d-system-49"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002fm_007d-system-53"></a> Compute utilization, response time, average number of requests in service and throughput for a M/M/m queue, a queueing system with m identical service centers connected to a single queue. @@ -1620,7 +1648,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.5. - <p><a name="index-Bolch_002c-G_002e-50"></a><a name="index-Greiner_002c-S_002e-51"></a><a name="index-de-Meer_002c-H_002e-52"></a><a name="index-Trivedi_002c-K_002e-53"></a> + <p><a name="index-Bolch_002c-G_002e-54"></a><a name="index-Greiner_002c-S_002e-55"></a><a name="index-de-Meer_002c-H_002e-56"></a><a name="index-Trivedi_002c-K_002e-57"></a> <!-- M/M/inf --> <div class="node"> <a name="The-M%2fM%2finf-System"></a> @@ -1643,7 +1671,7 @@ <p><a name="doc_002dqnmminf"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmminf</b> (<var>lambda, mu</var>)<var><a name="index-qnmminf-54"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmminf</b> (<var>lambda, mu</var>)<var><a name="index-qnmminf-58"></a></var><br> <blockquote> <p>Compute utilization, response time, average number of requests and throughput for a M/M/\infty queue. This is a system with an @@ -1651,7 +1679,7 @@ system is always stable, regardless the values of the arrival and service rates. - <p><a name="index-g_t_0040math_007bM_002fM_002f_007dinf-system-55"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002f_007dinf-system-59"></a> <p><strong>INPUTS</strong> @@ -1669,7 +1697,7 @@ different from the utilization, which in the case of M/M/\infty centers is always zero. - <p><a name="index-traffic-intensity-56"></a> + <p><a name="index-traffic-intensity-60"></a> <br><dt><var>R</var><dd>Service center response time. <br><dt><var>Q</var><dd>Average number of requests in the system (which is equal to the @@ -1697,7 +1725,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.4. - <p><a name="index-Bolch_002c-G_002e-57"></a><a name="index-Greiner_002c-S_002e-58"></a><a name="index-de-Meer_002c-H_002e-59"></a><a name="index-Trivedi_002c-K_002e-60"></a> + <p><a name="index-Bolch_002c-G_002e-61"></a><a name="index-Greiner_002c-S_002e-62"></a><a name="index-de-Meer_002c-H_002e-63"></a><a name="index-Trivedi_002c-K_002e-64"></a> <!-- M/M/1/k --> <div class="node"> <a name="The-M%2fM%2f1%2fK-System"></a> @@ -1721,9 +1749,9 @@ <p><a name="doc_002dqnmm1k"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmm1k</b> (<var>lambda, mu, K</var>)<var><a name="index-qnmm1k-61"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmm1k</b> (<var>lambda, mu, K</var>)<var><a name="index-qnmm1k-65"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002f1_002fK_007d-system-62"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002f1_002fK_007d-system-66"></a> Compute utilization, response time, average number of requests and throughput for a M/M/1/K finite capacity system. In a M/M/1/K queue there is a single server; the maximum number of @@ -1790,9 +1818,9 @@ <p><a name="doc_002dqnmmmk"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmmmk</b> (<var>lambda, mu, m, K</var>)<var><a name="index-qnmmmk-63"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>, <var>pK</var>] = <b>qnmmmk</b> (<var>lambda, mu, m, K</var>)<var><a name="index-qnmmmk-67"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fM_002fm_002fK_007d-system-64"></a> + <p><a name="index-g_t_0040math_007bM_002fM_002fm_002fK_007d-system-68"></a> Compute utilization, response time, average number of requests and throughput for a M/M/m/K finite capacity system. In a M/M/m/K system there are m \geq 1 identical service @@ -1850,7 +1878,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 6.6. - <p><a name="index-Bolch_002c-G_002e-65"></a><a name="index-Greiner_002c-S_002e-66"></a><a name="index-de-Meer_002c-H_002e-67"></a><a name="index-Trivedi_002c-K_002e-68"></a> + <p><a name="index-Bolch_002c-G_002e-69"></a><a name="index-Greiner_002c-S_002e-70"></a><a name="index-de-Meer_002c-H_002e-71"></a><a name="index-Trivedi_002c-K_002e-72"></a> <!