[fc6c4c]: inst / geom2d / vectorAngle.m  Maximize  Restore  History

Download this file

214 lines (173 with data), 5.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
## Copyright (C) 2004-2011 David Legland <david.legland@grignon.inra.fr>
## Copyright (C) 2004-2011 INRA - CEPIA Nantes - MIAJ (Jouy-en-Josas)
## Copyright (C) 2012 Adapted to Octave by Juan Pablo Carbajal <carbajal@ifi.uzh.ch>
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1 Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2 Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{alpha} =} vectorAngle (@var{v1})
## Angle of a vector, or between 2 vectors
##
## A = vectorAngle(V);
## Returns angle between Ox axis and vector direction, in Counter
## clockwise orientation.
## The result is normalised between 0 and 2*PI.
##
## A = vectorAngle(V1, V2);
## Returns the angle from vector V1 to vector V2, in counter-clockwise
## order, and in radians.
##
## A = vectorAngle(..., 'cutAngle', CUTANGLE);
## A = vectorAngle(..., CUTANGLE); # (deprecated syntax)
## Specifies convention for angle interval. CUTANGLE is the center of the
## 2*PI interval containing the result. See <a href="matlab:doc
## ('normalizeAngle')">normalizeAngle</a> for details.
##
## Example:
## rad2deg(vectorAngle([2 2]))
## ans =
## 45
## rad2deg(vectorAngle([1 sqrt(3)]))
## ans =
## 60
## rad2deg(vectorAngle([0 -1]))
## ans =
## 270
##
## @seealso{vectors2d, angles2d, normalizeAngle}
## @end deftypefn
function alpha = vectorAngle(v1, varargin)
## Initializations
# default values
v2 = [];
cutAngle = pi;
# process input arguments
while ~isempty(varargin)
var = varargin{1};
if isnumeric(var) && isscalar(var)
# argument is normalization constant
cutAngle = varargin{1};
varargin(1) = [];
elseif isnumeric(var) && size(var, 2) == 2
# argument is second vector
v2 = varargin{1};
varargin(1) = [];
elseif ischar(var) && length(varargin) >= 2
# argument is option given as string + value
if strcmpi(var, 'cutAngle')
cutAngle = varargin{2};
varargin(1:2) = [];
else
error(['Unknown option: ' var]);
end
else
error('Unable to parse inputs');
end
end
## Case of one vector
# If only one vector is provided, computes its angle
if isempty(v2)
# compute angle and format result in a 2*pi interval
alpha = atan2(v1(:,2), v1(:,1));
# normalize within a 2*pi interval
alpha = normalizeAngle(alpha + 2*pi, cutAngle);
return;
end
## Case of two vectors
# compute angle of each vector
alpha1 = atan2(v1(:,2), v1(:,1));
alpha2 = atan2(v2(:,2), v2(:,1));
# difference
alpha = bsxfun(@minus, alpha2, alpha1);
# normalize within a 2*pi interval
alpha = normalizeAngle(alpha + 2*pi, cutAngle);
endfunction
%!test
%! ang = vectorAngle([1 0]);
%! assert(0, ang, 1e-6);
%!test
%! ang = vectorAngle([0 1]);
%! assert(pi/2, ang, 1e-6);
%!test
%! ang = vectorAngle([-1 0]);
%! assert(pi, ang, 1e-6);
%!test
%! ang = vectorAngle([0 -1]);
%! assert(3*pi/2, ang, 1e-6);
%!test
%! ang = vectorAngle([-1 1]);
%! assert(3*pi/4, ang, 1e-6);
%!test
%! ang = vectorAngle([1 0], pi);
%! assert(0, ang, 1e-6);
%!test
%! ang = vectorAngle([0 1], pi);
%! assert(pi/2, ang, 1e-6);
%!test
%! ang = vectorAngle([-1 0], pi);
%! assert(pi, ang, 1e-6);
%!test
%! ang = vectorAngle([0 -1], pi);
%! assert(3*pi/2, ang, 1e-6);
%!test
%! ang = vectorAngle([-1 1], pi);
%! assert(3*pi/4, ang, 1e-6);
%!test
%! vecs = [1 0;0 1;-1 0;0 -1;1 1];
%! angs = [0;pi/2;pi;3*pi/2;pi/4];
%! assert(angs, vectorAngle(vecs));
%! assert(angs, vectorAngle(vecs, pi));
%!test
%! ang = vectorAngle([1 0], 0);
%! assert(0, ang, 1e-6);
%!test
%! ang = vectorAngle([0 1], 0);
%! assert(pi/2, ang, 1e-6);
%!test
%! ang = vectorAngle([0 -1], 0);
%! assert(-pi/2, ang, 1e-6);
%!test
%! ang = vectorAngle([-1 1], 0);
%! assert(3*pi/4, ang, 1e-6);
%!test
%! vecs = [1 0;0 1;0 -1;1 1;1 -1];
%! angs = [0;pi/2;-pi/2;pi/4;-pi/4];
%! assert(angs, vectorAngle(vecs, 0), 1e-6);
%!test
%! v1 = [1 0];
%! v2 = [0 1];
%! ang = pi /2 ;
%! assert(ang, vectorAngle(v1, v2), 1e-6);
%!test
%! v1 = [1 0];
%! v2 = [0 1; 0 1; 1 1; -1 1];
%! ang = [pi / 2 ;pi / 2 ;pi / 4 ; 3 * pi / 4];
%! assert(ang, vectorAngle(v1, v2), 1e-6);
%!test
%! v1 = [0 1; 0 1; 1 1; -1 1];
%! v2 = [-1 0];
%! ang = [pi / 2 ;pi / 2 ; 3 * pi / 4 ; pi / 4];
%! assert(ang, vectorAngle(v1, v2), 1e-6);
%!test
%! v1 = [1 0; 0 1; 1 1; -1 1];
%! v2 = [0 1; 1 0; -1 1; -1 0];
%! ang = [pi / 2 ;3 * pi / 2 ;pi / 2 ; pi / 4];
%! assert(ang, vectorAngle(v1, v2), 1e-6);

Get latest updates about Open Source Projects, Conferences and News.

Sign up for the SourceForge newsletter:

JavaScript is required for this form.





No, thanks