--- a/inst/geom2d/vectorAngle.m
+++ b/inst/geom2d/vectorAngle.m
@@ -22,192 +22,192 @@
 ## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 ## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-## -*- texinfo -*-
-## @deftypefn {Function File} {@var{alpha} =} vectorAngle (@var{v1})
-## Angle of a vector, or between 2 vectors
-##
-##   A = vectorAngle(V);
-##   Returns angle between Ox axis and vector direction, in Counter
-##   clockwise orientation.
-##   The result is normalised between 0 and 2*PI.
-##
-##   A = vectorAngle(V1, V2);
-##   Returns the angle from vector V1 to vector V2, in counter-clockwise
-##   order, and in radians.
-##
-##   A = vectorAngle(..., 'cutAngle', CUTANGLE);
-##   A = vectorAngle(..., CUTANGLE); # (deprecated syntax)
-##   Specifies convention for angle interval. CUTANGLE is the center of the
-##   2*PI interval containing the result. See <a href="matlab:doc
-##   ('normalizeAngle')">normalizeAngle</a> for details.
-##
-##   Example:
-##   rad2deg(vectorAngle([2 2]))
-##   ans =
-##       45
-##   rad2deg(vectorAngle([1 sqrt(3)]))
-##   ans =
-##       60
-##   rad2deg(vectorAngle([0 -1]))
-##   ans =
-##       270
-## 
-## @seealso{vectors2d, angles2d, normalizeAngle}
-## @end deftypefn
-
-function alpha = vectorAngle(v1, varargin)
-
-  ## Initializations
-
-  # default values
-  v2 = [];
-  cutAngle = pi;
-
-  # process input arguments
-  while ~isempty(varargin)
-      var = varargin{1};
-      if isnumeric(var) && isscalar(var)
-          # argument is normalization constant
-          cutAngle = varargin{1};
-          varargin(1) = [];
-          
-      elseif isnumeric(var) && size(var, 2) == 2
-          # argument is second vector
-          v2 = varargin{1};
-          varargin(1) = [];
-          
-      elseif ischar(var) && length(varargin) >= 2
-          # argument is option given as string + value
-          if strcmpi(var, 'cutAngle')
-              cutAngle = varargin{2};
-              varargin(1:2) = [];
-              
-          else
-              error(['Unknown option: ' var]);
-          end
-          
-      else
-          error('Unable to parse inputs');
-      end
-  end
-
-
-  ## Case of one vector
-
-  # If only one vector is provided, computes its angle
-  if isempty(v2)
-      # compute angle and format result in a 2*pi interval
-      alpha = atan2(v1(:,2), v1(:,1));
-      
-      # normalize within a 2*pi interval
-      alpha = normalizeAngle(alpha + 2*pi, cutAngle);
-      
-      return;
-  end
-
-
-  ## Case of two vectors
-
-  # compute angle of each vector
-  alpha1 = atan2(v1(:,2), v1(:,1));
-  alpha2 = atan2(v2(:,2), v2(:,1));
-
-  # difference
-  alpha = bsxfun(@minus, alpha2, alpha1);
-
-  # normalize within a 2*pi interval
-  alpha = normalizeAngle(alpha + 2*pi, cutAngle);
-
-endfunction
-
-%!test
-%! ang = vectorAngle([1 0]);
-%! assert(0, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([0 1]);
-%! assert(pi/2, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([-1 0]);
-%! assert(pi, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([0 -1]);
-%! assert(3*pi/2, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([-1 1]);
-%! assert(3*pi/4, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([1 0], pi);
-%! assert(0, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([0 1], pi);
-%! assert(pi/2, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([-1 0], pi);
-%! assert(pi, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([0 -1], pi);
-%! assert(3*pi/2, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([-1 1], pi);
-%! assert(3*pi/4, ang, 1e-6);
-
-%!test
-%! vecs = [1 0;0 1;-1 0;0 -1;1 1];
-%! angs = [0;pi/2;pi;3*pi/2;pi/4];
-%! assert(angs, vectorAngle(vecs));
-%! assert(angs, vectorAngle(vecs, pi));
-
-%!test
-%! ang = vectorAngle([1 0], 0);
-%! assert(0, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([0 1], 0);
-%! assert(pi/2, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([0 -1], 0);
-%! assert(-pi/2, ang, 1e-6);
-
-%!test
-%! ang = vectorAngle([-1 1], 0);
-%! assert(3*pi/4, ang, 1e-6);
-
-%!test
-%! vecs = [1 0;0 1;0 -1;1 1;1 -1];
-%! angs = [0;pi/2;-pi/2;pi/4;-pi/4];
-%! assert(angs, vectorAngle(vecs, 0), 1e-6);
-
-%!test
-%! v1 = [1 0];
-%! v2 = [0 1];
-%! ang = pi /2 ;
-%! assert(ang, vectorAngle(v1, v2), 1e-6);
-
-%!test
-%! v1 = [1 0];
-%! v2 = [0 1; 0 1; 1 1; -1 1];
-%! ang = [pi / 2 ;pi / 2 ;pi / 4 ; 3 * pi / 4];
-%! assert(ang, vectorAngle(v1, v2), 1e-6);
-
-%!test
-%! v1 = [0 1; 0 1; 1 1; -1 1];
-%! v2 = [-1 0];
-%! ang = [pi / 2 ;pi / 2 ; 3 * pi / 4 ; pi / 4];
-%! assert(ang, vectorAngle(v1, v2), 1e-6);
-
-%!test
-%! v1 = [1 0; 0 1; 1 1; -1 1];
-%! v2 = [0 1; 1 0; -1 1; -1 0];
-%! ang = [pi / 2 ;3 * pi / 2 ;pi / 2 ; pi / 4];
-%! assert(ang, vectorAngle(v1, v2), 1e-6);
+
+## -*- texinfo -*-
+## @deftypefn {Function File} {@var{alpha} =} vectorAngle (@var{v1})
+## Angle of a vector, or between 2 vectors
+##
+##   A = vectorAngle(V);
+##   Returns angle between Ox axis and vector direction, in Counter
+##   clockwise orientation.