-- Approximate M/M/m --> <div class="node"> @@ -1872,9 +1900,9 @@ <p><a name="doc_002dqnammm"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnammm</b> (<var>lambda, mu</var>)<var><a name="index-qnammm-69"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnammm</b> (<var>lambda, mu</var>)<var><a name="index-qnammm-73"></a></var><br> <blockquote> - <p><a name="index-Asymmetric-_0040math_007bM_002fM_002fm_007d-system-70"></a> + <p><a name="index-Asymmetric-_0040math_007bM_002fM_002fm_007d-system-74"></a> Compute <em>approximate</em> utilization, response time, average number of requests in service and throughput for an asymmetric M/M/m queue. In this system there are m different service centers @@ -1921,7 +1949,7 @@ and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998 - <p><a name="index-Bolch_002c-G_002e-71"></a><a name="index-Greiner_002c-S_002e-72"></a><a name="index-de-Meer_002c-H_002e-73"></a><a name="index-Trivedi_002c-K_002e-74"></a> + <p><a name="index-Bolch_002c-G_002e-75"></a><a name="index-Greiner_002c-S_002e-76"></a><a name="index-de-Meer_002c-H_002e-77"></a><a name="index-Trivedi_002c-K_002e-78"></a> <div class="node"> <a name="The-M%2fG%2f1-System"></a> <a name="The-M_002fG_002f1-System"></a> @@ -1937,9 +1965,9 @@ <p><a name="doc_002dqnmg1"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmg1</b> (<var>lambda, xavg, x2nd</var>)<var><a name="index-qnmg1-75"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmg1</b> (<var>lambda, xavg, x2nd</var>)<var><a name="index-qnmg1-79"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fG_002f1_007d-system-76"></a> + <p><a name="index-g_t_0040math_007bM_002fG_002f1_007d-system-80"></a> Compute utilization, response time, average number of requests and throughput for a M/G/1 system. The service time distribution is described by its mean <var>xavg</var>, and by its second moment @@ -1996,9 +2024,9 @@ <p><a name="doc_002dqnmh1"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmh1</b> (<var>lambda, mu, alpha</var>)<var><a name="index-qnmh1-77"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>p0</var>] = <b>qnmh1</b> (<var>lambda, mu, alpha</var>)<var><a name="index-qnmh1-81"></a></var><br> <blockquote> - <p><a name="index-g_t_0040math_007bM_002fH_005fm_002f1_007d-system-78"></a> + <p><a name="index-g_t_0040math_007bM_002fH_005fm_002f1_007d-system-82"></a> Compute utilization, response time, average number of requests and throughput for a M/H_m/1 system. In this system, the customer service times have hyper-exponential distribution: @@ -2080,7 +2108,7 @@ <li><a accesskey="6" href="#Utility-functions">Utility functions</a>: Utility functions to compute miscellaneous quantities </ul> -<p><a name="index-queueing-networks-79"></a> +<p><a name="index-queueing-networks-83"></a> <!-- INTRODUCTION --> <div class="node"> <a name="Introduction-to-QNs"></a> @@ -2341,13 +2369,13 @@ <p><a name="doc_002dqnmknode"></a> <div class="defun"> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S</var>)<var><a name="index-qnmknode-80"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S, m</var>)<var><a name="index-qnmknode-81"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/1-lcfs-pr", S</var>)<var><a name="index-qnmknode-82"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S</var>)<var><a name="index-qnmknode-83"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S, s2</var>)<var><a name="index-qnmknode-84"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S</var>)<var><a name="index-qnmknode-85"></a></var><br> -— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S, s2</var>)<var><a name="index-qnmknode-86"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S</var>)<var><a name="index-qnmknode-84"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/m-fcfs", S, m</var>)<var><a name="index-qnmknode-85"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"m/m/1-lcfs-pr", S</var>)<var><a name="index-qnmknode-86"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S</var>)<var><a name="index-qnmknode-87"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/1-ps", S, s2</var>)<var><a name="index-qnmknode-88"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S</var>)<var><a name="index-qnmknode-89"></a></var><br> +— Function File: <var>Q</var> = <b>qnmknode</b> (<var>"-/g/inf", S, s2</var>)<var><a name="index-qnmknode-90"></a></var><br> <blockquote> <p>Creates a node; this function can be used together with <code>qnsolve</code>. It is possible to create either single-class nodes @@ -2416,10 +2444,10 @@ <p><a name="doc_002dqnsolve"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V</var>)<var><a name="index-qnsolve-87"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V, Z</var>)<var><a name="index-qnsolve-88"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"open", lambda, QQ, V</var>)<var><a