From: <sch...@us...> - 2008-05-20 08:20:00
|
Revision: 5072 http://octave.svn.sourceforge.net/octave/?rev=5072&view=rev Author: schloegl Date: 2008-05-20 01:19:53 -0700 (Tue, 20 May 2008) Log Message: ----------- lattice method fails for (some?) deterministic signals; make Levinson-Durbin the default method (thanks to Rafael Laboissiere for pointing this out Modified Paths: -------------- trunk/octave-forge/extra/tsa/inst/lpc.m Modified: trunk/octave-forge/extra/tsa/inst/lpc.m =================================================================== --- trunk/octave-forge/extra/tsa/inst/lpc.m 2008-05-20 04:45:35 UTC (rev 5071) +++ trunk/octave-forge/extra/tsa/inst/lpc.m 2008-05-20 08:19:53 UTC (rev 5072) @@ -30,9 +30,10 @@ % M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. % W.S. Wei "Time Series Analysis" Addison Wesley, 1990. -% Version 2.91 -% Copyright (C) 1996-2002 by Alois Schloegl <a.s...@ie...> -% +% $Id$ +% Copyright (C) 1996-2002,2008 by Alois Schloegl <a.s...@ie...> +% This is part of the TSA-toolbox. See also +% http://hci.tugraz.at/schloegl/matlab/tsa/ % This library is free software; you can redistribute it and/or % modify it under the terms of the GNU Library General Public @@ -60,9 +61,10 @@ % you can use any of the following routines. % I've selected the Burg method, because it provides the most accurate estimates -[AR,RC,PE] = lattice(Y.',P); % Burg method -% [AR,RC,PE] = lattice(Y.',P,'GEOL'); % geomatric lattice -% [AR,RC,PE] = durlev(acovf(Y.',P)); % Yule-Walker +% [AR,RC,PE] = lattice(Y.',P); % Burg method +% [AR,RC,PE] = lattice(Y.',P,'GEOL'); % geometric lattice +[AR,RC,PE] = durlev(acovf(Y.',P)); % Yule-Walker + A = ar2poly(AR); This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. |