+##   The result is normalised between 0 and 2*PI.
+##
+##   A = vectorAngle(V1, V2);
+##   Returns the angle from vector V1 to vector V2, in counter-clockwise
+##   order, and in radians.
+##
+##   A = vectorAngle(..., 'cutAngle', CUTANGLE);
+##   A = vectorAngle(..., CUTANGLE); # (deprecated syntax)
+##   Specifies convention for angle interval. CUTANGLE is the center of the
+##   2*PI interval containing the result. See <a href="matlab:doc
+##   ('normalizeAngle')">normalizeAngle</a> for details.
+##
+##   Example:
+##   rad2deg(vectorAngle([2 2]))
+##   ans =
+##       45
+##   rad2deg(vectorAngle([1 sqrt(3)]))
+##   ans =
+##       60
+##   rad2deg(vectorAngle([0 -1]))
+##   ans =
+##       270
+## 
+## @seealso{vectors2d, angles2d, normalizeAngle}
+## @end deftypefn
+
+function alpha = vectorAngle(v1, varargin)
+
+  ## Initializations
+
+  # default values
+  v2 = [];
+  cutAngle = pi;
+
+  # process input arguments
+  while ~isempty(varargin)
+      var = varargin{1};
+      if isnumeric(var) && isscalar(var)
+          # argument is normalization constant
+          cutAngle = varargin{1};
+          varargin(1) = [];
+          
+      elseif isnumeric(var) && size(var, 2) == 2
+          # argument is second vector
+          v2 = varargin{1};
+          varargin(1) = [];
+          
+      elseif ischar(var) && length(varargin) >= 2
+          # argument is option given as string + value
+          if strcmpi(var, 'cutAngle')
+              cutAngle = varargin{2};
+              varargin(1:2) = [];
+              
+          else
+              error(['Unknown option: ' var]);
+          end
+          
+      else
+          error('Unable to parse inputs');
+      end
+  end
+
+
+  ## Case of one vector
+
+  # If only one vector is provided, computes its angle
+  if isempty(v2)
+      # compute angle and format result in a 2*pi interval
+      alpha = atan2(v1(:,2), v1(:,1));
+      
+      # normalize within a 2*pi interval
+      alpha = normalizeAngle(alpha + 2*pi, cutAngle);
+      
+      return;
+  end
+
+
+  ## Case of two vectors
+
+  # compute angle of each vector
+  alpha1 = atan2(v1(:,2), v1(:,1));
+  alpha2 = atan2(v2(:,2), v2(:,1));
+
+  # difference
+  alpha = bsxfun(@minus, alpha2, alpha1);
+
+  # normalize within a 2*pi interval
+  alpha = normalizeAngle(alpha + 2*pi, cutAngle);
+
+endfunction
+
+%!test
+%! ang = vectorAngle([1 0]);
+%! assert(0, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([0 1]);
+%! assert(pi/2, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([-1 0]);
+%! assert(pi, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([0 -1]);
+%! assert(3*pi/2, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([-1 1]);
+%! assert(3*pi/4, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([1 0], pi);
+%! assert(0, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([0 1], pi);
+%! assert(pi/2, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([-1 0], pi);
+%! assert(pi, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([0 -1], pi);
+%! assert(3*pi/2, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([-1 1], pi);
+%! assert(3*pi/4, ang, 1e-6);
+
+%!test
+%! vecs = [1 0;0 1;-1 0;0 -1;1 1];
+%! angs = [0;pi/2;pi;3*pi/2;pi/4];
+%! assert(angs, vectorAngle(vecs));
+%! assert(angs, vectorAngle(vecs, pi));
+
+%!test
+%! ang = vectorAngle([1 0], 0);
+%! assert(0, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([0 1], 0);
+%! assert(pi/2, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([0 -1], 0);
+%! assert(-pi/2, ang, 1e-6);
+
+%!test
+%! ang = vectorAngle([-1 1], 0);
+%! assert(3*pi/4, ang, 1e-6);
+
+%!test
+%! vecs = [1 0;0 1;0 -1;1 1;1 -1];
+%! angs = [0;pi/2;-pi/2;pi/4;-pi/4];
+%! assert(angs, vectorAngle(vecs, 0), 1e-6);
+
+%!test
+%! v1 = [1 0];
+%! v2 = [0 1];
+%! ang = pi /2 ;
+%! assert(ang, vectorAngle(v1, v2), 1e-6);
+
+%!test
+%! v1 = [1 0];
+%! v2 = [0 1; 0 1; 1 1; -1 1];
+%! ang = [pi / 2 ;pi / 2 ;pi / 4 ; 3 * pi / 4];
+%! assert(ang, vectorAngle(v1, v2), 1e-6);
+
+%!test
+%! v1 = [0 1; 0 1; 1 1; -1 1];
+%! v2 = [-1 0];
+%! ang = [pi / 2 ;pi / 2 ; 3 * pi / 4 ; pi / 4];
+%! assert(ang, vectorAngle(v1, v2), 1e-6);
+
+%!test
+%! v1 = [1 0; 0 1; 1 1; -1 1];
+%! v2 = [0 1; 1 0; -1 1; -1 0];
+%! ang = [pi / 2 ;3 * pi / 2 ;pi / 2 ; pi / 4];
+%! assert(ang, vectorAngle(v1, v2), 1e-6);