name="index-qnsolve-89"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"mixed", lambda, N, QQ, V</var>)<var><a name="index-qnsolve-90"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V</var>)<var><a name="index-qnsolve-91"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"closed", N, QQ, V, Z</var>)<var><a name="index-qnsolve-92"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"open", lambda, QQ, V</var>)<var><a name="index-qnsolve-93"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnsolve</b> (<var>"mixed", lambda, N, QQ, V</var>)<var><a name="index-qnsolve-94"></a></var><br> <blockquote> <p>General evaluator of QN models. Networks can be open, closed or mixed; single as well as multiclass networks are supported. @@ -2597,11 +2625,11 @@ <p><a name="doc_002dqnjackson"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P </var>)<var><a name="index-qnjackson-91"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P, m </var>)<var><a name="index-qnjackson-92"></a></var><br> -— Function File: <var>pr</var> = <b>qnjackson</b> (<var>lambda, S, P, m, k</var>)<var><a name="index-qnjackson-93"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P </var>)<var><a name="index-qnjackson-95"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnjackson</b> (<var>lambda, S, P, m </var>)<var><a name="index-qnjackson-96"></a></var><br> +— Function File: <var>pr</var> = <b>qnjackson</b> (<var>lambda, S, P, m, k</var>)<var><a name="index-qnjackson-97"></a></var><br> <blockquote> - <p><a name="index-open-network_002c-single-class-94"></a><a name="index-Jackson-network-95"></a> + <p><a name="index-open-network_002c-single-class-98"></a><a name="index-Jackson-network-99"></a> With three or four input parameters, this function computes the steady-state occupancy probabilities for a Jackson network. With five input parameters, this function computes the steady-state probability @@ -2683,7 +2711,7 @@ Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, pp. 284–287. - <p><a name="index-Bolch_002c-G_002e-96"></a><a name="index-Greiner_002c-S_002e-97"></a><a name="index-de-Meer_002c-H_002e-98"></a><a name="index-Trivedi_002c-K_002e-99"></a> + <p><a name="index-Bolch_002c-G_002e-100"></a><a name="index-Greiner_002c-S_002e-101"></a><a name="index-de-Meer_002c-H_002e-102"></a><a name="index-Trivedi_002c-K_002e-103"></a> <h4 class="subsection">6.3.2 The Convolution Algorithm</h4> @@ -2717,10 +2745,10 @@ <p><a name="doc_002dqnconvolution"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V</var>)<var><a name="index-qnconvolution-100"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V, m</var>)<var><a name="index-qnconvolution-101"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V</var>)<var><a name="index-qnconvolution-104"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolution</b> (<var>N, S, V, m</var>)<var><a name="index-qnconvolution-105"></a></var><br> <blockquote> - <p><a name="index-closed-network-102"></a><a name="index-normalization-constant-103"></a><a name="index-convolution-algorithm-104"></a> + <p><a name="index-closed-network-106"></a><a name="index-normalization-constant-107"></a><a name="index-convolution-algorithm-108"></a> This function implements the <em>convolution algorithm</em> for computing steady-state performance measures of product-form, single-class closed queueing networks. Load-independent service @@ -2811,20 +2839,20 @@ 16, number 9, september 1973, pp. 527–531. <a href="http://doi.acm.org/10.1145/362342.362345">http://doi.acm.org/10.1145/362342.362345</a> - <p><a name="index-Buzen_002c-J_002e-P_002e-105"></a> + <p><a name="index-Buzen_002c-J_002e-P_002e-109"></a> This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, pp. 313–317. - <p><a name="index-Bolch_002c-G_002e-106"></a><a name="index-Greiner_002c-S_002e-107"></a><a name="index-de-Meer_002c-H_002e-108"></a><a name="index-Trivedi_002c-K_002e-109"></a> + <p><a name="index-Bolch_002c-G_002e-110"></a><a name="index-Greiner_002c-S_002e-111"></a><a name="index-de-Meer_002c-H_002e-112"></a><a name="index-Trivedi_002c-K_002e-113"></a> <!-- Convolution for load-dependent service centers --> <a name="doc_002dqnconvolutionld"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolutionld</b> (<var>N, S, V</var>)<var><a name="index-qnconvolutionld-110"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnconvolutionld</b> (<var>N, S, V</var>)<var><a name="index-qnconvolutionld-114"></a></var><br> <blockquote> - <p><a name="index-closed-network-111"></a><a name="index-normalization-constant-112"></a><a name="index-convolution-algorithm-113"></a><a name="index-load_002ddependent-service-center-114"></a> + <p><a name="index-closed-network-115"></a><a name="index-normalization-constant-116"></a><a name="index-convolution-algorithm-117"></a><a name="index-load_002ddependent-service-center-118"></a> This function implements the <em>convolution algorithm</em> for product-form, single-class closed queueing networks with general load-dependent service centers. @@ -2884,7 +2912,7 @@ Purdue University, feb, 1981 (revised). <a href="http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-354.pdf">http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-354.pdf</a> - <p><a name="index-Schwetman_002c-H_002e-115"></a> + <p><a name="index-Schwetman_002c-H_002e-119"></a> M. Reiser, H. Kobayashi, <cite>On The Convolution Algorithm for Separable Queueing Networks</cite>, In Proceedings of the 1976 ACM SIGMETRICS Conference on Computer Performance Modeling Measurement and @@ -2892,7 +2920,7 @@ 1976). SIGMETRICS '76. ACM, New York, NY, pp. 109–117. <a href="http://doi.acm.org/10.1145/800200.806187">http://doi.acm.org/10.1145/800200.806187</a> - <p><a name="index-Reiser_002c-M_002e-116"></a><a name="index-Kobayashi_002c-H_002e-117"></a> + <p><a name="index-Reiser_002c-M_002e-120"></a><a name="index-Kobayashi_002c-H_002e-121"></a> This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, @@ -2904,7 +2932,7 @@ function f_i defined in Schwetman, <code>Some Computational Aspects of Queueing Network Models</code>. - <p><a name="index-Bolch_002c-G_002e-118"></a><a name="index-Greiner_002c-S_002e-119"></a><a name="index-de-Meer_002c-H_002e-120"></a><a name="index-Trivedi_002c-K_002e-121"></a> + <p><a name="index-Bolch_002c-G_002e-122"></a><a name="index-Greiner_002c-S_002e-123"></a><a name="index-de-Meer_002c-H_002e-124"></a><a name="index-Trivedi_002c-K_002e-125"></a> <h4 class="subsection">6.3.3 Open networks</h4> @@ -2912,10 +2940,10 @@ <p><a name="doc_002dqnopensingle"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V</var>)<var><a name="index-qnopensingle-122"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopensingle-123"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V</var>)<var><a name="index-qnopensingle-126"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopensingle</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopensingle-127"></a></var><br> <blockquote> - <p><a name="index-open-network_002c-single-class-124"></a><a name="index-BCMP-network-125"></a> + <p><a name="index-open-network_002c-single-class-128"></a><a name="index-BCMP-network-129"></a> Analyze open, single class BCMP queueing networks. <p>This function works for a subset of BCMP single-class open networks @@ -3008,16 +3036,16 @@ Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998. - <p><a name="index-Bolch_002c-G_002e-126"></a><a name="index-Greiner_002c-S_002e-127"></a><a name="index-de-Meer_002c-H_002e-128"></a><a name="index-Trivedi_002c-K_002e-129"></a> + <p><a name="index-Bolch_002c-G_002e-130"></a><a name="index-Greiner_002c-S_002e-131"></a><a name="index-de-Meer_002c-H_002e-132"></a><a name="index-Trivedi_002c-K_002e-133"></a> <!-- Open network with multiple classes --> <p><a name="doc_002dqnopenmulti"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V</var>)<var><a name="index-qnopenmulti-130"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopenmulti-131"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V</var>)<var><a name="index-qnopenmulti-134"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnopenmulti</b> (<var>lambda, S, V, m</var>)<var><a name="index-qnopenmulti-135"></a></var><br> <blockquote> - <p><a name="index-open-network_002c-multiple-classes-132"></a> + <p><a name="index-open-network_002c-multiple-classes-136"></a> Exact analysis of open, multiple-class BCMP networks. The network can be made of <em>single-server</em> queueing centers (FCFS, LCFS-PR or PS) or delay centers (IS). This function assumes a network with @@ -3082,7 +3110,7 @@ 1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In particular, see section 7.4.1 ("Open Model Solution Techniques"). - <p><a name="index-Lazowska_002c-E_002e-D_002e-133"></a><a name="index-Zahorjan_002c-J_002e-134"></a><a name="index-Graham_002c-G_002e-S_002e-135"></a><a name="index-Sevcik_002c-K_002e-C_002e-136"></a> + <p><a name="index-Lazowska_002c-E_002e-D_002e-137"></a><a name="index-Zahorjan_002c-J_002e-138"></a><a name="index-Graham_002c-G_002e-S_002e-139"></a><a name="index-Sevcik_002c-K_002e-C_002e-140"></a> <h4 class="subsection">6.3.4 Closed Networks</h4> @@ -3090,11 +3118,11 @@ <p><a name="doc_002dqnclosedsinglemva"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemva-137"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemva-138"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemva-139"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemva-141"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemva-142"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>, <var>G</var>] = <b>qnclosedsinglemva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemva-143"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-140"></a><a name="index-closed-network_002c-single-class-141"></a><a name="index-normalization-constant-142"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-144"></a><a name="index-closed-network_002c-single-class-145"></a><a name="index-normalization-constant-146"></a> Analyze closed, single class queueing networks using the exact Mean Value Analysis (MVA) algorithm. The following queueing disciplines are supported: FCFS, LCFS-PR, PS and IS (Infinite Server). This @@ -3195,7 +3223,7 @@ Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322. <a href="http://doi.acm.org/10.1145/322186.322195">http://doi.acm.org/10.1145/322186.322195</a> - <p><a name="index-Reiser_002c-M_002e-143"></a><a name="index-Lavenberg_002c-S_002e-S_002e-144"></a> + <p><a name="index-Reiser_002c-M_002e-147"></a><a name="index-Lavenberg_002c-S_002e-S_002e-148"></a> This implementation is described in R. Jain , <cite>The Art of Computer Systems Performance Analysis</cite>, Wiley, 1991, p. 577. Multi-server nodes <!-- and the computation of @math{G(N)}, --> @@ -3204,15 +3232,15 @@ Performance Evaluation with Computer Science Applications</cite>, Wiley, 1998, Section 8.2.1, "Single Class Queueing Networks". - <p><a name="index-Jain_002c-R_002e-145"></a><a name="index-Bolch_002c-G_002e-146"></a><a name="index-Greiner_002c-S_002e-147"></a><a name="index-de-Meer_002c-H_002e-148"></a><a name="index-Trivedi_002c-K_002e-149"></a> + <p><a name="index-Jain_002c-R_002e-149"></a><a name="index-Bolch_002c-G_002e-150"></a><a name="index-Greiner_002c-S_002e-151"></a><a name="index-de-Meer_002c-H_002e-152"></a><a name="index-Trivedi_002c-K_002e-153"></a> <!-- MVA for single class, closed networks with load dependent servers --> <a name="doc_002dqnclosedsinglemvald"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvald-150"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V, Z</var>)<var><a name="index-qnclosedsinglemvald-151"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvald-154"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvald</b> (<var>N, S, V, Z</var>)<var><a name="index-qnclosedsinglemvald-155"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-152"></a><a name="index-closed-network_002c-single-class-153"></a><a name="index-load_002ddependent-service-center-154"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-156"></a><a name="index-closed-network_002c-single-class-157"></a><a name="index-load_002ddependent-service-center-158"></a> Exact MVA algorithm for closed, single class queueing networks with load-dependent service centers. This function supports FCFS, LCFS-PR, PS and IS nodes. For networks with only fixed-rate @@ -3270,15 +3298,15 @@ 1998, Section 8.2.4.1, “Networks with Load-Deèpendent Service: Closed Networks”. - <p><a name="index-Bolch_002c-G_002e-155"></a><a name="index-Greiner_002c-S_002e-156"></a><a name="index-de-Meer_002c-H_002e-157"></a><a name="index-Trivedi_002c-K_002e-158"></a> + <p><a name="index-Bolch_002c-G_002e-159"></a><a name="index-Greiner_002c-S_002e-160"></a><a name="index-de-Meer_002c-H_002e-161"></a><a name="index-Trivedi_002c-K_002e-162"></a> <!-- CMVA for single class, closed networks with a single load dependent servers --> <a name="doc_002dqncmva"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V</var>)<var><a name="index-qncmva-159"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V, Z</var>)<var><a name="index-qncmva-160"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V</var>)<var><a name="index-qncmva-163"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qncmva</b> (<var>N, S, Sld, V, Z</var>)<var><a name="index-qncmva-164"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-161"></a><a name="index-CMVA-162"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-165"></a><a name="index-CMVA-166"></a> Implementation of the Conditional MVA (CMVA) algorithm, a numerically stable variant of MVA for load-dependent servers. CMVA is described in G. Casale, <cite>A Note on Stable Flow-Equivalent Aggregation in @@ -3332,19 +3360,19 @@ closed networks</cite>. Queueing Syst. Theory Appl., 60:193–202, December 2008. - <p><a name="index-Casale_002c-G_002e-163"></a> + <p><a name="index-Casale_002c-G_002e-167"></a> <!-- Approximate MVA for single class, closed networks --> <p><a name="doc_002dqnclosedsinglemvaapprox"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvaapprox-164"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemvaapprox-165"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemvaapprox-166"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedsinglemvaapprox-167"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedsinglemvaapprox-168"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedsinglemvaapprox-168"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedsinglemvaapprox-169"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedsinglemvaapprox-170"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedsinglemvaapprox-171"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedsinglemvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedsinglemvaapprox-172"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-169"></a><a name="index-Approximate-MVA-170"></a><a name="index-Closed-network_002c-single-class-171"></a><a name="index-Closed-network_002c-approximate-analysis-172"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-173"></a><a name="index-Approximate-MVA-174"></a><a name="index-Closed-network_002c-single-class-175"></a><a name="index-Closed-network_002c-approximate-analysis-176"></a> Analyze closed, single class queueing networks using the Approximate Mean Value Analysis (MVA) algorithm. This function is based on approximating the number of customers seen at center k when a @@ -3423,20 +3451,20 @@ 1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In particular, see section 6.4.2.2 ("Approximate Solution Techniques"). - <p><a name="index-Lazowska_002c-E_002e-D_002e-173"></a><a name="index-Zahorjan_002c-J_002e-174"></a><a name="index-Graham_002c-G_002e-S_002e-175"></a><a name="index-Sevcik_002c-K_002e-C_002e-176"></a> + <p><a name="index-Lazowska_002c-E_002e-D_002e-177"></a><a name="index-Zahorjan_002c-J_002e-178"></a><a name="index-Graham_002c-G_002e-S_002e-179"></a><a name="index-Sevcik_002c-K_002e-C_002e-180"></a> <!-- MVA for multiple class, closed networks --> <p><a name="doc_002dqnclosedmultimva"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S </var>)<var><a name="index-qnclosedmultimva-177"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimva-178"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimva-179"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimva-180"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P</var>)<var><a name="index-qnclosedmultimva-181"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P, m</var>)<var><a name="index-qnclosedmultimva-182"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S </var>)<var><a name="index-qnclosedmultimva-181"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimva-182"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimva-183"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimva-184"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P</var>)<var><a name="index-qnclosedmultimva-185"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimva</b> (<var>N, S, P, m</var>)<var><a name="index-qnclosedmultimva-186"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-183"></a><a name="index-closed-network_002c-multiple-classes-184"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029-187"></a><a name="index-closed-network_002c-multiple-classes-188"></a> Analyze closed, multiclass queueing networks with K service centers and C independent customer classes (chains) using the Mean Value Analysys (MVA) algorithm. @@ -3566,7 +3594,7 @@ Multichain Queuing Networks</cite>, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322. <a href="http://doi.acm.org/10.1145/322186.322195">http://doi.acm.org/10.1145/322186.322195</a> - <p><a name="index-Reiser_002c-M_002e-185"></a><a name="index-Lavenberg_002c-S_002e-S_002e-186"></a> + <p><a name="index-Reiser_002c-M_002e-189"></a><a name="index-Lavenberg_002c-S_002e-S_002e-190"></a> This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, <cite>Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications</cite>, Wiley, @@ -3576,18 +3604,18 @@ 1984. <a href="http://www.cs.washington.edu/homes/lazowska/qsp/">http://www.cs.washington.edu/homes/lazowska/qsp/</a>. In particular, see section 7.4.2.1 ("Exact Solution Techniques"). - <p><a name="index-Bolch_002c-G_002e-187"></a><a name="index-Greiner_002c-S_002e-188"></a><a name="index-de-Meer_002c-H_002e-189"></a><a name="index-Trivedi_002c-K_002e-190"></a><a name="index-Lazowska_002c-E_002e-D_002e-191"></a><a name="index-Zahorjan_002c-J_002e-192"></a><a name="index-Graham_002c-G_002e-S_002e-193"></a><a name="index-Sevcik_002c-K_002e-C_002e-194"></a> + <p><a name="index-Bolch_002c-G_002e-191"></a><a name="index-Greiner_002c-S_002e-192"></a><a name="index-de-Meer_002c-H_002e-193"></a><a name="index-Trivedi_002c-K_002e-194"></a><a name="index-Lazowska_002c-E_002e-D_002e-195"></a><a name="index-Zahorjan_002c-J_002e-196"></a><a name="index-Graham_002c-G_002e-S_002e-197"></a><a name="index-Sevcik_002c-K_002e-C_002e-198"></a> <!-- Approximate MVA, with Bard-Schweitzer approximation --> <a name="doc_002dqnclosedmultimvaapprox"></a> <div class="defun"> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimvaapprox-195"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimvaapprox-196"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimvaapprox-197"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedmultimvaapprox-198"></a></var><br> -— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedmultimvaapprox-199"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V</var>)<var><a name="index-qnclosedmultimvaapprox-199"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m</var>)<var><a name="index-qnclosedmultimvaapprox-200"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z</var>)<var><a name="index-qnclosedmultimvaapprox-201"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol</var>)<var><a name="index-qnclosedmultimvaapprox-202"></a></var><br> +— Function File: [<var>U</var>, <var>R</var>, <var>Q</var>, <var>X</var>] = <b>qnclosedmultimvaapprox</b> (<var>N, S, V, m, Z, tol, iter_max</var>)<var><a name="index-qnclosedmultimvaapprox-203"></a></var><br> <blockquote> - <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-200"></a><a name="index-Approximate-MVA-201"></a><a name="index-Closed-network_002c-multiple-classes-202"></a><a name="index-Closed-network_002c-approximate-analysis-203"></a> + <p><a name="index-Mean-Value-Analysys-_0028MVA_0029_002c-approximate-204"></a><a name="index-Approximate-MVA-205"></a><a name="index-Closed-network_002c-multiple-classes-206"></a><a name="index-Closed-network_002c-approximate-analysis-207"></a> Analyze closed, multiclass queueing networks with K service centers and C customer classes using the approximate Mean Value Analysys (MVA) algorithm. @@ -3672,12 +3700,12 @@ proc. 4th Int. Symp. on Modelling and Performance Evaluation of Computer Systems, feb. 1979, pp. 51–62. - <p><a name="index-Bard_002c-Y_002e-204"></a> + <p><a name="index-Bard_002c-Y_002e-208"></a> P. Schweitzer, <cite>Approximate Analysis of Multiclass Closed Networks of Queues</cite>, Proc. Int. Conf. on Stochastic Control and Optimization, jun 1979, pp. 25–29. - <p><a name="index-Schweitzer_002c-P_002e-205"></a> + <p><a name="index-Schweitzer_002c-P_002e-209"></a> This implementation is based on Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, <cite>Quantitative System Performance: Computer System Analysis Using Queueing Network Models</cite>, @@ -3688,7 +3716,7 @@ described above, as it computes the average response times R instead of the residence times. - <p><a name="index-Lazowska_002c-E_002e-D_002e-206"></a><a name="index-Zahorjan_002c-J_002e-207"></a><a name="index-Graham_002c-G_002e-S_002e-208"></a><a name="index-Sevcik_002c-K_002e-C_002e-209"></a> + <p><a name="index-Lazowska_002c-E_002e-D_002e-210"></a><a name="index-Zahorjan_002c-J_002e-211"></a><a name="index-Graham_002c-G_002e-S_002e-212"></a><a name="index-Sevcik_002c-K_002e-C_002e-213"></a> <h4 class="subsection">6.3.5 Mixed Networks</h4> @@ -3696,9 +3724,9 @@ <p... [truncated message content] |